Problem Set 12

Do not turn in

Problem 1. Prove or disprove: the product of two skew Schur functions is a skew Schur function.
Problem 2. Let $\ell(\lambda) \leq m$ and $\lambda_{1} \leq n$. Define

$$
\tilde{\lambda}=\left(n-\lambda_{m}, n-\lambda_{m-1}, \ldots, n-\lambda_{1}\right) .
$$

Prove that

$$
\left(x_{1} x_{2} \cdots x_{m}\right)^{n} s_{\lambda}\left(x_{1}^{-1}, \ldots, x_{m}^{-1}\right)=s_{\tilde{\lambda}}\left(x_{1}, \ldots, x_{m}\right) .
$$

Problem 3. Let $\delta=(n-1, n-2, \ldots, 1)$ be the staircase shape. Express a_{δ}^{2} as the determinant of a matrix with entries belonging to $\left\{p_{0}, p_{1}, p_{2}, \ldots, p_{2 n-2}\right\}$, where the p_{i} are power sum symmetric functions with the temporary convention that $p_{0}=n$.

Problem 4. It is known that $s_{\lambda}\left(1, q, \ldots, q^{n}\right)$ is a symmetric and unimodal polynomial in the variable q. Use this to prove that the q-binomial coefficient $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$ is symmetric and unimodal.

Problem 5. Define decreasing subsequence similarly to increasing subsequence. Given $\pi \in \mathcal{S}_{n}$, let λ be the shape of $P(\pi)$. Show that $\ell(\lambda)$ is equal to the length of the longest decreasing subsequence of π.

