Problem Set 5

Due: Tuesday, October 23

Problem 1. Prove by induction on the number of faces that a plane graph G is bipartite if and only if every face has even length.

Problem 2. Prove that every n-vertex plane graph isomorphic to its dual has $2 n-2$ edges. For all $n \geq 4$, construct a simple n-vertex plane graph isomorphic to its dual.

Problem 3. Prove that every simple planar graph with at least four vertices has at least four vertices with degree less than 6 . Construct a simple planar graph G with 8 vertices that has exactly four vertices with degree less than 6 .

Problem 4. Prove that if G is a color-critical graph, then the graph G^{\prime} generated from it by applying Mycielski's construction is also color-critical (color-critical means k-critical for some k).

Problem 5. A triangulation is a simple plane graph where every face boundary is a 3 -cycle. Prove that a triangulation is 3 -colorable if and only if it is Eulerian. (Hint: Color the faces of G.)

