Problem Set 3

Due: Friday, January 27

Problem 1. Consider the 64 possible sums of the form

 $\epsilon_1 + \epsilon_2 + 2\epsilon_3 + 5\epsilon_4 + 10\epsilon_5 + 10\epsilon_6,$

where each ϵ_i is 0 or 1. Let a_n be the number of different sums that represent n. Give a simple expression for the generating function $A(x) = \sum_{n>0} a_n x^n$.

- **Problem 2.** Let π be a random permutation of 1, 2, ..., n (chosen from the uniform distribution). Fix a positive integer $1 \le k \le n$. What is the probability that in the cycle notation of π , the length of the cycle containing 1 is k?
- **Problem 3.** Let F_n be the *n*-th Fibonacci number. Prove or disprove: the generating function $G(x) = \sum_{n>0} F_n^2 x^n$ is rational.
- **Problem 4.** Let k and n be integers with $0 \le k < n$. Evaluate the sum $\sum_{i=0}^{n} (-1)^{i} {n \choose i} i^{k}$ (and prove that your answer is correct). (Suggestion: begin by making a table of the answer for small k and n.)
- **Problem 5.** Let f_n be the number of permutations of [n] with no fixed points or cycles of size 2. Show that the exponential generating function $F(x) = \sum_{n>0} f_n \frac{x^n}{n!}$ is equal to

$$\frac{e^{-x-\frac{x^2}{2}}}{1-x}.$$