
Chapter 16

Moderately Thick Plates

In §3.2, we showed that the plane stress assumption

σzx = σzy = σzz = 0

leads only to an approximate solution, except in the special case where ν = 0.
In particular, the resulting strains do not satisfy the full set of six compat-
ibility equations. In this chapter, we shall show that an exact plane stress
solution can be developed if we relax the assumption that the stresses do not
vary through the thickness1. In other words, we allow the stress state to be
three-dimensional.

As in Chapter 4, we can satisfy the two non-trivial equilibrium equations
(4.1) by defining a stress function ϕ such that the non-zero stress components

σxx =
∂2ϕ

∂y2
; σyy =

∂2ϕ

∂x2
; σxy = − ∂2ϕ

∂x∂y
, (16.1)

where we note that ϕ will now generally be a function of all three coordinates
x, y, z.

The non-zero strain components are then given by

exx =
1

E

(
∂2ϕ

∂y2
− ν

∂2ϕ

∂x2

)
; eyy =

1

E

(
∂2ϕ

∂x2
− ν

∂2ϕ

∂y2

)
;

ezz = − ν

E

(
∂2ϕ

∂x2
+

∂2ϕ

∂y2

)
; exy = − (1 + ν)

E

∂2ϕ

∂x∂y

and substitution into the six compatibility equations (2.7) yields

∂4ϕ

∂x4
+ 2

∂4ϕ

∂x2∂y2
+

∂4ϕ

∂y4
= 0

1 See A.E.H.Love, A Treatise on the Mathematical Theory of Elasticity, 4th edn., Dover,

1944, §299 et seq..
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∂2

∂z2

(
∂2ϕ

∂x2
− ν

∂2ϕ

∂y2

)
= ν

∂2

∂y2

(
∂2ϕ

∂x2
+

∂2ϕ

∂y2

)
∂2

∂z2

(
∂2ϕ

∂y2
− ν

∂2ϕ

∂x2

)
= ν

∂2

∂x2

(
∂2ϕ

∂x2
+

∂2ϕ

∂y2

)
(16.2)

(1 + ν)
∂4ϕ

∂x∂y∂z2
= −ν

∂2

∂x∂y

(
∂2ϕ

∂x2
+

∂2ϕ

∂y2

)
∂2

∂z∂y

(
∂2ϕ

∂x2
+

∂2ϕ

∂y2

)
=

∂2

∂z∂x

(
∂2ϕ

∂x2
+

∂2ϕ

∂y2

)
= 0 .

The problem is symmetrical with respect to the mid-plane of the plate so we
expect ϕ to be an even function of z. Equations (16.2) therefore suggest a
solution of the form

ϕ(x, y, z) = ϕ1(x, y) + z2ϕ2(x, y) . (16.3)

Substituting this expression into (16.2) and equating coefficients of powers of
z, we find that all the compatibility equations are satisfied by the choice

ϕ2 = − ν

2(1 + ν)
∇2ϕ1 and ∇2ϕ2 = 0 ,

implying also ∇4ϕ1 = 0. The non-zero stress components are then obtained
as

σxx =
∂2

∂y2

(
ϕ1 −

νz2

2(1 + ν)
∇2ϕ1

)
σyy =

∂2

∂x2

(
ϕ1 −

νz2

2(1 + ν)
∇2ϕ1

)
(16.4)

σxy = − ∂2

∂x∂y

(
ϕ1 −

νz2

2(1 + ν)
∇2ϕ1

)
,

where ∇4ϕ1 = 0. This representation reduces to the classical Airy function
formulation when ν = 0.

16.1 Boundary conditions

The two-dimensionally biharmonic function ϕ1 is sufficient to define two in-
dependent quantities at each point s on the boundary, typically the normal
and shear components of the local traction t(s), but the stress components
(16.4) imply that t will have the form

t(s) = t1(s) + z2t2(s) .



16.1 Boundary conditions 251

We can therefore satisfy the boundary conditions only in the weak sense∫ c

−c

t(s, z)dz =

∫ c

−c

t0(s, z)dz , (16.5)

where z is measured from the mid-plane of a plate of thickness 2c, t0(s, z) is
the traction imposed in the physical problem, and t(s, z) is the corresponding
value in the weak solution.

The resulting solution will therefore generally differ from the exact stress
state in a region near the boundaries and the error will decay from these
edges with a length scale related to the semi-thickness c. The astute reader
might reasonably ask at this point whether the approximation involved is
any better than that from the simple (z-independent) plane stress solution.
We shall discuss this issue in §16.2 below, but first we illustrate the solution
process for a simple example.

