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A solution is given for the problem of two thin-walled making contact at their plane
end faces and transmitiing a heat flux in the axial direction. It is assumed that a
pressure-dependent thermal contact resistance exists at the interface. The problem
has a trivial one-dimensional steady-state solution, which however is known to be
unstable for certain material combinations if the heat flux is sufficiently large. The
transient behavior is investigated here by representing the thermal and elastic fields
by Fourier series in the circumferential and Fourier transforms in the axial direc-
tion. The results show that under certain circumstances a disturbance of constant
form can move around the interface circumferentially.

INTRODUCTION

When heat is conducted across an interface between two contacting bodies, thermo-
elastic distortion influences the contact pressure distribution and sometimes the ex-
tent of the contact region. This in turn affects the boundary conditions for the heat
conduction problem, particularly if, as is generally the case, there exists a pressure-
dependent thermal contact resistance at the interface. The thermal and elastic prob-
lems are therefore fully coupled through the boundary conditions at the interface.

As a result of this coupling, steady-state solutions to the problem may be non-
unique and/or unstable. Uniqueness and existence of steady-state solutions have been
considered by Duvaut [1] and Shi and Shillor [2] using functional analysis tech-
niques. The earliest investigations of thermoelastic contact stability [3—5] were re-
stricted to one-dimensional systems such as a rod contacting a rigid wall [3] or axi-
symmetric concentric cylinders of similar materials [S]. For these systems, conditions
can be found for which the steady state is unique, in which case it is always stable.
Under other conditions, however, multiple steady-state solutions are found, some of
which are stable and others unstable. In such cases, we anticipate that whatever
initial condition is chosen for the system, it will eventually gravitate to one of the
stable steady states.
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Barber and Zhang [6] investigated the more complex one-dimensional system of
two contacting rods of dissimilar materials and found that in this case steady-state
solutions can be unstable even when they are unique. They also developed a nu-
merical solution for the transient behavior and found that in such cases a nonlinear
oscillatory behavior was developed, with alternating periods of contact and separa-
tion between the rods.

The simplest two-dimensional problem is that of two elastic half-planes in con-
tact at a common interface. This system has a simple one-dimensional steady state
in which the contact pressure at the interface is uniform and there is uniform heat
flux normal to the interface, with a temperature jump at the interface associated with
the thermal contact resistance. Barber [7] adapted the methods of Dow and Burton
[8] and Richmond and Huang [9] for related problems to examine the stability of
this solution by linear perturbation methods. The assumed perturbation involved a
sinusoidal variation in temperature and stress in the direction parallel to the interface.
As in the one-dimensional case, uniqueness and stability criteria were found to co-
incide when one of the materials was taken to be rigid, but when both half-planes
were assumed to be deformable, cases could be found for which the steady state
could be unique but unstable. In a subsequent investigation [10], it was shown that
the stability criterion depended on the values of three dimensionless ratios of the
bimaterial properties and that a substantial number of practical material combinations
would exhibit this more complex behavior.

The purpose of the present article is to develop a numerical simulation to in-
vestigate the nonlinear transient behavior of such a system, in particular with a view
to determining what kind of state it can support under conditions where the only
steady-state configuration is unstable.

PROBLEM STATEMENT

We consider the problem of two thin-walled cylinders of radius r, wall thickness d,
occupying the regions y > 0, y < 0 respectively and making contact at their common
end plane y = 0 as shown in Figure 1. The cylinders are pressed together by a force
P at the extremities and initially transmit a uniform heat flux g, = go in the positive
y-direction. The two cylinders are of different materials, the appropriate material
properties being distinguished by the suffix 1 for the cylinder y > 0 and 2 for y <
0. We suppose that there exists a thermal contact resistance R at the interface, which
is a function of the local contact pressure or gap. For the purpose of the present
simulation, we use an algorithm developed in [7], based on the experimental data
of Thomas and Probert [11] for an interface between stainless steel and aluminum.

If shell bending effects can be neglected, this system can be unwrapped to give
a plane stress problem for two contacting half-planes, with the restriction that the
solution be periodic in x with period 2wr. The range of parameters under which this
approximation is legitimate is discussed in a similar isothermal problem by Azarkhin
and Barber [12].
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First, we characterize the temperature fields and present the updating algorithm;
expressions for the corresponding thermoelastic displacements are then developed;
and, finally, the algorithm for the solution of the contact problem is described.

