Problem Set 11

Due: Friday, April 6

- **Problem 1.** For $\lambda \vdash n$, $\ell(\lambda) \leq 2$, express h_{λ} and e_{λ} in terms of the basis $\{s_{\lambda} : \lambda \vdash n\}$ of $\Lambda_{\mathbb{Q}}^{n}$. Use the expansion of $h_{\lceil n/2 \rceil} h_{\lfloor n/2 \rfloor}$ to give a short proof of the fact that the number of SYT of size n and at most 2 rows is $\binom{n}{\lfloor n/2 \rfloor}$ (problem 2, problem set 8).
- **Problem 2.** Let $\delta^n = (n 1, n 2, ..., 1)$ be the staircase shape. Let $\nu^{r,c}$ denote the rectangle shape (c^r) with c columns and r rows. Express the skew Schur functions $s_{\delta^{n+1}/\delta^n}$ and $s_{\nu^{r,c}/\nu^{r-1,c-1}}$ in terms of Schur functions.
- **Problem 3.** Determine $\sum_{\pi \in S_n} p_{\rho(\pi)}$ in terms of the basis $\{h_{\lambda} : \lambda \vdash n\}$ of $\Lambda^n_{\mathbb{Q}}$. Here p denotes the power sum symmetric function and $\rho(\pi)$ is the cycle type of π .

Problem 4. Verify the identity

$$\prod_{i} (1 - qx_i)^{-1} \cdot \prod_{i < j} (1 - x_i x_j)^{-1} = \sum_{\lambda} q^{c(\lambda)} s_{\lambda}(x),$$

where $c(\lambda)$ denotes the number of parts of λ' that are odd. (Suggestion: Generalize the proof of Corollary 7.13.8 of Stanley. If you use this proof, be sure to fill in the details not given in the book.)

Problem 5. Let $\Psi : \Lambda \to \mathbb{Q}[t]$ be the specialization defined by $\Psi(p_n) = 1 - (-t)^n$, n > 0. Show that

$$\Psi(s_{\lambda}) = \begin{cases} t^{k}(1+t) & \lambda = \langle n-k, 1^{k} \rangle, \ 0 \le k \le n-1 \\ 0 & \text{otherwise.} \end{cases}$$