
Chapter 1

Discrete Coulomb Frictional Systems
Subjected to Periodic Loading

Jim R. Barber and Young Ju Ahn

Abstract. If elastic systems with frictional interfaces are subjected to pe-
riodic loading, the system may shake down, meaning that frictional slip is
restricted to the first few cycles, or it may settle into a steady periodic state
involving cyclic slip. Furthermore, if the system posesses a rigid-body mode,
the slip may also cause an increment of rigid-body motion to occur during
each cycle — a phenomenon known as ratcheting.

Here we investigate this behaviour for discrete systems such as finite el-
ement models, for which the contact state can be described in terms of a
finite set of nodal displacements and forces. If the system is ‘uncoupled —
i.e. if the stiffness matrix is such that the tangential nodal displacements are
uninfluenced by the normal nodal forces, a frictional Melan’s theorem can be
proved showing that shakedown will occur for all initial conditions if there
exists a safe shakedown state for the periodic loading in question. For coupled
systems, we develop an algorithm for determining the range of periodic load
amplitudes within which the long-time state might be cyclic slip or shake-
down, depending on the initial condition. The problem is investigated using a
geometric representation of the motion of the frictional inequality constraints
in slip displacement space. Similar techniques are used to explore ratcheting
behaviour in a low-order system.

1.1 Introduction

Many engineering systems comprise one or more contacting elastic bodies
in nominally static contact. Examples include bolted joints between ma-
chine components and the centrifugally loaded contact between aero engine
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turbine blades and the blade disk. These systems are typically subjected to
mechanical vibrations, which can cause the contact tractions to exceed the
limiting friction condition at part of the interface, leading to a state of cyclic
microslip. This in turn results in energy dissipation which affects the dynam-
ics of the system and may also lead to the initiation of fretting fatigue cracks
emanating from the microslip region.

The Coulomb friction law is still arguably the best simple approximation
to the observed behaviour of unlubricated contacts and it introduces a his-
tory dependence into the problem. In particular, the steady cyclic state will
generally differ from that during the first cycle of loading. We would like
to be able to solve for this steady state directly, and hence determine the
location and magnitude of damage due to fretting fatigue and/or estimate
the energy loss so as to define an equivalent (frequency-dependent) damping
element. However, the steady cyclic state is often inherently non-unique, with
the state achieved depending on the initial condition or the initial transient
period of loading.

1.2 Shakedown and Melan’s Theorem

If the time-independent component in the compressive normal tractions is
sufficiently large, the system may shake down, meaning that the steady state
is one in which all points on the interface remain in a state of stick after an
initial transient that may involve microslip.

Shakedown is a well known phenomenon in the analogous process of elas-
tic/plastic deformation, where it can be predicted using Melan’s theorem [9]
which broadly speaking states that if the system can shake down, it will do so
regardless of initial conditions. For frictional systems, an equivalent theorem
might be stated as “If a set of time-independent tangential displacements at
the interface can be identified such that the corresponding residual stresses
when superposed on the time-varying stresses due to the applied loads cause
the interface tractions to satisfy the conditions for frictional stick throughout
the contact area at all times, then the system will eventually shake down to a
state involving no slip, though not necessarily to the state so identified.” Tran-
sient studies of cyclic frictional systems seem to confirm the validity of this
theorem [7], but the proof of Melan’s theorem depends on the associativity
of the plastic flow rule, whereas the Coulomb friction law is non-associative.
The theorem has recently been proved in both discrete [8] and continuum
[4] formulations, but only for the restricted class of systems in which there
is no coupling between normal tractions and tangential displacements. This
class includes the much studied case of the contact of two similar elastic half
planes, and more generally, any system that is symmetric about the contact
plane.
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The discrete theorem is established by defining a non-negative norm

A =
1

2
(ṽ − v)

T
κ (ṽ − v) , (1.1)

where v is a vector of instantaneous nodal slip displacements, ṽ is a ‘safe’
shakedown vector and κ is the reduced stiffness matrix. The norm A is a
measure of the deviation of the instantaneous deviation of the system from
the shakedown state and the theorem is established by demonstrating that
for all permissible slip motions, the time derivative Ȧ < 0 and hence the
shakedown state is approached monotonically.

1.3 Coupled Systems

That the normal and tangential elastic problems be uncoupled is both a
necessary and sufficient condition for Melan’s theorem to apply, except for
certain very special low order discrete systems [8]. For coupled systems, it is
always possible to construct counter examples to the theorem — i.e. periodic
loading scenarios for which the long term state of the system may be either
shakedown or cyclic slip depending only on the initial conditions.

