Problem Set 11

Due: Friday, April 6

Problem 1. For $\lambda \vdash n, \ell(\lambda) \leq 2$, express h_{λ} and e_{λ} in terms of the basis $\left\{s_{\lambda}: \lambda \vdash n\right\}$ of $\Lambda_{\mathbb{Q}}^{n}$. Use the expansion of $h_{\lceil n / 2\rceil} h_{\lfloor n / 2\rfloor}$ to give a short proof of the fact that the number of SYT of size n and at most 2 rows is $\binom{n}{\lfloor n / 2\rfloor}$ (problem 2, problem set 8).

Problem 2. Let $\delta^{n}=(n-1, n-2, \ldots, 1)$ be the staircase shape. Let $\nu^{r, c}$ denote the rectangle shape $\left(c^{r}\right)$ with c columns and r rows. Express the skew Schur functions $s_{\delta^{n+1} / \delta^{n}}$ and $s_{\nu^{r}, c / \nu^{r-1, c-1}}$ in terms of Schur functions.

Problem 3. Determine $\sum_{\pi \in \mathcal{S}_{n}} p_{\rho(\pi)}$ in terms of the basis $\left\{h_{\lambda}: \lambda \vdash n\right\}$ of $\Lambda_{\mathbb{Q}}^{n}$. Here p denotes the power sum symmetric function and $\rho(\pi)$ is the cycle type of π.

Problem 4. Verify the identity

$$
\prod_{i}\left(1-q x_{i}\right)^{-1} \cdot \prod_{i<j}\left(1-x_{i} x_{j}\right)^{-1}=\sum_{\lambda} q^{c(\lambda)} s_{\lambda}(x),
$$

where $c(\lambda)$ denotes the number of parts of λ^{\prime} that are odd. (Suggestion: Generalize the proof of Corollary 7.13 .8 of Stanley. If you use this proof, be sure to fill in the details not given in the book.)

Problem 5. Let $\Psi: \Lambda \rightarrow \mathbb{Q}[t]$ be the specialization defined by $\Psi\left(p_{n}\right)=1-(-t)^{n}, n>0$. Show that

$$
\Psi\left(s_{\lambda}\right)= \begin{cases}t^{k}(1+t) & \lambda=\left\langle n-k, 1^{k}\right\rangle, 0 \leq k \leq n-1 \\ 0 & \text { otherwise }\end{cases}
$$

