Problem Set 7

Due: Friday, March 9

- **Problem 1.** Let $[x_1x_2\cdots x_n]f$ denote the coefficient of the monomial $x_1x_2\cdots x_n$ in f. Determine $[x_1x_2\cdots x_n]m_{\lambda}(\mathbf{x}), [x_1x_2\cdots x_n]p_{\lambda}(\mathbf{x}), [x_1x_2\cdots x_n]e_{\lambda}(\mathbf{x}), \text{ and } [x_1x_2\cdots x_n]h_{\lambda}(\mathbf{x}) \text{ for all } \lambda \vdash n.$
- **Problem 2.** Let P be a poset. A least upper bound or join of $x, y \in P$ is an element $z \in P$ such that $z \ge x, z \ge y$ and $z \le z'$ for any z' satisfying $z' \ge x, z' \ge y$. A least upper bound of x and y is unique if it exists and is denoted $x \lor y$. Similarly, a greatest lower bound or meet of $x, y \in P$ is an element $z \in P$ such that $z \le x, z \le y$ and $z \ge z'$ for any z' satisfying $z' \le x, z' \le y$. A greatest lower bound of x and y is unique if it exists and is denoted $x \lor y$. Similarly, a greatest lower bound or meet of $x, y \in P$ is an element $z \in P$ such that $z \le x, z \le y$ and $z \ge z'$ for any z' satisfying $z' \le x, z' \le y$. A greatest lower bound of x and y is unique if it exists and is denoted $x \land y$. A poset P is a lattice if every two elements have a meet and join. Show that dominance order on Par(n) is a lattice.
- **Problem 3.** Show that $\mu \leq \lambda$ if and only if $\mu' \geq \lambda'$, where $\lambda, \mu \vdash n$ and \leq denotes dominance order.
- **Problem 4.** Determine the number of standard Young tableaux of shape (n, n). Prove that your answer is correct without using the hook-length formula.
- **Problem 5.** Determine the *principal specialization of order* n of e_{λ} , which is defined to be $e_{\lambda}(1, q, \ldots, q^{n-1}, 0, 0 \ldots)$.