Take home midterm

Due: Friday, February 24 at the beginning of class

Rules: You may consult your notes and the textbooks Vol. 1 and 2 of Stanley, Generating Functionology by Wilf, and Stanley's notes on hyperplane arrangements; you may not consult with sources other than these or other people.

Problem 1. Let a_{n} be the number of subsets of $[n]$ that contain no two consecutive elements. Determine the sequence $a_{0}, a_{1}, a_{2}, \ldots$, which begins $a_{0}=1, a_{1}=2, a_{2}=3$.

Problem 2. Let T_{n} denote the number of set partitions of $[n]$ with an even number of blocks, all of which have even size. For example, $T_{4}=3$, corresponding to the set partitions $12|34,13| 24,14 \mid 23$ of [4]. Determine the exponential generating function $T(x):=\sum_{n \geq 0} T_{n} \frac{x^{n}}{n!}$.

Problem 3. Let P_{n} denote the poset of set partitions of $[n]$ ordered by refinement: $\left\{B_{1}, B_{2}, \ldots, B_{k}\right\} \leq$ $\left\{B_{1}^{\prime}, B_{2}^{\prime}, \ldots, B_{k^{\prime}}^{\prime}\right\}$ if each B_{i} is contained in some B_{j}^{\prime}. Let $\hat{0} \in P_{n}$ be the set partition with n blocks of size 1 and $\hat{1} \in P_{n}$ be the set partition with 1 block of size n. Determine $\mu(\hat{0}, \hat{1})$, where μ is the Möbius function of P_{n}.

Problem 4. Recall that the Eulerian number $A(n, k)$ is the number of permutations of $[n]$ with $k-1$ descents. There are n ! sequences of integers $\left(b_{1}, \ldots, b_{n}\right)$ such that $0 \leq b_{i} \leq n-i$ for all i. Let $B(n, k)$ be the number of these sequences $\left(b_{1}, \ldots, b_{n}\right)$ such that $\left|\left\{b_{1}, \ldots, b_{n}\right\}\right|=k$. Prove that $B(n, k)=A(n, k)$.

Problem 5. Prove that

$$
\prod_{i=1}^{s}\left(1+x^{-1} q^{i}\right) \prod_{i=0}^{t-1}\left(1+x q^{i}\right)=\sum_{j=-s}^{t} q^{\binom{j}{2}}\left[\begin{array}{l}
s+t \\
s+j
\end{array}\right]_{q} x^{j} .
$$

Problem 6. Let \mathcal{A} be an arrangement in the n-dimensional vector space V whose normals span a subspace W, and let \mathcal{B} be another arrangement in V whose normals span a subspace Y. Suppose that $W \cap Y=\{0\}$. Show that

$$
\chi_{\mathcal{A} \cup \mathcal{B}}(t)=t^{-n} \chi_{\mathcal{A}}(t) \chi_{\mathcal{B}}(t) .
$$

Problem 7. Evaluate the sum below (and prove that your answer is correct):

$$
\sum_{k=0}^{n} \frac{1}{k+1}\binom{2 k}{k}\binom{2 n-2 k}{n-k}
$$

Problem 8. A prime parking function is a sequence $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ of positive integers that contains at least $k+1$ entries $\leq k$, for $k=1, \ldots, n-1$. Prove that the number of prime parking functions is $(n-1)^{n-1}$.

