Problem Set 3

Due: Friday, January 27

Problem 1. Consider the 64 possible sums of the form

$$
\epsilon_{1}+\epsilon_{2}+2 \epsilon_{3}+5 \epsilon_{4}+10 \epsilon_{5}+10 \epsilon_{6}
$$

where each ϵ_{i} is 0 or 1 . Let a_{n} be the number of different sums that represent n. Give a simple expression for the generating function $A(x)=\sum_{n \geq 0} a_{n} x^{n}$.

Problem 2. Let π be a random permutation of $1,2, \ldots, n$ (chosen from the uniform distribution). Fix a positive integer $1 \leq k \leq n$. What is the probability that in the cycle notation of π, the length of the cycle containing 1 is k ?

Problem 3. Let F_{n} be the n-th Fibonacci number. Prove or disprove: the generating function $G(x)=\sum_{n \geq 0} F_{n}^{2} x^{n}$ is rational.

Problem 4. Let k and n be integers with $0 \leq k<n$. Evaluate the sum $\sum_{i=0}^{n}(-1)^{i}\binom{n}{i} i^{k}$ (and prove that your answer is correct).
(Suggestion: begin by making a table of the answer for small k and n.)
Problem 5. Let f_{n} be the number of permutations of $[n]$ with no fixed points or cycles of size 2 . Show that the exponential generating function $F(x)=\sum_{n \geq 0} f_{n} \frac{x^{n}}{n!}$ is equal to

$$
\frac{e^{-x-\frac{x^{2}}{2}}}{1-x}
$$