To explore this phenomenon, we consider the behaviour of a two-
dimensional N -node discrete system subjected to external loading of the form

F(t) = F0 + λF1(t) , (1.2)

where F0 is a time-invariant mean load, F1(t) is a periodic load, t is time
and λ is a scalar loading factor.

The discrete description of the elastic system can be condensed so as to in-
clude only the contact degrees of freedom, giving a system of linear equations

qj = qwj +Ajivi +Bijwi

pj = pwj +Bjivi + Cjiwi , (1.3)

where vi, wi are respectively the tangential and normal nodal displacements,
qi, pi are the tangential and normal (compressive) nodal forces, qwj , p

w
j are the

nodal reactions that would be generated by the external forces F if all the
nodal displacements were constrained to be zero and A,B,C are partitions
of the reduced stiffness matrix κ. We note that with this terminology, the
coupling between tangential displacements and normal reactions is defined
by the matrix B and hence the condition for Melan’s theorem to apply is
B = 0.

We define the Coulomb friction law for node i by the relations

wi ≥ 0 ; pi ≥ 0 (1.4)

wi > 0 ⇒ pi = qi = 0 (1.5)
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pi > 0 ⇒ wi = 0 (1.6)

−fpi ≤ qi ≤ fpi (1.7)

|qi| < fpi ⇒ v̇i = 0 (1.8)

0 < |qi| = fpi ⇒ sgn(v̇i) = −sgn(qi) , (1.9)

where f is the coefficient of friction.
For shakedown to be possible, it is necessary that there exists at least one

shakedown vector v = ṽ, for which the contact tractions satisfy the Coulomb
friction inequalities (1.7) at all nodes i ∈ (1, N) and at all times during the
loading cycle. Assuming that all nodes remain in contact in this state, so that
wi = 0 for all i, and substituting (1.3) into the Coulomb friction inequalities
(1.7), we obtain

(Aji − fBji)vi < fpwj − qwj

(Aji + fBji)vi > −fpwj − qwj , (1.10)

Each of these 2N inequalities can be represented as a directional hyperplane
in the N -dimensional space of coordinates vi, such that points on one side
only of each hyperplane are admissible. During the loading cycle, the hyper-
planes move, whilst retaining the same orientation, and if they impinge on
the instantaneous operating point P defined by the coordinates vi, they will
cause it to move in the coordinate direction associated with slip at the node
in question in the direction defined by (1.9).

Figure 1.1 illustrates this process in vi-space for a two-node system. The
lines I, II, III, IV define the frictional constraints associated with incipient
nodal slip in the directions v̇1 < 0, v̇1 > 0, v̇2 < 0, v̇2 > 0 respectively and
the regions excluded by the frictional constraints are shown shaded. Thus,
at the instant illustrated, the operating point P (v1, v2) can exist only in the
‘safe’ unshaded region between the four lines. If changes in the applied loads
cause the active constraint IV to advance (in the sense of excluding more
of the space), slip will occur in the direction v̇2 > 0 and P will be ‘pushed’
upwards by the constraint. For a fairly general periodic loading scenario, the
constraints will advance and recede whilst retaining the same slope (which
is determined only by the stiffness matrix and the coefficient of friction).
Notice incidentally that the direction of slip is generally not orthogonal to
the constraint line, which in a heuristic sense is an indication of the non-
associative nature of the friction law.

For shakedown to be possible, there must exist some region that is safe at
all times during the loading cycle. This can be established by identifying the
extreme positions of each constraint (i.e. the position at which the constraint
excludes the maximum region of space) and plotting a diagram similar to
Figure 1.1, but using these extreme positions (which generally will occur
at different times during the cycle). It can be shown [1] that the two-node
system will shake down for all possible initial conditions if the safe shakedown
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Fig. 1.1 Motion of the instantaneous operating point P due to the advance of
constraint IV

region defined by these extreme constraints is a quadrilateral, but that if it is
triangular, the steady state may be either shakedown or cyclic slip, depending
on the initial conditions.