Example

We consider the problem of §5.2.1 and Figure 5.2 in which the rectangular
cantilever 0<x<a, −b<y<b, −c<z<c is loaded by a traverse force F on
the end x = 0. The boundary conditions, modified from (5.11-5.14) are

σxy = 0 ; y = ±b (16.6)

σyy = 0 ; y = ±b (16.7)

σxx = 0 ; x = 0 (16.8)∫ c

−c

∫ b

−b

σxydydz = F ; x = 0 . (16.9)

Since this is a ‘correction’ on the two-dimensional solution, we start by con-
sidering the stress function

ϕ1 = C1xy
3 + C2xy

from equation (5.19). However, note that we do not generally expect the
constants C1, C2 to take the same values as in the two-dimensional solution,
because of the boundary condition (16.5). It follows that ∇2ϕ1 = 6C1xy and
hence the stress components are

σxx = 6C1xy ; σyy = 0 ; σxy = −3C1y
2 − C2 +

3C1νz
2

(1 + ν)
,

from (16.4). These expressions satisfy the boundary conditions (16.7, 16.8),
but (16.6) can be satisfied only in the weak sense
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−c

σxy(x,±b, z)dz = 0 ,

from which

C2 = −3C1b
2 +

C1νc
2

(1 + ν)
.

The end condition (16.9) then gives

C1 =
F

8cb3
,

and the non-zero stress components are obtained as

σxx =
3Fxy

4cb3
; σxy =

F

8cb3

[
3(b2 − y2)− ν(c2 − 3z2)

(1 + ν)

]
.

We notice that the shear stress distribution is now predicted to vary with z
over the cross-section, and in particular, the maximum shear stress occurs at
the points (x, 0,±c) and is

τmax =
3F

8cb
+

Fνc

4b3(1 + ν)
. (16.10)

In Chapter 18 we shall obtain a solution to this problem using a Fourier series
representation to satisfy the strong condition (16.6). In particular, we shall
show that the first term in this series is identical to the second ‘corrective’
term in equation (16.10). For the extreme case of a bar of square cross-section
(c = b) and ν = 0.5, it reduces the percentage error in the elementary two-
dimensional solution from 18% to 1%.

16.2 Edge effects

The error associated with the weak form of the traction boundary condition
(16.5) corresponds to the stress field due to locally self-equilibrated tractions
of the form

t(s, z) = C(s)(c2 − 3z2) ; −c < z < c ,

and based on Saint Venant’s principle, we anticipate that the error will decay
exponentially with distance from the boundary. For the normal stress compo-
nent, the exponential decay rate λ can be estimated using the solution from
§6.2.2. In particular, since the problem is symmetric about the mid-plane,
λ ≈ 2.1/c. For the shear traction, the corrective problem is one of antiplane
strain (see Chapter 15 and particularly Problem 15.14) and the corresponding
eigenvalue is λ = π/c.
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For the example problem above, the maximum shear stress occurs far from
the surface on which the weak boundary condition was imposed, so the solu-
tion given here represents a significant improvement on the two-dimensional
solution. By contrast, for problems where the maximum stress is expected ad-
jacent to a traction-free surface (notably stress-concentration problems such
as §8.4.1), the extra complication of the three-dimensional solution is not
justified.

16.3 Body force problems

Suppose a thin plate is subjected to a conservative body-force field p = −∇V ,
where the potential V is a function of the in-plane coordinates (x, y) only.
Thus the body force is uniform through the thickness. As in Chapter 7, the
equilibrium equations can then be satisfied by defining the stress components

σxx =
∂2ϕ

∂y2
+ V ; σyy =

∂2ϕ

∂x2
+ V ; σxy = − ∂2ϕ

∂x∂y
.

If these equations are used in place of (16.1) in the derivation of equations
(16.2), we obtain(

∂2

∂x2
+

∂2

∂y2

)2

ϕ = −(1− ν)∇2V

∂2

∂z2

(
∂2ϕ

∂x2
− ν

∂2ϕ

∂y2

)
= ν

∂2

∂y2

(
∂2ϕ

∂x2
+

∂2ϕ

∂y2
+ 2V

)
∂2

∂z2

(
∂2ϕ

∂y2
− ν

∂2ϕ

∂x2

)
= ν

∂2

∂x2

(
∂2ϕ

∂x2
+

∂2ϕ

∂y2
+ 2V

)
(16.11)

(1 + ν)
∂4ϕ

∂x∂y∂z2
= −ν

∂2

∂x∂y

(
∂2ϕ

∂x2
+

∂2ϕ

∂y2
+ 2V

)
∂2

∂z∂y

(
∂2ϕ

∂x2
+

∂2ϕ

∂y2

)
=

∂2

∂z∂x

(
∂2ϕ

∂x2
+

∂2ϕ

∂y2

)
= 0 ,

and it can be shown that these six equations have no solution for ϕ, except
for the case where ∇2V is independent of x, y. However, this restricted class
of body force problems includes the important cases of gravitational loading
and uniform rotation within the xy-plane.

