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Problem: Network Reconstruction
Gene regulatory networks represent functional relationships among
genes as a directed network with edges corresponding to regulatory re-
lationships; i.e. an edge i → j denotes that gene i regulates gene j.
Recovering the regulatory relationships among genes is a fun-
damental problem in systems biology with important applications
in disease treatment and diagnosis.

Common Approaches
Conditional Independence Models, including Bayesian Networks,
are based on learning a directed acyclic graph encoding conditional
independence relations. However, this approach cannot accomodate bi-
ologically relevant cycles such as feedback loops. Time Series Models
including Dynamic Bayesian Networks and Vector Autoregressive Mod-
els avoid this limitation by restricting edges to point forward in time.
ODE Models are perhaps the most widespread class of models in
the biological and physical sciences. ODE-based methods for network
reconstruction from time-series data have been proposed but take an
ad-hoc approach to inference.

Networks, Dynamic Systems, & Coupling
This poster describes methodology for time series data, assumed
to be noisy observations of an underlying dynamic system,

ẋ(r)(t) = α+ f(x(r)(t)) + u(r)(t), y(r)(tk) = x
(r)(tk) + εk, (1)

with r indexing inedpendent experiments and u(r)(t) representing a
vector of control parameters. Only the trajectories are observed,
not the derivatives.
Network reconstruction is recast as variable selection for a
dynamic system; i.e. determining the important variables in f ,

i→ j ⇐⇒ ∂fi
∂xj

(x(t)) 6≡ 0. (2)

Rank potential edges using the coupling metric,

ρ(i, j) :=

∫ 1

0

∣∣∣∣ ∂fi∂xj
(x)

∣∣∣∣ dx, (3)

measuring the strength of the regulatory relationship i → j. Signed
coupling metrics ρ+(i, j), ρ−(i, j) can be defined similarly by replacing
| · | with (·)+ or (·)− respectively; useful for recovering signed edges.

ODE Estimation: A Two-Stage Approach
Stage 1: Estimate trajectories and derivatives using smoothing splines
• Avoids computationally intensive numerical integration
• Decouples the ODE estimation into d sub-problems

Stage 2: Fit an additive, non-parametric, approximation to the ODE
• The non-parametric approach allows for flexible nonlinear models

and sidesteps potential model misspecification.
• An additive approximation keeps the problem computationally

feasible.

Stage 1: Smooth
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Trajectories and derivatives after a knockout of gene 1.
For components i = 1, ..., p and experimental realizations r = 1, ..., R,

x̂
(r)
i (t) = arg min

x∈W 2
2

n−1
n∑

k=1

[y
(r)
i (tk)− x(tk)]2 + λ0ir

∫ 1

0

[ẍ(t)]2dt, (4)

and ˆ̇xi(t) =
d
dt x̂i(t).

Stage 2: Fit an Additive Model
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The estimated differential equation (dashed line) for gene 2 (left) and
gene 5 (right) following a knockout of gene 1. The estimates are sums
of the additive components (solid lines). The dotted lines show the
derivative estimate from the first stage.
Estimate the right-hand side function f using f̂i = argminM

(r)
in (f),

Min(f) = ||ˆ̇xi −
p∑

j=1

fij(x̂i)||2n + J(λ1, λ2i), (5)

J(λ1, λ2) :=

p∑
j=1

λ1

∫
[f̈ij(x)]

2dx+ λ2

p∑
j=1

√∫
[fij(x)]2dx. (6)

For knockout time-series constrain fii(xi) = α1[r=i] + βxi. The mini-
mization is carried out using a modified version of the sparse-backfitting
algorithm (Ravikumar, 2009).

Performance: E. Coli 2 SubNetwork

Edge and sign recovery on the E. coli 2 subnetwork. Line type
is used to indicate edge recovery among the top 15-ranked edges: solid
lines are true positives (10), dashed lines are false negatives (5), and
dotted lines are false positives (5). Blunt-arrows indicate negatives on
the data-generating network, while negatives on the estimated network
are colored red. The area under the ROC curve and Precision-Recall
curve are .87 and .68, respectively. All 15 signs are recovered cor-
rectly.
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Tuning Parameters
There are 3 sets of tuning parameters to be selected:
• λ0 controls the smoothness of the first-stage estimates,
• λ1 controls the smoothness of the additive components,
• λ2 controls the sparsity of each additive model.

Leave-one-experiment-out cross validation is used to select λ2 = λ2i
while λ0 = λ0,ir is selected by GCV. Here λ1 = .76 is fixed.