The Heat Conduction Solution

We express the temperature field in the form of a Fourier series in x, i.e.,

N N
T, y, 1) = 2, Fi(v. 1) cos(m.x) + D G,(y, 1ysinmx) (1)
i=0

i=]

where m, = i/r. The term F(y, t) will require special attention, since it describes
the initial linear temperature distribution in the body and hence does not decay as y
— 0. We shall return to it when we consider the case i = 0 and meanwhile con-
centrate on the remaining terms for which i # 0.

Suppose that the temperature field and the heat flux g,(x, 0) at the interface are
known at some time ¢, which we can define as 1 = 0 without loss of generality. We
wish to determine the temperature field after some small time increment &¢, during
which the heat flux is assumed to be constant. We write the temperature field during
this time increment as the sum of two parts:

T(x,y, 1) =TJx,y) + T(x, y, 1) (2)
where T, is the steady-state temperature field that satisfies the boundary condition

aT. gy(x, 0)

— ,0) = -
ay(x ) 3)

and KX is the conductivity of the body.
The second term, T, = T — T, in Eq. (2) must therefore satisfy the condition

o7,
—(x,0,0=0 (4)
dy

Both terms must also satisfy the heat conduction equation

_1ar

VT =-
k ot

&)
where k is the thermal diffusivity. The appropriate Fourier form for T, is

N

T(x,y) = >, e ™[C, cos(m,x) + D, sin(m,x)] (6)

i=]
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1 go Fig. 1 Two thin-walled cylinders in con-
tact on an end face.

SOLUTION METHOD

The coupled nature and the complexity of this problem necessitates a numerical ap-
proach. We use an explicit time-marching algorithm. The temperature field at any
time 7 is expressed in terms of a Fourier series in x and a Fourier transform in y.
This description permits us to calculate the unrestricted thermal distortion of the
cylinders at time £, which then define the initial surface profiles for a thermoelastic
contact problem. We then solve the contact problem numerically to determine the
contact pressure or gap as a function of x and hence compute the instantaneous local
contact resistance using the same algorithm as in [7]. Finally, we calculate the in-
stantaneous heat flux g,(x, 0, ) at the interface from the local contact resistance and
temperature difference and use the result to update the temperature field for the next
time step (¢ + 8r). The whole process is then repeated to trace the long-term behavior
of the system.

The above steps in the numerical solution are discussed in separate sections.
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where C;, D; are unknown constants to be determined from the boundary condition
(3). A suitable representation for 7T, is

N x
T(x,y,0 =D, | [Ain)cos(mx) + B;sin(mx)le ™™ ™" cos(ny) dn  (7)
=1 0

where the choice of the cosine transform ensures that the boundary condition (4) is
satisfied identically and A/(n), B,(n) are unknown functions to be determined from
the initial condition 7(x, y, 0).

The case i = 0. When i = 0, the steady-state solution T, reduces to the linear form
T(x,y) = Co + Dyy (8)

Notice that in contrast to the Fourier terms of Eq. (6), this expression does not
decay as y — . It follows that the corresponding term in 7, will not generally tend
to zero as y — « and hence cannot be represented by a Fourier integral of the form
(7). We therefore have to use a different representation, which will be developed in
the present section.

The temperature field will be assumed to start from a small perturbation on a
state of uniform conduction.* As the process develops, the uniform term in the heat
flux will generally change, but, for finite ¢, the asymptotic temperature field at large
y will be unaffected. A “boundary layer” will be developed near y = 0 in which the
temperature field deviates from Eq. (8) and the thickness of this layer will increase
with time, but the perturbation will always decay to zero as y — .

A suitable modification of the representation for i # O is to write the term for
i = 0 in the form

I(y, 1) = Co+ Doy + T\(y, 1) + To(y, D 9)
where
aTg q
Ty(y,00=0 —0,)+Dy=—-— (10)
ay ' K

the constants C,, D, are chosen to describe the linear asymptotic form of the tem-
perature field as y — o (and hence will remain unchanged throughout any finite time
evolution of the process) and q is the zeroth term in a Fourier expansion of g,(x, 0).