P1

P2

v2

v1

IIE

IVE

IIIE

IE

Fig. 1.2 Cyclic slip limit cycle in the case where the safe shakedown region is
triangular

The latter case is illustrated in Figure 1.2, where the lines IE, IIE, IIIE,
IVE, represent the extreme positions of I, II, III, IV respectively and the safe
shakedown region is the unshaded triangle. If an initial condition is chosen
that lies within this triangle, no slip will ever occur, so the system shakes
down a fortiori. However, if the initial condition lies in the dark shaded
triangle, cyclic slip will occur as illustrated in the figure.
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Consider now the effect of increasing λ in equation (1.2). We assume that
the mean load F0 is such that the only possible states of the system for λ = 0
are those in which both nodes are in contact, in which case the safe shake-
down region must be quadrilateral. As λ is increased, the extreme positions
of the constraints advance, the safe shakedown region is decreased and at
some critical value λL it becomes triangular. Further increase in λ reduces
the size of this triangle until at a higher critical value λU it becomes null. We
conclude that for λ < λL the system always shakes down, for λL < λ < λU we
may get shakedown or cyclic slip depending on the initial conditions, and for
λ > λU shakedown is impossible for all initial conditions. Both critical values
correspond to conditions where three of the four constraint lines intersect in
a point. Thus, they can easily be found by solving all possible combinations
of three linear equations and selecting those for which the resulting configu-
ration satisfies certain inequalities [1]. Notice that an alternative statement
of Melan’s theorem in this context would be that λL = λU .

This strategy can be extended to the N -node discrete case, though the
number of linear operations needed to establish the value of λL, λU increases
combinatorially with N . An alternative method of establishing λU is to con-
figure it as a constrained linear optimization problem [5].

When the system is uncoupled, the two constraints at any given node
represent parallel hyperplanes. The topology of the safe shakedown region is
then independent of λ and all the constraints remain active until this region
becomes null, confirming that Melan’s theorem applies when the system is
uncoupled (B=0).

1.3.1 Existence, Uniqueness and Wedging

It is well-known that frictional systems of this kind exhibit problems of exis-
tence and uniqueness of the quasi-static incremental solution if the coefficient
of friction is sufficiently high. In the present formulation, the coefficient of
friction changes the inclination of the constraint lines in Figure 1.1, which
can cause two distinct kinds of anomolous evolutionary behaviour. The line
IV in Figure 1.1 is associated with slip in the direction v2 > 0 at node 2
and this is clearly possible if IV advances. However, if increasing the coeffi-
cient of friction causes IV to rotate clockwise past the vertical position, its
advance will be inconsistent with the appropriate direction of slip and the
quasi-static evolutionary algorithm fails to return a result. This behaviour is
exactly analogous with that exhibited by Klarbring’s one-node model [6] and
results in an unstable motion to a new state involving separation at the node
in question.

For multinode systems, a qualitatively different failure of the algorithm
can occur in which the advance of two or more constraints each separately
permit motion of the operating point P in the appropriate direction, but the
several constraints conspire to eliminate all possible slip directions. This is
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illustrated for the 2-node system in Figure 1.3. Advance of either constraint
allows P to move appropriately until it reaches the intersection of I and
III when the quasi-static evolutionary algorithm fails. In this case, a more
complex dynamic transition occurs to a state involving one or both of the
nodes separating.

2v

1v

I

III

P
●

Fig. 1.3 Configuration in which advance of either constraint leads to failure of the
evolutionary algorithm

Another phenomenon observed at high coefficients of friction is that of
wedging [3], in which the system can exist in a state of stress even when
all external loads are removed. In the present formalism, the removal of all
external loads pwi = qwi = 0 implies that all the constraints (1.10) pass
through the origin in vi space. Recalling that the slopes of the constraint
surfaces are independent of the applied loads, we conclude that wedging is
possible if and only if the constraint surfaces moved to the origin leave a safe
region that is open to infinity. In the two-node case this would be an infinite
‘safe’ sector. Changing the external loads will change the geometry of this
region local to the origin, but cannot close the region at infinity.

1.3.2 Ratcheting

Qualitatively different behaviour can be obtained if the system exhibits a
rigid-body mode. For example, Mugadu et al. [10] analyzed the motion of
a flat rigid punch indenting an elastic half plane and subjected to varying
normal and tangential loads. If the loads are such as to cause all points in the
contact area to slip at some time during the cycle, but not all at the same
time, it is possible for the punch to ‘walk’ over the half plane by a constant
increment during each cycle.

