Problem Set 4

Due: Friday, February 3

Problem 1. Find a simple expression for the ordinary generating function in two variables

$$
F(x, y)=\sum_{n, k \geq 0}\binom{n}{k} x^{n} y^{k}
$$

Problem 2. A perfect matching on a set S of $2 n$ elements is a set partition of S into n blocks of 2 elements each. Taking $S=[2 n]=\{1,2, \ldots, 2 n\}$, and thinking of the blocks in a matching as the edges of a graph, call edges of the form $\{i, i+1\}$ short, and all other edges long. Let $M_{n}(x)$ be the ordinary generating function that counts perfect matchings on [2n] with weight x^{s}, where s is the number of short edges, so for instance $M_{2}(x)=1+x+x^{2}$. Prove the recurrence

$$
M_{n}(x)=(x+2 n-2) M_{n-1}(x)+(1-x) \frac{d}{d x} M_{n-1}(x) .
$$

Problem 3. Suppose that a_{1}, a_{2}, \ldots and b_{1}, b_{2}, \ldots are sequences such that $b_{n}=\sum_{k=1}^{n} S(n, k) a_{k}$; therefore, since s is the inverse of $S, a_{n}=\sum_{k=1}^{n} s(n, k) b_{k}$. Prove that

$$
B(x)=A\left(e^{x}-1\right),
$$

where $A(x)=\sum_{n \geq 1} a_{n} \frac{x^{n}}{n!}$ and $B(x)=\sum_{n \geq 1} b_{n} \frac{x^{n}}{n!}$.
Problem 4. Prove that

$$
(x+y)_{n}=\sum_{k=0}^{n}\binom{n}{k}(x)_{k}(y)_{n-k} .
$$

Here, $(x+y)_{n}$ is the falling factorial $(x+y)(x+y-1) \cdots(x+y-n+1)$.
Problem 5. Show that $C_{n}(q):=\frac{1}{[n+1]_{q}}\left[\begin{array}{c}2 n \\ n\end{array}\right]_{q}$ is a polynomial in q with nonnegative integer coefficients. This is a q-analogue of the Catalan numbers.