*Even if some more general initial condition is assumed, the same argument can be applied, pro-
vided that the initial temperature field has a linear asymptotic form as y — «,
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These conditions completely define the term 7', which can be evaluated in closed
form as

Ti(y, ) = (% + Do) F(y, 1) (1)

F 2 = ( yz) rf( 2 ) 2
,t —_ —_ - — —_

(¥, D _neXP o y erfc 2\/’; (12)
(see [13, §2.9)).

Since the term T, accounts for the heat flux at y = 0, we have

where

aT,

— (0, =0 (13)
ay

and the initial value of T, is determined from T(y, 0) by substituting Eq. (11) into
Eq. (9). Furthermore, since the asymptotic behavior of the temperature field at large
y is described by the linear terms C, + Dgyy, we conclude that T,5(y, 1) = 0 as y —
= and therefore is conveniently represented in the Fourier integral form

I(y,n = f Ao(m)e™" cos(ny) dn (14)
0

This expression satisfies the heat conduction equation (5) and the boundary condition

(12) for all values of the arbitrary function Ay(n), which can therefore be used to
satisfy the initial condition T5(y, 0).

-~

Updal;llg i‘l.;gUl ;i.;llll. l;lb a.uuvb bAPl\.aa;Ulla vaii 'Ul. \.Ulu.uiut:\; w Sivb a 1CpIeoiil-
tation for the complete temperature field during a given time increment in the form

x

T(x,y, 1) = Co + Doy + (% + DO) Fiv, )+ f Ao(n)e"‘":’ cos(ny) dn

0

N
+ 2 e_m’y[Cj COS(M;X) + D.l Sln(m'x)] Cos(n}‘) dn
i=1

P
- Z f [A{n) cos(m,x) + B, sin(m,x)]e ™ *"" dn (15)
i=1 0

Also, the heat flux at the interface is

N

aT _
g%, 0) = ~K a— x,0)=g+K 2 m,[C, cos(m;x) + D, sin(m,x)] (16)
y.

i=1
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At the end of the time increment t = 8¢, a new expression is calculated for the
heat flux g,(x, 0) based on the new values of the temperatures at the interface Tix,
0, &r) and the thermal contact resistance. This expression is used to determine new
values of the constants g, C,, D, in Eq. (15).

The remaining parameters are then updated by demanding that the temperature
at the end of the current time step should be equal to that at the start of the next
time step, i.e.,

T (x,y,80) =T"%(x, y, 0) (17)

where — and + refer to the current time step and the next time step respectively.
Substituting for the temperature field from Eq. (14) and equating coefficients of
the Fourier terms, we obtain

f A (me ™ ™ cos(ny) dn + (EK- + Dn) F(y, &)
0

+

= f Ag (n) cos(ny) dn + (% -+ DO) F(y, 0) (18)
0

j A ()il cos(ny)dn + C;e™ ™"
0

= f A (n) cos(ny) dn + Ce™™ (19)
0

2 . = 24 p? = s
f B, (n)e kim; +n*)dt cos(ny) dn + D‘ e m,y
0

= f B (n) cos(ny) dn + D e ™" (20)
0

These relations can be simplified by inverting the Fourier transforms and per-
forming the resulting integrals, with the result

. 2 fa ;

Ag(n) = Ag(m)e ¥ + — (% + Do)(l = gy (21)
2 2 2 i C"_ == C|+

A;’(n) — A‘_—e—k(m:+n-)6r+ m( . ) (22)
m(m; + n?)
2 2 rDr_ _'D:-

B} (n) = By e ™% 4 m(( = 2)) (23)

wim; +n

which constitute a set of recurrence relations for the updated values of the functions
Ai(n), B(n).



38 R. ZHANG AND J. R. BARBER

When n = 0, Eq. (21) is indeterminate, but the appropriate relation can be ob-
tained by a limiting process, with the result

2kdt (q~
Ag(n) = Ag(n) + — (——-— + Do) (24)
m K

This expression can also be used for very small but finite values of kn’dt, for which
direct evaluation of Eq. (21) would lead to truncation errors.

