Problem Set 6

Due: Friday, February 17

Problem 1. An arrangement \mathcal{A} is in general position if for any $\left\{H_{1}, \ldots, H_{p}\right\} \subseteq \mathcal{A}$, there holds

$$
\begin{cases}\operatorname{dim}\left(H_{1} \cap \cdots \cap H_{p}\right)=n-p & \text { if } p \leq n, \\ H_{1} \cap \cdots \cap H_{p}=\emptyset & \text { if } p>n\end{cases}
$$

Let \mathcal{A}_{m}^{3} be the arrangement in \mathbb{R}^{3} consisting of m planes in general position. Determine (with proof) the number of regions $r\left(\mathcal{A}_{m}^{3}\right)$ of \mathcal{A}_{m}^{3} without using Theorem 2.5.

Problem 2. Let G be a forest (graph with no cycles) on the vertex set [n]. Show that $L_{G} \cong B_{E(G)}$, the boolean lattice of all subsets of $E(G)$. Here, $L_{G} \cong L\left(\mathcal{A}_{G}\right)$ is the lattice of contractions of G.

Problem 3. Let \mathcal{A} be an arrangement in \mathbb{R}^{n}. Suppose that $\chi_{\mathcal{A}}(t)$ is divisible by t^{k} but not t^{k+1}. Show that $\operatorname{rank}(\mathcal{A})=n-k$.

Problem 4. Let \mathcal{A} be the arrangement in \mathbb{R}^{n} consisting of the n hyperplanes

$$
x_{1}=x_{2}, x_{2}=x_{3}, \ldots, x_{n-1}=x_{n}, x_{n}=x_{1} .
$$

Compute (with proof) the characteristic polynomial $\chi_{\mathcal{A}}(t)$ and the number $r(\mathcal{A})$ of regions of \mathcal{A}.

Problem 5. A face of an arrangement \mathcal{A} is a set $\emptyset \neq F=\bar{R} \cap x$, where $R \in \mathcal{R}(\mathcal{A})$ and $x \in L(\mathcal{A})$ and \bar{R} is the closure of R. Let $f(n)$ be the total number of faces of the braid arrangement \mathcal{B}_{n}. Find (with proof) a simple formula for the generating function

$$
\sum_{n \geq 0} f(n) \frac{x^{n}}{n!}=1+x+3 \frac{x^{2}}{2}+13 \frac{x^{3}}{3!}+75 \frac{x^{4}}{4!}+541 \frac{x^{5}}{5!}+4683 \frac{x^{6}}{6!}+\cdots
$$

