Homework Set 9

Due March 27

Section 5.1 Problems 14, 20, 26, 32.
Section 5.2 Problems 2, 16, 19, 20.
Section 5.3 Problems 12, 22, 24, 28.

The Proof Problems:

PROBLEM 9.1. Let A be both diagonalizable and invertible. Show that A^{-1} is diagonalizable. What is the connection between the eigenvalues of A^{-1} and those of A?

PROBLEM 9.2. Let A and B be two $n \times n$ matrices such that AB = BA, and assume that A has n distinct eigenvalues.

- (a) If λ is an eigenvalue of A, prove that dimNul $(A \lambda I) = 1$.
- (b) Prove that every eigenvector of A is also an eigenvector of B.

PROBLEM 9.3. For a polynomial p(x) and an $n \times n$ matrix A, let p(A) denote the matrix obtained by "plugging in" A for x. For example, if $p(x) = x^3 - 2x^2 + 3$, then $p(A) = A^3 - 2A^2 + 3I$.

- (a) If λ is an eigenvalue of an $n \times n$ matrix A, prove that $p(\lambda)$ is an eigenvalue of p(A). (Hint: use the same eigenvectors that A has.)
- (b) If P is invertible, show that the following equality of matrices holds: $p(P^{-1}AP) = P^{-1}p(A)P$.
- (c) If A is diagonalizable, prove that all eigenvalues of p(A) are of the form p(λ) for some eigenvalue λ of A.
 (Note: This statement is true even if A is not diagonalizable!)

PROBLEM 9.4. Let A be a 2×2 -matrix such that $A^2 = I$. Prove that A is diagonalizable. (Hint: show that either A + I is not invertible or A - I = 0.)