Gravitational loading

As in §7.2.1, gravitational loading is described by the potential V = ρgy,
where the y-axis defines the vertically upwards direction. Since V is a linear
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function of the coordinates, the terms involving V in (16.11) vanish, so the
stress components are still given by (16.4) except for the addition of a term
+ρgy in the expressions for σxx and σyy.

Uniform rotation

If the plate rotates about the z-axis at constant speed Ω, the body-force field
is described by the potential

V = −1

2
ρΩ2(x2 + y2) = −ρΩ2r2

2
,

from equation (7.17). In this case

∇2V = −2ρΩ2 ,

and it is easily verified that equations (16.11) are all satisfied by the particular
solution

ϕP =
ρΩ2(1− ν)

32
(x2 + y2)2 − ρΩ2ν(1 + ν)

4(1− ν)
(x2 + y2)z2

=
ρΩ2(1− ν)

32
r4 − ρΩ2ν(1 + ν)

4(1− ν)
r2z2 . (16.12)

The general solution is then obtained by superposing a homogeneous solution
(i.e. a solution without body force) using equations (16.4).

Example

We illustrate the process for the problem of the circular disk 0 ≤ r < a,
−c<z<c, rotating at constant speed Ω about the z-axis, with traction-free
boundary conditions. The particular solution is given by equation (16.12) and
for the homogeneous solution we use the axisymmetric biharmonic function
that is bounded at r = 0 — i.e. ϕ1 = Ar2. We then have

ϕ2 = − ν

2(1 + ν)
∇2ϕ1 = − 2νA

(1 + ν)

and hence

ϕ = ϕP + ϕ1 + z2ϕ2 =
ρΩ2(1− ν)

32
r4 − ρΩ2ν(1 + ν)

4(1− ν)
r2z2 +Ar2 − 2νAz2

(1 + ν)
.

The boundary condition in this problem is σrr = 0 at r = a, so we calculate
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σrr =
1

r

∂ϕ

∂r
+

1

r2
∂2ϕ

∂θ2
+ V =

ρΩ2(1− ν)

8
r2 − ρΩ2ν(1 + ν)

2(1− ν)
z2 + 2A− ρΩ2r2

2
.

The traction-free boundary condition can be satisfied only in the weak sense∫ c

−c

σrr(a, z)dz = 0 ,

from which we obtain

A =
ρΩ2

4

[
(3 + ν)a2

4
+

ν(1 + ν)c2

3(1− ν)

]
.

The final stress field is then given by

σrr = ρΩ2

[
(3 + ν)(a2 − r2)

8
+

ν(1 + ν)(c2 − 3z2)

6(1− ν)

]
σθθ = ρΩ2

[
{(3 + ν)a2 − (1 + 3ν)r2}

8
+

ν(1 + ν)(c2 − 3z2)

6(1− ν)

]
.

The maximum tensile stress (and also the maximum von Mises stress) occurs
at the origin and is

σmax = ρΩ2

[
(3 + ν)a2

8
+

ν(1 + ν)c2

6(1− ν)

]
.

This location is not close to the boundary where the weak boundary condition
was applied, so the three-dimensional solution will give a good approximation
to the exact result.

This is a particularly simple example, but it is clear that the same method
can be easily applied to other geometries, including the rotating rectangular
beam of §7.3.1.

16.4 Normal loading of the faces

Suppose that we solve the same two-dimensional boundary-value problem
(i) under the plane strain assumptions, and (ii) using the plane stress as-
sumptions, but including the three-dimensional correction described in this
chapter. If we now construct the difference between these two solutions, the
boundary conditions will generally involve normal loading σzz on the faces of
the plate, but the other boundaries will be traction free within the limitations
of the weak form of equation (16.5). This approach can be used to generate
solutions of the problem where both sides of a thin plate are loaded by equal
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and opposite normal tractions σzz, subject to the restriction that these be
two-dimensionally harmonic2.

