J.R.BARBER, ELASTICITY, 3rd edition

ERRATA - last updated April 25, 2019

Page 72, Equations $(5.127,5.128)$ should read

$$
\begin{equation*}
f_{3}(x)=\frac{F \delta(x)}{2} \quad(5.127) \quad \int_{-a}^{a} f_{3}(x) \cos \left(\lambda_{m} x\right) d x=\frac{F}{2} \tag{5.127}
\end{equation*}
$$

respectively.
Page 78 , last line before $\S 6.2, b / a \gg 1$ should read $a / b \gg 1$.
Page 88, footnote 9 'Chapter 19' and 'Table 19.1' should read 'Chapter 21' and 'Table 21.1' respectively. Page 165, Equation (11.79) should read

$$
\begin{align*}
r^{c} \phi(r, \theta) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(c+\imath \omega, \theta) r^{-\imath \omega} d \omega \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(c+\imath \omega, \theta) e^{-\imath \omega \ln (r)} d \omega \tag{11.79}
\end{align*}
$$

Page 189, Equation (12.83) should read

$$
\begin{aligned}
h^{\prime}(x) & =-\frac{d}{d x}\left(u_{x 1}-u_{x 2}\right)=\frac{A}{4 \pi} \int_{-a}^{a} \frac{2 f F \sqrt{a^{2}-\xi^{2}} d \xi}{\pi a^{2}(x-\xi)}=\frac{f F A}{2 \pi^{2} a} \int_{0}^{\pi} \frac{\sin ^{2} \theta d \theta}{(\cos \phi-\cos \theta)} \\
& =\frac{f F A}{2 \pi a} \cos \phi=\frac{f F A x}{2 \pi a^{2}} ; \quad-a<x<a
\end{aligned}
$$

Page 196, Problem 12.4: The last sentence should read
"Express c and $p(x)$ as functions of F, x, a and $b . "$
Page 311, line 1: "...substitution into (19.61, 19.63)..."
should read
"...substitution into (19.50, 19.51)..."
Page 312, Equation (19.101) should read

$$
\begin{equation*}
\gamma \chi_{\zeta}(\zeta)=-\frac{1}{2 \pi \imath} \oint_{S} \frac{f_{\zeta}(s) d s}{(s-\zeta)}+\frac{1}{2 \pi \imath} \oint_{S} \frac{\omega(s) \overline{\chi_{\zeta}^{\prime}(s)} d s}{\overline{\omega^{\prime}(s)}(s-\zeta)} \tag{19.101}
\end{equation*}
$$

(sign error in the last term)
Page 350, Equation (22.27), the second of the three equations should read

$$
e_{y y}=\frac{\partial u_{y}}{\partial y}=\alpha(1+\nu) T
$$

Page 356, Table 22.1: The expression for $\sigma_{\theta \theta}$ in Solution T should read

$$
\sigma_{\theta \theta}=\frac{z}{r} \frac{\partial \chi}{\partial r}+\frac{z}{r^{2}} \frac{\partial^{2} \chi}{\partial \theta^{2}}-2 \frac{\partial \chi}{\partial z}
$$

In other words, the sign should be changed on the second term.
Page 384, Equation (24.35) should read

$$
\begin{equation*}
Q_{n}(x)=\frac{1}{2} P_{n}(x) \ln \left(\frac{1+x}{1-x}\right)-W_{n-1}(x) \tag{24.35}
\end{equation*}
$$

Page 387: The last equation in (24.55) should read

$$
S_{15}=\frac{5}{2}\left(3 z r^{3}-4 z^{3} r\right) \ln (r)+\frac{z^{5}}{r}+5 z^{3} r-\frac{75 z r^{3}}{8}
$$

Page 400, §25.3.1: The first line should refer to "...the solid cylinder $0<r<a, 0<z<L, \ldots$ "
Page 407, The first equation in (26.8) should read

$$
\sigma_{r r}=\sigma_{\theta \theta}=-\left(A_{1}+2 \nu B_{1}\right)
$$

There is a factor of two missing in the original expression.
Page 408, The expression for $\sigma_{\beta \beta}$ in Equation (26.15) should read

$$
\begin{aligned}
\sigma_{\beta \beta}= & S \sin ^{2} \beta \\
& +\frac{S}{2(7-5 \nu)}\left(\frac{a^{3}}{R^{3}}\left(4-5 \nu+5(1-2 \nu) \cos ^{2} \beta\right)+\frac{3 a^{5}}{R^{5}}\left(3-7 \cos ^{2} \beta\right)\right)
\end{aligned}
$$

Page 421, Equation (27.10) should read

$$
\frac{\partial^{2} \phi}{\partial r^{2}}+\frac{\partial^{2} \phi}{\partial z^{2}}=-3 r \frac{\partial^{2} \Psi}{\partial r \partial z}=\frac{3}{r} \frac{\partial \phi}{\partial r}
$$

Page 462: After equation (30.19), Table 19.3 should refer to Table 21.3.
Page 467, Equation (30.34): The upper limit on the integral should be a, giving

$$
\frac{1}{r} \frac{d}{d r} \int_{r}^{a} \frac{t g_{1}(t) d t}{\sqrt{t^{2}-r^{2}}}
$$

Page 482: The text after equation (31.26) should read "... using Solution P of Table 22.1, in terms of which $(31.25,31.26)$ define..."

Also, after equation (31.28), $\S 30.3$ should read $\S 30.2 .6$.
Page 522, Figure 34.3: The arrows on the left side of the bottom surface in Figure 34.3(b) should be reversed in direction.

Index: References to page numbers from 427 upwards should be increased by 2 . For example, for page 473 read page 475.

