Problem Set 4

Due: Friday, February 3

Problem 1. Find a simple expression for the ordinary generating function in two variables

$$F(x,y) = \sum_{n,k \ge 0} \binom{n}{k} x^n y^k$$

Problem 2. A perfect matching on a set S of 2n elements is a set partition of S into n blocks of 2 elements each. Taking $S = [2n] = \{1, 2, ..., 2n\}$, and thinking of the blocks in a matching as the edges of a graph, call edges of the form $\{i, i + 1\}$ short, and all other edges long. Let $M_n(x)$ be the ordinary generating function that counts perfect matchings on [2n] with weight x^s , where s is the number of short edges, so for instance $M_2(x) = 1 + x + x^2$. Prove the recurrence

$$M_n(x) = (x + 2n - 2)M_{n-1}(x) + (1 - x)\frac{d}{dx}M_{n-1}(x).$$

Problem 3. Suppose that a_1, a_2, \ldots and b_1, b_2, \ldots are sequences such that $b_n = \sum_{k=1}^n S(n, k)a_k$; therefore, since s is the inverse of S, $a_n = \sum_{k=1}^n s(n, k)b_k$. Prove that

$$B(x) = A(e^x - 1),$$

where $A(x) = \sum_{n \ge 1} a_n \frac{x^n}{n!}$ and $B(x) = \sum_{n \ge 1} b_n \frac{x^n}{n!}$.

Problem 4. Prove that

$$(x+y)_n = \sum_{k=0}^n \binom{n}{k} (x)_k (y)_{n-k}.$$

Here, $(x+y)_n$ is the falling factorial $(x+y)(x+y-1)\cdots(x+y-n+1)$.

Problem 5. Show that $C_n(q) := \frac{1}{[n+1]_q} {2n \brack n}_q$ is a polynomial in q with nonnegative integer coefficients. This is a q-analogue of the Catalan numbers.