Suppose that a given two-dimensional plane strain solution is defined by
the Airy function ϕ1(x, y), so

σzz(x, y) = ν(σxx + σyy) = ν∇2ϕ1 , (16.13)

from (4.6). Since ϕ1 is biharmonic, σzz must be harmonic.
If we now use the same function ϕ1(x, y) to define a three-dimensional

plane stress solution using equations (16.3, 16.1), the difference between the
two solutions will then include the out-of-plane stresses (16.13), and in-plane
stresses defined by the function

ϕ = −z2ϕ2(x, y) =
νz2

2(1 + ν)
∇2ϕ1 =

z2σzz

2(1 + ν)
.

The in-plane stresses will not generally satisfy weak traction-free boundary
conditions, but we can correct this by adding the extra term3 Aσzz(x, y),
where A is a constant chosen so as to satisfy the condition∫ c

−c

ϕdz = 0 .

We obtain

ϕ = − (c2 − 3z2)σzz

6(1 + ν)
, (16.14)

after which the stresses are recovered from equations (16.1). The resulting
stress field will clearly satisfy the condition that all surfaces with normals in
the (x, y)-plane will have zero tractions in the weak sense.

16.4.1 Steady-state thermoelasticity

We showed in Chapter 14 that for a two dimensional body with steady-state
heat conduction (∇2T (x, y) = 0), the plane strain solution involves no in-
plane stresses, and the out-of-plane stress component is

σzz = −EαT (x, y) ,

from equation (14.6). It follows immediately from equation (16.14) that the
non-zero stress components for a traction-free plate of finite thickness 2c can

2 X-F, Li and Z-L. Hu (2020), Generalization of plane stress and plane strain states to elas-

tic plates of finite thickness, Journal of Elasticity. These authors also considered problems
where the normal surface displacements uz are prescribed on the faces.
3 Recall that σzz is harmonic, so Aσzz(x, y) is a legitimate stress function.

https://doi.org/10.1007/s10659-020-09768-7
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be defined through the stress function

ϕ =
(c2 − 3z2)EαT

6(1 + ν)

and are

σxx =
(c2 − 3z2)Eα

6(1 + ν)

∂2T

∂y2
; σyy =

(c2 − 3z2)Eα

6(1 + ν)

∂2T

∂x2
;

σxy = − (c2 − 3z2)Eα

6(1 + ν)

∂2T

∂x∂y
. (16.15)

Problems

16.1. A curved beam a<r<b, 0<θ<π, −c<z<c is built in at θ = π and
loaded by a tensile force F normal to the surface at θ = 0, whose line of action
passes through the origin. Find the distribution of shear stress σθr on the cross
section at θ = π/2. What is the percentage difference in the maximum shear
stress at this location, relative to the two-dimensional solution, if b = 2a and
c = a/4?

16.2. The beam −b < y < b, 0 < x < L, −c < z < c is built-in at the end
x = 0 and loaded by a uniform shear traction σxy = S on the upper edge,
y=b, the remaining edges, x=L, y=−b being traction-free. Find a suitable
stress function and the corresponding stress components for this problem,
using the weak boundary conditions on x=L. (This is the three-dimensional
counterpart of Problem 5.1).

16.3. Show that equations (16.11) have solutions if and only if ∇2V is inde-
pendent of x and y.

16.4. The beam −b<y<b, 0<x<L, −c < z < c is built-in at the end x=L
and is subject only to gravitational loading py = −ρg, all the remaining
surfaces being traction-free. Find the complete stress field in the beam.

16.5. The rectangular block −a < x < a, −b < y < b, −c < z < c rotates at
uniform angular velocity Ω about the z-axis. Estimate the maximum tensile
stress in the block if a ≫ b ≫ c.

16.6. An infinite elastic plate of thickness 2c contains a non-conducting cir-
cular inclusion of radius a whose elastic properties are the same as those in
the rest of the plate. Find the magnitude and location of the maximum ten-
sile stress in the plate if the inclusion perturbs a uniform heat flux qx = q0
and the extremities of the plate are traction-free.
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Comment on the relation between your solution and that for a plate with
a circular hole.

16.7. The solution of §16.4.1 is applied to a plate with a thermally-insulated
traction-free boundary at x = 0, and the maximum value of the lateral stress
σyy is predicted to be adjacent to this boundary. Show that the correction
required to make this boundary exactly traction-free is not negligible, and
obtain a more accurate expression for the local maximum stress in terms of
in-plane derivatives of the temperature field.

16.8. The rectangular block −a<x<a, −b<y<b, −c<z <c is initially at
rest when equal and opposite forces F are applied on the ends x = ±a, as
in Figure 7.3. Find the stresses in the block just after the forces are applied,
assuming that a ≫ b ≫ c.
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