Problem Set 5
Due: Friday, February 10

Problem 1. Prove that the g-multinomial coeflicients satisfy the recurrence
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Problem 2. A polynomial f(q) = co + c1q + -+ + cnq™ is symmetric if ¢; = ¢,—; for all i. The

polynomial f(q) is unimodal if there exists a j such that ¢co <c¢1 <--- <¢; >¢jy1 > -+ >

cn. Prove that for ki,..., k, € Z>o, the g-multinomial coefficient
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is a symmetric and unimodal polynomial with nonnegative integer coefficients. (You can
use the fact that the g-binomial coefficients are symmetric unimodal polynomials with
nonnegative integer coefficients.)

Problem 3. Determine the number of permutations of [n] with an odd number of cycles all
of which have odd lengths. For example, for n = 3, there are 3 such permutations:
(1)(2)(3), (123), (132).

Problem 4. Prove the following g-analog of the convolution formula for binomial coefficients.
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Problem 5. Prove that the number of ways to write the n-cycle permutation (123---n) as a
product of n — 1 transpositions is equal to n"~2. Here, product refers to multiplication in
the group §,. A transposition is the same as a 2-cycle.



