Homework Set 8

Due March 20

NOTE: Please hand in the book and proof problems separately.

Section 4.7 Problems 6, 10, 12, 14, 16 Section 5.4 Problems 6, 10, 20, 24, 28

The Proof Problems:

PROBLEM 8.1: Let V be a finite dimensional vector space of dimension n with basis \mathcal{B} . Let $\mathcal{L}(V)$ be the vector space of linear transformations $T: V \to V$, and if $T \in \mathcal{L}(V)$, then let $[T]_{\mathcal{B}}$ denote the matrix of T relative to the basis \mathcal{B} .

- a. Prove that the function $[\cdot]_{\mathcal{B}} : \mathcal{L}(V) \to M_{n \times n}(\mathbb{R})$, given by $T \mapsto [T]_{\mathcal{B}}$, is a (vector space) isomorphism.
- b. Let $T \in \mathcal{L}(V)$. Prove that T is invertible if and only if $[T]_{\mathcal{B}}$ is invertible.
- c. Let $T \in \mathcal{L}(V)$. Prove that $\dim(\ker T) = \dim(\operatorname{Nul}([T]_{\mathcal{B}}))$.

PROBLEM 8.2: Let $T: \mathbb{R}^4 \to \mathbb{R}^4$ be the linear transformation with standard matrix

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$

Let $\mathcal{B} = \{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \mathbf{v}\}$ be a basis of \mathbb{R}^4 , where the \mathbf{e}_i are the standard basis vectors.

a. Find a vector ${\bf v}$ such that

$$[T]_{\mathcal{B}} = \begin{bmatrix} 1 & 0 & 0 & 8\\ 0 & 1 & 0 & 3\\ 0 & 0 & 1 & 5\\ 0 & 0 & 0 & 2 \end{bmatrix}$$

Prove that your answer is correct.

b. Prove that the first three columns of $[T]_{\mathcal{B}}$ do not depend on **v**.

c. Prove that there is no choice of ${\bf v}$ such that

$$[T]_{\mathcal{B}} = \begin{bmatrix} 1 & 0 & 0 & 8 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 3 \end{bmatrix}.$$

PROBLEM 8.3: Let $T: V \to W$ be a linear transformation from the vector space V to the vector space W. Let \mathcal{B} be a basis for V and let \mathcal{C} be a basis for W. Let $[T]_{\mathcal{C} \leftarrow \mathcal{B}}$ be the matrix for T relative to the bases \mathcal{B} and \mathcal{C} (as defined in equation (4) on page 289). Let r be the rank of $[T]_{\mathcal{C} \leftarrow \mathcal{B}}$.

- a. Prove that there exists a basis \mathcal{D} of W such that $[T]_{\mathcal{D}\leftarrow\mathcal{B}}$ has exactly r nonzero rows.
- b. Prove that $r = \dim(\operatorname{range}(T))$.
- c. Let $V = \mathbb{R}^2$ and $W = \mathbb{R}^3$ and suppose

$$[T]_{\mathcal{C}\leftarrow\mathcal{B}} = \begin{bmatrix} 1 & 0\\ 1 & 0\\ 0 & 1 \end{bmatrix}.$$

Prove that there does not exist a basis \mathcal{A} of V such that $[T]_{\mathcal{C}\leftarrow\mathcal{A}}$ has exactly two nonzero rows.