Problem Set 1

Due: Friday, January 13

Problem 1. A fixed point free involution in $\mathcal{S}_{2 n}$ is a permutation $\pi \in \mathcal{S}_{2 n}$ satisfying $\pi^{2}=\operatorname{id}$ and $\pi(i) \neq i$ for all $i \in[2 n]$. Prove that the number of fixed point free involutions in $\mathcal{S}_{2 n}$ is $(2 n-1)!!:=1 \cdot 3 \cdot 5 \cdots(2 n-1)$.

Problem 2. Determine the number of compositions of n (with any number of parts). Give a direct combinatorial proof that this value is correct.

Problem 3. Let $p(c, r, n)$ be the number of partitions of n with length at most r and largest part $\leq c$ (this is the number of partitions whose Ferrers diagram is contained in an $r \times c$ rectangle). Determine $\sum_{n \geq 0} p(c, r, n)$ and give a direct combinatorial proof that this value is correct.

Problem 4. Given $\pi \in \mathcal{S}_{n}$, let $c_{1}(\pi)$ be the number of fixed points of π (i.e. the number of cycles of π of length 1). Prove that $\sum_{\pi \in \mathcal{S}_{n}} c_{1}(\pi)=n!$.

Problem 5. For $n \geq 2$, prove that the number of compositions of n with an even number of even parts equals the number of compositions of n with an odd number of even parts.