A related problem concerns the frictional behaviour of an axisymmetric
elastic bushing which is a force fit inside a connecting rod end, considered by
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Antoni et al. [2]. In this case, a uniform mean load is generated by the force
fit and superposed oscillating loads during engine operation may cause slip
at the bushing/connecting rod interface. However, if every node is caused to
slip circumferentially the same distance, the stress state of the system will be
unaffected, so this constitutes a rigid-body mode for the system and shows
that the contact stiffness matrix κ must be singular. In vi-space, this implies
that all the constraint surfaces will be parallel to the line v1 = v2 = ... = vN
and in particular that all the constraint lines in Figure 1.1 would be inclined
at 45 degrees. We illustrate this case in Figure 1.3, where we also show the
directions of slip implied by each constraint. During periodic loading these
constraints will advance and recede. If there is any region that remains safe
throughout the cycle, the system will shake down. If not, the steady-state
may consist of ratcheting (illustrated by the displacement steps at the top
right of Figure 1.4) or of cyclic slip at only one node, depending on the loading
sequence.

I

II
III

IV

v2

v1

Fig. 1.4 Constraint space for a two-node system with a rigid-body mode

Suppose we look along the rigid-body line, or (equivalently) project the
motion of the constraints onto the line v1 + v2 = 0 orthogonal to the rigid-
body line. We shall then simply see each of the four constraints advancing and
retreating along a line as time progresses. We could plot the position of each
constraint and the region excluded as a function of time. Figure 1.5 shows
such a plot. The unshaded region is safe at any particular time. Shakedown
is impossible for the case illustrated, since there is no region that is unshaded
at all times.

The operating point P at any given time will be moved up or down if forced
to do so by an advancing constraint. For the particular case illustrated, the
motion of P is shown by the dashed line. Initially P is pushed up by I (v̇1 < 0)
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Fig. 1.5 Dominant constraints as a function of time

until it reaches its maximum. It is later pushed down by II (v̇1 > 0) and later
still (also down) by IV (v̇2 < 0). Since the only motion at node 2 is that
driven by constraint IV, the system will ratchet in the direction v̇1, v̇2 < 0,
though the slip at node 1 is non-monotonic.

The problem of determining this scenario is equivalent to that of tracking
the motion of a ball falling through the space between the extreme lines —
i.e. the set of points that are safe with respect to all four constraints as a
function of time. Although four constraints combine to form this safe region,
it can then be characterized by only two surfaces — the envelope of I,III and
the envelope of II,IV.

Since the point P has only one degree of freedom (up and down), its motion
is completely determined once it strikes either one of these surfaces. The only
effect of the initial condition is to determine which surface is struck first, but
since ex hyp. we assume no shakedown, it must alternate between the two
surfaces and hence the steady state must be unique. In fact, if we make even
one pass through the system, the end point will be independent of the initial
point. Thus, we reach a unique steady state after one cycle of loading.

This unique steady state could comprise ratcheting or cyclic slip, depend-
ing on which of the four constraints are active at some time during the cycle.
Cyclic slip will occur if only those constraints associated with a single node
(i.e. (I,II) or (III,IV)) are active during the steady-state cycle. If at least one
constraint from each pair is active, ratcheting will almost always occur.

This procedure can be extended to multi-node systems with a rigid-body
mode. For example, for a system of three nodes, we could project the instan-
taneous constraints onto a plane orthogonal to the direction v1 = v2 = v3, as
shown in Figure 1.6, which also shows the motion of the point P associated



10 J.R. Barber and Y.J. Ahn

with the motion of each constraint. The motion of P could then be tracked by
an algorithm similar to that illustrated in Figure 1.1 and would be equivalent
to the path of a ball dropped through a tube whose axis is time and whose
cross section has the form of the instantaneous safe region in Figure 1.6. The
uniqueness of the steady state for this and higher-order systems remains an
open question.
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Fig. 1.6 Projected view of vi space for a three-node system with a rigid-body mode

1.4 Conclusions

We have demonstrated that for two-dimensional discrete frictional systems
subjected to periodic loading, upper and lower bounds can be placed on a
scalar loading factor such that above the upper bound, shakedown is impos-
sible, below the lower bound, shakedown occurs for all initial conditions, but
between the bounds, either shakedown or cyclic slip may occur depending on
the initial conditions. General procedures can be identified for determining
these bounds. If there is no coupling between tangential nodal displacements
and normal reactions, the two bounds coincide and Melan’s theorem applies.

The motion of a point in slip-displacement space representing the instan-
taneous position of the system proves to be a fruitful tool for investigating
the behaviour of discrete frictional systems. Application to a simple two-node
system with a rigid-body mode shows that Melan’s theorem applies and that
above the shakedown limit, a unique steady state is achieved after one cycle.
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