Problem Set 12 Do not turn in

Problem 1. Prove or disprove: the product of two skew Schur functions is a skew Schur function.

Problem 2. Let $\ell(\lambda) \leq m$ and $\lambda_1 \leq n$. Define

$$\lambda = (n - \lambda_m, n - \lambda_{m-1}, \dots, n - \lambda_1).$$

Prove that

$$(x_1x_2\cdots x_m)^n s_{\lambda}(x_1^{-1},\ldots,x_m^{-1}) = s_{\tilde{\lambda}}(x_1,\ldots,x_m).$$

- **Problem 3.** Let $\delta = (n 1, n 2, ..., 1)$ be the staircase shape. Express a_{δ}^2 as the determinant of a matrix with entries belonging to $\{p_0, p_1, p_2, ..., p_{2n-2}\}$, where the p_i are power sum symmetric functions with the temporary convention that $p_0 = n$.
- **Problem 4.** It is known that $s_{\lambda}(1, q, \dots, q^n)$ is a symmetric and unimodal polynomial in the variable q. Use this to prove that the q-binomial coefficient $\begin{bmatrix} n \\ k \end{bmatrix}_q$ is symmetric and unimodal.
- **Problem 5.** Define decreasing subsequence similarly to increasing subsequence. Given $\pi \in S_n$, let λ be the shape of $P(\pi)$. Show that $\ell(\lambda)$ is equal to the length of the longest decreasing subsequence of π .