Problem Set 2

Due: Friday, January 20

Problem 1. Given a permutation $\pi=\pi_{1} \ldots \pi_{n}$, let π^{\dagger} be the permutation $\pi_{n} \pi_{n-1} \ldots \pi_{1}$. Determine $i\left(\pi^{\dagger}\right), I\left(\pi^{\dagger}\right), d\left(\pi^{\dagger}\right), D\left(\pi^{\dagger}\right)$, and maj $\left(\pi^{\dagger}\right)$ in terms of $i(\pi), I(\pi), d(\pi), D(\pi)$, and $\operatorname{maj}(\pi)$, respectively. Here $I(\pi)$ is the inversion table of π (see Proposition 1.3.9 and nearby of Stanley for notation).

Problem 2. Determine (with proof) the number of sequences of 0's and 1's $\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$ that satisfy

$$
\varepsilon_{1} \leq \varepsilon_{2} \geq \varepsilon_{3} \leq \varepsilon_{4} \geq \varepsilon_{5} \leq \cdots
$$

Problem 3. Evaluate the sum

$$
\sum_{i=0}^{k}(-1)^{i}\binom{n}{k-i}
$$

(Suggestion: use generating functions.)
Problem 4. Recall that the Eulerian number $A(n, k)$ is the number of permutations of $[n]$ with $k-1$ descents. Prove that $\sum_{k=1}^{n} k A(n, k)=\frac{1}{2}(n+1)!$.

Problem 5. Solve the recurrence:

$$
\begin{aligned}
& g_{0}=1, \\
& g_{n}=g_{n-1}+2 g_{n-2}+\cdots+n g_{0} .
\end{aligned}
$$

