Homework Set 8

Due March 20

NOTE: Please hand in the book and proof problems separately.

Section 4.7

Problems 6, 10, 12, 14, 16

Section 5.4

Problems 6, 10, 20, 24, 28

The Proof Problems:

PROBLEM 8.1: Let V be a finite dimensional vector space of dimension n with basis \mathcal{B}. Let $\mathcal{L}(V)$ be the vector space of linear transformations $T: V \rightarrow V$, and if $T \in \mathcal{L}(V)$, then let $[T]_{\mathcal{B}}$ denote the matrix of T relative to the basis \mathcal{B}.
a. Prove that the function $[\cdot]_{\mathcal{B}}: \mathcal{L}(V) \rightarrow M_{n \times n}(\mathbb{R})$, given by $T \mapsto[T]_{\mathcal{B}}$, is a (vector space) isomorphism.
b. Let $T \in \mathcal{L}(V)$. Prove that T is invertible if and only if $[T]_{\mathcal{B}}$ is invertible.
c. Let $T \in \mathcal{L}(V)$. Prove that $\operatorname{dim}(\operatorname{ker} T)=\operatorname{dim}\left(\operatorname{Nul}\left([T]_{\mathcal{B}}\right)\right)$.

PROBLEM 8.2: Let $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ be the linear transformation with standard matrix

$$
A=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 2
\end{array}\right]
$$

Let $\mathcal{B}=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}, \mathbf{v}\right\}$ be a basis of \mathbb{R}^{4}, where the \mathbf{e}_{i} are the standard basis vectors.
a. Find a vector \mathbf{v} such that

$$
[T]_{\mathcal{B}}=\left[\begin{array}{cccc}
1 & 0 & 0 & 8 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & 5 \\
0 & 0 & 0 & 2
\end{array}\right] .
$$

Prove that your answer is correct.
b. Prove that the first three columns of $[T]_{\mathcal{B}}$ do not depend on \mathbf{v}.
c. Prove that there is no choice of \mathbf{v} such that

$$
[T]_{\mathcal{B}}=\left[\begin{array}{cccc}
1 & 0 & 0 & 8 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & 5 \\
0 & 0 & 0 & 3
\end{array}\right]
$$

PROBLEM 8.3: Let $T: V \rightarrow W$ be a linear transformation from the vector space V to the vector space W. Let \mathcal{B} be a basis for V and let \mathcal{C} be a basis for W. Let $[T]_{\mathcal{C} \leftarrow \mathcal{B}}$ be the matrix for T relative to the bases \mathcal{B} and \mathcal{C} (as defined in equation (4) on page 289). Let r be the rank of $[T]_{\mathcal{C} \leftarrow \mathcal{B}}$.
a. Prove that there exists a basis \mathcal{D} of W such that $[T]_{\mathcal{D} \leftarrow \mathcal{B}}$ has exactly r nonzero rows.
b. Prove that $r=\operatorname{dim}(\operatorname{range}(T))$.
c. Let $V=\mathbb{R}^{2}$ and $W=\mathbb{R}^{3}$ and suppose

$$
[T]_{\mathcal{C} \leftarrow \mathcal{B}}=\left[\begin{array}{ll}
1 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right]
$$

Prove that there does not exist a basis \mathcal{A} of V such that $[T]_{\mathcal{C} \leftarrow \mathcal{A}}$ has exactly two nonzero rows.

