Problem Set 6

Due: Tuesday, October 30

- **Problem 1.** Determine (with proof) the number of *r*-tuples of integers (a_1, \ldots, a_r) satisfying $a_i \ge i$ for $i = 1, \ldots, r$, and $a_1 + a_2 + \cdots + a_r = n$.
- **Problem 2.** Let A_n be the $n \times n$ matrix whose (i, j) entry is $\binom{i}{j}$, with rows and columns numbered starting from 0. So, for example,

$$A_5 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 2 & 1 & 0 & 0 \\ 1 & 3 & 3 & 1 & 0 \\ 1 & 4 & 6 & 4 & 1 \end{pmatrix}.$$

Compute A_2^{-1} , A_3^{-1} and A_4^{-1} . Find and prove a formula for A_n^{-1} .

- **Problem 3.** A star-cutset of G is a vertex cut S containing a vertex x adjacent to all of $S \{x\}$. Find an imperfect graph G having a star-cutset C such that the C-lobes of G are perfect graphs.
- **Problem 4.** Let \mathbb{F}_p be the finite field with p elements for some prime p and let $\mathbb{F}_p[x]$ be the ring of polynomials in the variable x with coefficients in \mathbb{F}_p . How many monic polynomials of degree n are there in $\mathbb{F}_p[x]$ that do not take on the value 0 for $x \in \mathbb{F}_p$? (A polynomial is monic if it is of the form $x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$.)
- **Problem 5.** Suppose that $G = G_1 \cup G_2$, that $G_1 \cap G_2$ is a clique, and that G_1 and G_2 are perfect. Prove that G is perfect.