Take home midterm

Due: Friday, February 24 at the beginning of class

Rules: You may consult your notes and the textbooks Vol. 1 and 2 of Stanley, Generating Functionology by Wilf, and Stanley's notes on hyperplane arrangements; you may **not** consult with sources other than these or other people.

- **Problem 1.** Let a_n be the number of subsets of [n] that contain no two consecutive elements. Determine the sequence a_0, a_1, a_2, \ldots , which begins $a_0 = 1, a_1 = 2, a_2 = 3$.
- **Problem 2.** Let T_n denote the number of set partitions of [n] with an even number of blocks, all of which have even size. For example, $T_4 = 3$, corresponding to the set partitions 12|34, 13|24, 14|23 of [4]. Determine the exponential generating function $T(x) := \sum_{n>0} T_n \frac{x^n}{n!}$.
- **Problem 3.** Let P_n denote the poset of set partitions of [n] ordered by refinement: $\{B_1, B_2, \ldots, B_k\} \leq \{B'_1, B'_2, \ldots, B'_{k'}\}$ if each B_i is contained in some B'_j . Let $\hat{0} \in P_n$ be the set partition with n blocks of size 1 and $\hat{1} \in P_n$ be the set partition with 1 block of size n. Determine $\mu(\hat{0}, \hat{1})$, where μ is the Möbius function of P_n .
- **Problem 4.** Recall that the Eulerian number A(n,k) is the number of permutations of [n] with k-1 descents. There are n! sequences of integers (b_1,\ldots,b_n) such that $0 \le b_i \le n-i$ for all i. Let B(n,k) be the number of these sequences (b_1,\ldots,b_n) such that $|\{b_1,\ldots,b_n\}| = k$. Prove that B(n,k) = A(n,k).

Problem 5. Prove that

$$\prod_{i=1}^{s} (1+x^{-1}q^i) \prod_{i=0}^{t-1} (1+xq^i) = \sum_{j=-s}^{t} q^{\binom{j}{2}} {s+t \brack s+j}_q x^j.$$

Problem 6. Let \mathcal{A} be an arrangement in the *n*-dimensional vector space V whose normals span a subspace W, and let \mathcal{B} be another arrangement in V whose normals span a subspace Y. Suppose that $W \cap Y = \{0\}$. Show that

$$\chi_{\mathcal{A}\cup\mathcal{B}}(t) = t^{-n}\chi_{\mathcal{A}}(t)\chi_{\mathcal{B}}(t).$$

Problem 7. Evaluate the sum below (and prove that your answer is correct):

$$\sum_{k=0}^{n} \frac{1}{k+1} \binom{2k}{k} \binom{2n-2k}{n-k}.$$

Problem 8. A prime parking function is a sequence $\mathbf{a} = (a_1, \ldots, a_n)$ of positive integers that contains at least k + 1 entries $\leq k$, for $k = 1, \ldots, n - 1$. Prove that the number of prime parking functions is $(n-1)^{n-1}$.