## Homework Set 9

Due March 27

## Section 5.1

Problems 14, 20, 26, 32.

## Section 5.2

Problems 2, 16, 19, 20.

## Section 5.3

Problems 12, 22, 24, 28.

## The Proof Problems:

PROBLEM 9.1. Let $A$ be both diagonalizable and invertible. Show that $A^{-1}$ is diagonalizable. What is the connection between the eigenvalues of $A^{-1}$ and those of $A$ ?

PROBLEM 9.2. Let $A$ and $B$ be two $n \times n$ matrices such that $A B=B A$, and assume that $A$ has $n$ distinct eigenvalues.
(a) If $\lambda$ is an eigenvalue of $A$, prove that $\operatorname{dimNul}(A-\lambda I)=1$.
(b) Prove that every eigenvector of $A$ is also an eigenvector of $B$.

PROBLEM 9.3. For a polynomial $p(x)$ and an $n \times n$ matrix $A$, let $p(A)$ denote the matrix obtained by "plugging in" $A$ for $x$. For example, if $p(x)=x^{3}-2 x^{2}+3$, then $p(A)=A^{3}-2 A^{2}+3 I$.
(a) If $\lambda$ is an eigenvalue of an $n \times n$ matrix $A$, prove that $p(\lambda)$ is an eigenvalue of $p(A)$. (Hint: use the same eigenvectors that $A$ has.)
(b) If $P$ is invertible, show that the following equality of matrices holds: $p\left(P^{-1} A P\right)=$ $P^{-1} p(A) P$.
(c) If $A$ is diagonalizable, prove that all eigenvalues of $p(A)$ are of the form $p(\lambda)$ for some eigenvalue $\lambda$ of $A$.
(Note: This statement is true even if $A$ is not diagonalizable!)

PROBLEM 9.4. Let $A$ be a $2 \times 2$-matrix such that $A^{2}=I$. Prove that $A$ is diagonalizable. (Hint: show that either $A+I$ is not invertible or $A-I=0$.)

