Problem Set 2

Due: Friday, January 20

Problem 1. Given a permutation $\pi = \pi_1 \dots \pi_n$, let π^{\dagger} be the permutation $\pi_n \pi_{n-1} \dots \pi_1$. Determine $i(\pi^{\dagger})$, $I(\pi^{\dagger})$, $d(\pi^{\dagger})$, $D(\pi^{\dagger})$, and $\operatorname{maj}(\pi^{\dagger})$ in terms of $i(\pi)$, $I(\pi)$, $d(\pi)$, $D(\pi)$, and $\operatorname{maj}(\pi)$, respectively. Here $I(\pi)$ is the inversion table of π (see Proposition 1.3.9 and nearby of Stanley for notation).

Problem 2. Determine (with proof) the number of sequences of 0's and 1's $(\varepsilon_1, \ldots, \varepsilon_n)$ that satisfy

$$\varepsilon_1 \leq \varepsilon_2 \geq \varepsilon_3 \leq \varepsilon_4 \geq \varepsilon_5 \leq \cdots$$

Problem 3. Evaluate the sum

$$\sum_{i=0}^{k} (-1)^i \binom{n}{k-i}.$$

(Suggestion: use generating functions.)

Problem 4. Recall that the Eulerian number A(n,k) is the number of permutations of [n] with k-1 descents. Prove that $\sum_{k=1}^{n} kA(n,k) = \frac{1}{2}(n+1)!$.

Problem 5. Solve the recurrence:

$$g_0 = 1,$$

 $g_n = g_{n-1} + 2g_{n-2} + \dots + ng_0.$