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Background

• Network representations play
an important role in our
understanding of complex
biological systems.

• Reconstructing unknown
networks from data is a key
problem in systems biology.

• Intervention data such as gene knockouts are often used to
learn directed networks.

• Directed networks formally represented as Directed Acyclic
Graphs (DAGs).
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Related literature

• Given observational data and a linear SEM, (Hauser 2012)
presents algorithms for selecting interventions.

• Working with multi-target interventions and a likelihood based
on steady states of an ODE model, (Molinelli 2013) use belief
propogation to jointly estimate structural and model
parameters.

• Our work is close in spirit to that of (Murphy 2001) and
(Tong 2001) which use MCMC to explore the posterior and
importance sampling to choose interventions in networks with
discrete data.
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Overview

• The underlying system has a
representation as a DAG G = (V ,E )
with V known but E unkown.

• Observe data Y α
i on nodes i ∈ V

from interventions α ∈ A
• For simplicity assume the action

space is A = {1, ..., d}

• After collecting some initial data (Y αt , αt)
T
t=1 we want to

choose αT+1 ∈ A/{α1, ..., αT}.
• Need to measure anticipated improvement for potential

actions αT+1.
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Order Hierarchy

• The paths of a DAG G = (V ,E ) induce a partial order

Π := {(i , j) ∈ V 2 : there is a path from i to j .}.

• A (strict) partial order on V is a set Π ⊂ V 2 that is:

1. Anti-reflexive (i , i) 6∈ Π
2. Anti-symmetric (i , j) ∈ Π⇒ (j , i) 6∈ Π
3. Transitive (i , j) ∈ Π, (j , k) ∈ Π⇒ (i , j) ∈ Π.

• A (strict) linear order on V is a partial order Λ ⊂ V 2 with the
additional property that all pairs are comparable; i.e.
(i , j) 6∈ Λ⇒ (j , i) ∈ Λ

• A linear order Λ ⊂ V 2 is a linear extension of Π if Π ⊂ Λ
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Order Hierarchy

Π = {(1, 2), (1, 3), (1, 4), (2, 4), (3, 4)}
Λ1 = Π ∪ {(2, 3)},Λ2 = Π ∪ {(3, 2)}
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Pairwise representations

• Consider a set V = {1, .., d}.
• A linear order Λ on V can be represented as a vector L

ordering the elements in V ,

L ∼ Λ ⇐⇒ ∀i , j ∈ {1, ..., d}, i < j , (Li , Lj) ∈ Λ.

• Let s =

(
d
2

)
and ξ : V 2 → {1, ..., s} impose a canonical

ordering on the pairs in V (say lexicographical).

• A partial order Π on V can be represented as a vector
π ∈ {−1, 0, 1}s where

πξ(i ,j) =


1, i < j , (i , j) ∈ Π

−1, i > j , (j , i) ∈ Π

0, otherwise.
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Pairwise representations continued

• For a DAG G and nodes i , j let gij be the length of the
shortest path from i to j or zero if no such path exists.

• Then G can be represented as a vector γ ∈ Zs where

γξ(i ,j) =


gij , i < j , (i , j) ∈ Π

−gij , i > j , (j , i) ∈ Π

0, otherwise.
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Pairwise representation example

π = (1, 1, 1, 0, 1, 1)

γ = (1, 1, 2, 0, 1, 1)

L1 = (1, 2, 3, 4)

L2 = (1, 3, 2, 4)
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Model

• We use the following model for the observed effect levels Y α

under intervention α:
γ ∼ Uniform(G)

{βαi |γαi }
ind∼ Beta(2, 2 + γαi )

{ψαi }
iid∼ Binomial(.5)

µαi := µi (β
α
i , ψ

α
i ) =

{
µ0
i − µ0

i β
α
i , ψαi = 1

µ0
i + (1− µ0

i )βαi , ψαi = 1

Y α
ij |µ

ind∼ TN(µαi , σ
2); i = 1, ..., d ; j = 1, ..., n.

• Here γαi = |γξ(α,i)| if (α, i) ∈ Π and is zero otherwise.

• ψαi is the direction of the effect of α on i .

• The observed and true expression levels are assumed to lie in
the unit interval [0, 1] as are the baseline expression levels µ0

i .
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Likelihood features

• The magnitudes and signs of effects are independent given the
DAG γ, allowing us to work with the marginal likelihoods

p(yαi |γ) =

∫
p(yαi |µ(βαi , ψ

α
i ))p(βαi |γ)p(ψαi )d(β, ψ).

• The low-dimensional integrals needed for marginal likelihoods
can be precomputed so that computing p(yαi |γ) reduces to
summing an appropriate set of terms.

• For fixed α the likelihood is level-modular, meaning it depends
only on the length of the shortest path from α to i and not on
the path itself.
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Posterior Marginals

• The structural information contained in data yα1:T from an
initial set of interventions α1:T is often summarized using the
posterior probability of edges,

p(γξ(i ,j) = k |yα1:T ) ∝
∑
γ

1[γξ(i ,j) = k]p(yα1:T |γ)p(γ).

• Another useful summary is the posterior probablity that a
particular relation is in the induced partial order,

p(πξ(i ,j) = k |yα1:T ) ∝
∑
γ

1[π(γ)ξ(i ,j) = k]p(yα1:T |γ)p(γ).

• Call the former γ-marginals and the latter π-marginals.
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Improvement Function

• Structural information contained in yα can be further
summarized using the entropy of the π-marginals

H(yα) := −
s∑
ξ=1

1∑
k=−1

p(πξ = k |yα) log p(πξ = k|yα).

