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Problem: Network Reconstruction
Network representations of biological systems are frequently
used to provide a high-level description of the relationships among the
system components. For instance, regulatory networks have nodes
corresponding to biochemical complexes such as: genes, metabolites,
proteins etc. A directed edge from node i to node j, i → j, indicates
a functional role for complex i in regulating the level of complex j.
Reconstructing the network of regulatory relationships is a funda-
mental problem in systems biology.

Common Approaches
Conditional Independence Models, including Bayesian Networks,
are based on learning a directed acyclic graph encoding conditional
independence relations. However, this approach cannot accomodate bi-
ologically relevant cycles such as feedback loops. Time Series Models
including Dynamic Bayesian Networks and Vector Autoregressive Mod-
els avoid this limitation by restricting edges to point forward in time.
ODE Models are perhaps the most widespread class of models in
the biological and physical sciences. ODE-based methods for network
reconstruction from time-series data have been proposed but take an
ad-hoc approach to inference and network reconstruction.

Networks, Dynamic Systems, & Coupling
This poster describes methodology for network reconstruction
from time series data, assumed to be noisy observations of an
underlying dynamic system,

ẋr(t) = f(xr(t)); xr(0) = xr
0; yr(tk) = x

r(tk) + εk, (1)

with r indexing experiments and the εrk independent, mean zero, noise.
Only the trajectories are observed, not the derivatives.
Network reconstruction is recast as variable selection for a
dynamic system; i.e. determining the important variables in f ,

i→ j ⇐⇒ ∂fi
∂xj

(x(t)) 6≡ 0. (2)

Rank potential edges using the coupling metric,

ρ(i, j) :=

∫ ∣∣∣∣ ∂fi∂xj
(x)

∣∣∣∣ dx, (3)

measuring the strength of the regulatory relationship i → j. Signed
coupling metrics ρ+(i, j), ρ−(i, j) can be defined similarly by replacing
| · | with (·)+ or (·)− respectively; useful for recovering signed edges.

ODE Estimation: A Two-Stage Approach
Stage 1: Estimate trajectories and derivatives using smoothing splines
• Avoids computationally intensive numerical integration
• Decouples the ODE estimation into d sub-problems

Stage 2: Fit an additive, non-parametric, approximation to the ODE
• The non-parametric approach allows for flexible nonlinear models

and sidesteps potential model misspecification.
• Additive approximation for computational feasibility.

Stage 1: Normalize and Smooth
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Trajectories, derivatives and their estimates in experiment r = 1.

Stage 2: Fit an Additive Model
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The RHS function f is estimated by minimizing
f̂i = argmin

∑R
r=1M

r
in(f),

Mr
in(f) =

∫
[ˆ̇xri (t)−

p∑
j=1

fij(x̂
r
i (t))]

2dt+ J(λ1, λ2i), (4)

J(λ1, λ2) :=

p∑
j=1

λ1

∫
[f̈ij(x)]

2dx+ λ2

p∑
j=1

√∫
[fij(x)]2dx. (5)

Case Study: Lactococcus Glucose Utilization
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Embden-Meyerhof glycolitic pathway in Lactococcus Lactis.
Lactococcus Lactis is a lactic acid bacteria used in the industrial produc-
tion of fermented milk products to convert glucose (or lactose) to lactic
acid. The model described here is taken from (Voit, 2006). Yellow
and grey nodes correspond to online and offline variables, respectively.
Our goal is to reconstruct the network amont the online variables using
time-series data but no other knowledge of the system.
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Setup
• Simulated data from a nonlinear ODE described in (Voit, 2006).

• Baseline initial values: x0 = (2, 2, 2, 2, 1, 1)′

• We simulate perturbations of altering baseline initial values,
xri (0) =Mx0i

• Observe: yri (tk) = xri (tk) + εrik, εrik ∼ N(0, (σxri (tk))
2)

Evaluation
σ = .02 σ = .05
PR ROC PR ROC

M = 10
Additive ODE 0.90 0.89 0.89 0.87
Linear ODE 0.85 0.82 0.85 0.83
Linear ODE + Lasso 0.67 0.54 0.66 0.55

M = 5
Additive ODE 0.86 0.83 0.86 0.83
Linear ODE 0.77 0.74 0.77 0.75
Linear ODE + Lasso 0.64 0.56 0.68 0.58

M = 2
Additive ODE 0.58 0.63 0.57 0.59
Linear ODE 0.56 0.64 0.65 0.65
Linear ODE + Lasso 0.50 0.59 0.56 0.61

M = 1.5
Additive ODE 0.49 0.57 0.46 0.51
Linear ODE 0.54 0.64 0.57 0.65
Linear ODE + Lasso 0.42 0.54 0.49 0.57


