Problem Set 6

Due: Friday, February 17

Problem 1. An arrangement \mathcal{A} is in *general position* if for any $\{H_1, \ldots, H_p\} \subseteq \mathcal{A}$, there holds

$$\begin{cases} \dim(H_1 \cap \dots \cap H_p) = n - p & \text{if } p \le n, \\ H_1 \cap \dots \cap H_p = \emptyset & \text{if } p > n. \end{cases}$$

Let \mathcal{A}_m^3 be the arrangement in \mathbb{R}^3 consisting of m planes in general position. Determine (with proof) the number of regions $r(\mathcal{A}_m^3)$ of \mathcal{A}_m^3 without using Theorem 2.5.

- **Problem 2.** Let G be a forest (graph with no cycles) on the vertex set [n]. Show that $L_G \cong B_{E(G)}$, the boolean lattice of all subsets of E(G). Here, $L_G \cong L(\mathcal{A}_G)$ is the lattice of contractions of G.
- **Problem 3.** Let \mathcal{A} be an arrangement in \mathbb{R}^n . Suppose that $\chi_{\mathcal{A}}(t)$ is divisible by t^k but not t^{k+1} . Show that rank $(\mathcal{A}) = n - k$.
- **Problem 4.** Let \mathcal{A} be the arrangement in \mathbb{R}^n consisting of the *n* hyperplanes

$$x_1 = x_2, x_2 = x_3, \dots, x_{n-1} = x_n, x_n = x_1.$$

Compute (with proof) the characteristic polynomial $\chi_{\mathcal{A}}(t)$ and the number $r(\mathcal{A})$ of regions of \mathcal{A} .

Problem 5. A face of an arrangement \mathcal{A} is a set $\emptyset \neq F = \overline{R} \cap x$, where $R \in \mathcal{R}(\mathcal{A})$ and $x \in L(\mathcal{A})$ and \overline{R} is the closure of R. Let f(n) be the total number of faces of the braid arrangement \mathcal{B}_n . Find (with proof) a simple formula for the generating function

$$\sum_{n\geq 0} f(n)\frac{x^n}{n!} = 1 + x + 3\frac{x^2}{2} + 13\frac{x^3}{3!} + 75\frac{x^4}{4!} + 541\frac{x^5}{5!} + 4683\frac{x^6}{6!} + \cdots$$