• We use H to measure the utility of a new intevention ν

H(Y ν , yα) := −
s∑
ξ=1

1∑
k=−1

p(πξ = k |Y ν , yα) log p(πξ = k |Y ν , yα).

• Y ν is unseen, so choose ν based on the improvement function

h(ν) := E[H(Y ν , yα)].
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Order Sampling

• MCMC works well in some problems, but in others suffers
from slow mixing due to the complexity of DAG space.

• Order-based sampling leads to improve mixing times
(Friedman 2003) .

• A related idea generates linear orders using annealed
importance sampling (Niinimäki 2012b) .

• An MCMC method for sampling partial orders was proposed
in (Niinimäki 2012a).
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Bias-Correction

• Sampling from linear orders introduces a bias because the π’s
and γ’s can be consistent with multiple linear orderings.

• Other sampling methods based on linear orders correct this
bias by reweighting each sampled γ by |Lγ | (Eaton 2007,
Niinimäki 2012b) .

• A subsampling approach is given in (Ellis, 2008) .

• Computing |Lγ | is #P-complete though (Niinimäki 2012a)
provide a recursive algorithm generally able to handle d ≈ 40.
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Comparing Complexities
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Sampling over the space of
linear orders leads to improved
mixing because the space of
linear orders is small relative to
the space of DAGS.
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Constructing an Importance Sample

1. Use Metropolis-Hastings to construct a Markov Chain on the
space of linear orders with approximate stationary distribution

p(L|Y ) :=
∑
γ∈ΓL

p(γ|Y ).

2. For each linear order L, sample M partial orders from q2(π|L)
and then a DAG for each partial order from q3(γ|π).

3. Use the sampled γ’s to form a Monte Carlo estimate p(L|Y )
needed for computing the acceptance probability in the
Metropolis algorithm.

4. Collect the γ’s from all linear orders and reweight to form a
single importance sample for estimating posterior expecations.
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Details of the Importance Sample

Input: A random linear order L0, constants N,M, and data y

0. Estimate p̂(L0|y) as below.

1. For n = 1, ...,N

i. Sample L′ ∼ qp(L′|Ln−1) by swapping two random positions
ii. For m = 1, ...,M draw π′m ∼ q2(π|L′) and γ′m ∼ q1(γ|πm)

iii. Set wm = (q1(γ′m|π′m)q2(π′m|L′))
−1

and compute W =
∑

m wm

iv. Compute p̂(L′|Y ) ∝
∑M

m=1 p(Y |γ′m)p(γ′m)wm/W
v. Set α = 1 ∧ p̂(L′|Y )/p̂(L|Y )
vi. With probability α set Ln = L′ and γn,m = γ′m. Otherwise let

Ln = Ln−1 and (γnm)m = (γn−1,m)m.

2. Collect {γnm}n,m and reweight appropriately.
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Details of the Importance Sample

• To use {γnm}n,m for estimating posterior expecations we need
to compute new importance weights given by the inverse of

q(γnm) =
∑
L

q1(γnm|πnm)q2(πnm|L)p(L).

• Here p(L) is the stationary distribution of Markov Chain
constructed on the previous slide.

• Having p(L) ≈ p(L|Y ) improves the efficiency of the sampler,
but we don’t need p(L) = p(L|Y ) for valid estimates.

• For large d the summation above over d! orders is intractable
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Estimating the Importance Weights

• The importance weights are found by inverting,

q(γnm) =
∑
L

q1(γnm|πnm)q2(πnm|L)p(L).

= q1(γnm|πnm)q̃2(πnm)
∑
L

1[L ∈ Lπnm ]p(L).

• The term
∑

L 1[L ∈ Lπnm ]p(L) is similar to the bias correction
in other methods but in general

∑
L 1[L ∈ Lπnm ]p(L) 6= |Lπnm |

• Crucially we can estimate this term for each πnm using

N−1
N∑
i=1

1[Ln ∈ Lπnm ] ≈
∑
L

1[L ∈ Lπnm ]p(L).

• Checking whether a linear order is a linear extension of a given
partial order is relatively comparatively simple.
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Expected Entropy of Unseen Interventions

• At step T + 1 we want to use (yαt , αt)
T
t=1 to estimate the

expected improvement for each potential action
ν ∈ AT = {1, ..., d} \ {α1, ..., αT}.

• The improvment function h(α) is the expected entropy of the
π-marginals,

h(α) = E[H(Y ν , yα1:T )|Y α1:T ]

= Eγ [EY ν |γ [H(Y ν , yα1:T )|γ]|yα1:T ].

• The outer expectation over the graphical structure is
estimated using a reduced importance sample.

• For each γ in the reduced importance sample, we use a Monte
Carlo estimate of the inner expecation.
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Reducing the Importance Sample
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• Entropy computations are easily parallelized over ν and γ.

• The computational burden may still need to be reduced.

• Importance sample contains many γ’s with very small weights.

• Reduce computation time by stratifying the importance
sample using weights or likelihoods.

• Devote more resources to top strata and within strata sample
with probability proportional to the weights.
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Conclusion

• Present a tractable framework for sequentially choosing
interventions for structure learning in directed networks.

• Build on order-based sampling to construct an importance
sample utilizing the hierarchy among linear order, partial
orders, and DAGs.

• ‘Bias-correction’ estimated from sample via linear extension
checking does not require counting linear extensions.

• Leverage the importance weights to further reduce the
inherent computational burden.
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