Unrestrained Thermoelastic Distortion

We next determine the distortion of the surface y = 0, which would be produced
by the temperature field (15), if the surface were free of tractions; i.e.,

g,x, 0) = 0,(x,0) =0 (25)

We note that those terms in Eq. (15) that are independent of x will produce only a
uniform displacement of the surface plane, which will have no effect on the contact
pressure distribution. We can therefore restrict attention to the Fourier terms with
i #0.

The thermoelastic solution can be constructed as the sum of a particular ther-
moelastic solution and a homogeneous (isothermal) solution, the latter containing
sufficient generality to permit the boundary conditions (25) to be satisfied.

The particular solution. The particular solution is conveniently expressed in terms
of a thermoelastic displacement potential {, which is required to satisfy the govern-
ing equation [14]

Vi = a(l + v)T(x, y) (26)

for plane strees where o v are rpcr\r—\(‘flvpi\l the coefficient of thermal Pxnanqmn and

Bl

Poisson’s ratio for the material. The important displacement and stress components
are then given by

GAT _E & E 3%
(1 + v) dxay (1+v)ax

i, E—= s o, 27)

dy
where E is Young's modulus.
A suitable potential satisfying Eq. (26), with T(x, y) given by the x-varying terms
in Eq. (15) is
a(l + v)

= - 2 G e ye ™[C; cos(m,x) + D, sin(m;x)]
2m,;

i=

0’.(1 + v) m;
- 2 [A (n) cos(m;x) + B{(n) sin(m;x)]
n

X cos(ny)e'k('"?”l” dn (28)

o il
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The corresponding traction and displacement components at the surface are

N
a(l +v) 1 .
u(x,0) = - —2—— Z — [C, cos(m,x) + D, sin(m, x)] (29)
i=1 M
N
Ea )
Ou(x, 0) = = — > [-C, sin(m;x) + D, cos(m,x)] (30)
i=1
= W, S ———
0,(x,0) = —Fa ; ] R [Ai(n) cos(m;x)
+ B{(n) sin(m, x)]e ™+ gy €3}

from Egs. (27) and (28).

The isothermal solution. In order to satisfy the boundary conditions (25), it is nec-
essary to superpose a solution of the corresponding isothermal problem on the par-
ticular thermoelastic solution of the previous section. The isothermal solution is con-
veniently defined in terms of the Airy stress function ¢, a suitable biharmonic form

being

~ ,
$(x, y) = Z e "’[(P; + yQ,) cos(m,x) + (R, + yS,) sin(m,x)) (32)

The traction components at the surface are then given by

0) % (x, 0)
’ = = e xo
Tulx dxdy

N
= > mI=(mP, - Q) sin(m,x) + (mR, - S,) cos(mx)]  (33)
i=1

8 ~
a,(x, 0) = a_? (x,0) = Z m;[P; cos(m;x) + R, sin(m;x)] (34)
X

i=1

Superposing these tractions on those from the particular solution [Egs. (30) and
(31)] and substituting into the boundary conditions (16), we obtain four sets of al-
gebraic equations for the unknown constants P, Q. R,, S;, with solution

® —kmi+ndn
P, = —Eaf (———A,{n) dn (35)
0

m? + nz)

Ea
Q= mP, - —ZI;CJ (36)

s
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®  —kimi+nin
R, = —Ea ——B{(n)d 37
[,(m$+n2) e G7

Ea
S;=mR; + — D, (38)

m;

The displacement field associated with the isothermal solution can now be found
by substituting these constants into Eq. (32) for &, calculating the complete iso-
thermal stress field from the Airy stress function definitions, using the plane stress
Hooke's law to find the strain components and integrating the strains to obtain the
displacements. The procedure is lengthy but routine.

Superposing the resulting expression for the normal surface displacement on that
from the particular solution (29), we obtain

e —ktm+nt)

\‘( ? ) :N:- l( j ‘ll( )djr) CO"(”I }
i=1 m 0 (”If n ) *

i

D,- o m,e_ k(m+n )
+ (_ S zj T Bin) dn) sin(m,-x)] (39)
(1]

m; (m; +n

!

which defines the shape of the unrestrained surface due to thermal distortion.

The Contact Problem

Equation (39) defines the distorted shape of the traction-free plane end of a cylinder,
whose temperature is given by Eq. (15). The distortion of each of the two contacting
cylinders will be described by an equation of this form, and we shall denote the
corresponding displacements by ), u; respectively.

