
Problem Set 5
Due: Friday, February 10

Problem 1. Prove that the q-multinomial coefficients satisfy the recurrence[
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Problem 2. A polynomial f(q) = c0 + c1q + · · · + cnq
n is symmetric if ci = cn−i for all i. The

polynomial f(q) is unimodal if there exists a j such that c0 ≤ c1 ≤ · · · ≤ cj ≥ cj+1 ≥ · · · ≥
cn. Prove that for k1, . . . , kr ∈ Z≥0, the q-multinomial coefficient[
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is a symmetric and unimodal polynomial with nonnegative integer coefficients. (You can
use the fact that the q-binomial coefficients are symmetric unimodal polynomials with
nonnegative integer coefficients.)

Problem 3. Determine the number of permutations of [n] with an odd number of cycles all
of which have odd lengths. For example, for n = 3, there are 3 such permutations:
(1)(2)(3), (123), (132).

Problem 4. Prove the following q-analog of the convolution formula for binomial coefficients.[
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Problem 5. Prove that the number of ways to write the n-cycle permutation (123 · · ·n) as a
product of n − 1 transpositions is equal to nn−2. Here, product refers to multiplication in
the group Sn. A transposition is the same as a 2-cycle.
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