Problem Set 5

Due: Friday, February 10

Problem 1. Prove that the q-multinomial coefficients satisfy the recurrence

$$
\begin{aligned}
{\left[\begin{array}{c}
n \\
k_{1}, k_{2}, \ldots, k_{r}
\end{array}\right]_{q}=\left[\begin{array}{c}
n-1 \\
k_{1}-1, k_{2}, \ldots, k_{r}
\end{array}\right]_{q}+q^{k_{1}} } & {\left[\begin{array}{c}
n-1 \\
k_{1}, k_{2}-1, \ldots, k_{r}
\end{array}\right]_{q} } \\
& +\cdots+q^{k_{1}+\cdots+k_{r-1}}\left[\begin{array}{c}
n-1 \\
k_{1}, k_{2}, \ldots, k_{r}-1
\end{array}\right]_{q} .
\end{aligned}
$$

Problem 2. A polynomial $f(q)=c_{0}+c_{1} q+\cdots+c_{n} q^{n}$ is symmetric if $c_{i}=c_{n-i}$ for all i. The polynomial $f(q)$ is unimodal if there exists a j such that $c_{0} \leq c_{1} \leq \cdots \leq c_{j} \geq c_{j+1} \geq \cdots \geq$ c_{n}. Prove that for $k_{1}, \ldots, k_{r} \in \mathbb{Z}_{\geq 0}$, the q-multinomial coefficient

$$
\left[\begin{array}{c}
k_{1}+\cdots+k_{r} \\
k_{1}, \ldots, k_{r}
\end{array}\right]_{q}=\frac{\left[k_{1}+\cdots+k_{r}\right]!}{\left[k_{1}\right]!\cdots\left[k_{r}\right]!}
$$

is a symmetric and unimodal polynomial with nonnegative integer coefficients. (You can use the fact that the q-binomial coefficients are symmetric unimodal polynomials with nonnegative integer coefficients.)

Problem 3. Determine the number of permutations of $[n]$ with an odd number of cycles all of which have odd lengths. For example, for $n=3$, there are 3 such permutations: (1)(2)(3), (123), (132).

Problem 4. Prove the following q-analog of the convolution formula for binomial coefficients.

$$
\left[\begin{array}{c}
m+n \\
k
\end{array}\right]_{q}=\sum_{i+j=k} q^{(m-i) j}\left[\begin{array}{c}
m \\
i
\end{array}\right]_{q}\left[\begin{array}{c}
n \\
j
\end{array}\right]_{q}
$$

Problem 5. Prove that the number of ways to write the n-cycle permutation $(123 \cdots n)$ as a product of $n-1$ transpositions is equal to n^{n-2}. Here, product refers to multiplication in the group \mathcal{S}_{n}. A transposition is the same as a 2 -cycle.