When the two cyiinders are pressed iwgedici, contact tactions px) = —oy{x,
0) will be developed, which will produce additional normal surface displacements
u, u. These two effects will cause a gap at the interface defined by

g(x) = [Wi(x) — w0 + [ui(x) — u(x)] — C (40)

where C defines a rigid body displacement. Notice that this equation could be gen-
eralized to the case where the undistorted ends of the cylinders were not plane (and
hence nonconforming) by including an additional term go(x) describing the initial
gap between the undistorted surfaces.

The interface must contain a contact region A, in which the gap g(x) is zero and
the contact traction compressive, and it may also contain a separation region A in
which the contact traction is zero and the gap positive; i.e.,

gx)=0 px)>0 xXEA 41)

px)=0 gx)>0 xEA (42)

EeAL L e
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To conform with the Fourier series representation of the preceeding sections, we
represent the contact pressure distribution in the form

N

p(x) = po + >, [p! cos(m,x) + p; sin(m,x)] (43)

i=1

Notice that the first term in this series can be found immediately from equilibrium
considerations, being given by

Po (44)

- 2mrd

(see Fig. 1).
The normal surface displacement due to this traction can be written down by
superposition, using the plane stress equivalents of Johnson (15, §13.2], as

2 1
u=— Z — [p'c COS(m,‘X) + p: sin(m,-X)] (45)

3

where Ej, j = 1, 2 denotes the Young’s modulus of materials 1, 2 respectively and
we have omitted an indeterminate constant describing a rigid body displacement.

Solution algorithm. The extent of the contact region A is not known a priori and
is determined from the unilateral inequalities in Eqs. (41) and (42). In the numerical
algorithm, this necessitates an iterative solution. We define (2N + 1) equally spaced
points around the circumference at the interface and make an initial guess as to which
points are in contact and which separated.

One equation is obtained for each contact point by substituting for u;, u; from
Egs. (45) and (39) respectively into Eqgs. (40) and (41) and one for each separation
point by substituting Eq. (43) into Eq. (42), giving a set of (2N + 1) linear equations
for the 2N coefficients p{, p{ and the constant C. These equations are then solved
and the appropriate inequalities in Eqs. (41) and (42) are checked to see whether the
assumed division into contact and separation points was correct. At any point where
the inequality is violated, the assumed status is changed and the solution repeated
until convergence is obtained, which usually requires only a few iterations.

NUMERICAL ACCURACY AND CONVERGENCE

In a numerical simulation of such complexity, it is very difficult to assess the ac-
curacy of the results or to identify potential sources of numerical instability. For this
reason, each of the separate algorithms described above was first tested exhaustively
against appropriate analytical solutions. For example, the algorithm for solving the
contact problem was tested using the isothermal problem of contact between two
sinusoidal surfaces, which exhibits periodic regions of contact and separation at suf-
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ficiently small applied loads. A closed form solution of this problem is given by
Westergaard [16] (see also [15]). The numerical algorithm gave very good accuracy,
except in the immediate vicinity of the edge of the contact zone.

The heat conduction algorithm was tested against a variety of analytical solutions
with prescribed thermal boundary conditions at the interface. Some of these were
taken from Carslaw and Jaeger [13], and others were solved specifically for this
purpose using standard methods.

In all time-marching algorithms, great care must be exercised in choosing the
time step, since 100 Ereat a time step will lead to inaccuracy and, in the case of
explicit schemes, to instability. Difficulty can also be encountered if the time step
is too small, since proportional changes in some physical quantities may be smaller
than the numerical precision of their representation, leading to convergence on a
spurious steady state.

Some guidance as to the appropriate time step can be obtained from the param-
eter M = kdt/€’, where € is a representative measure of the spatial discretization.
In the present algorithm, we might associate € with the wave length of the highest
order Fourier term or with the smallest interval used in the inversion of the Fourier
integral, whichever is the smallest. In finite difference algorithms, M is required to
be less than 0.5 for stability. In the present simulation, M was reduced from 0.5
until further reduction gave no significant change in the predicted evolution of the
system. Typical values of M to achieve this were in the range 0.006 to 0.01.

RESULTS

We consider cases in which the two cylinders are of aluminum alloy and stainless
steel respectively, since experimental data for the pressure dependence of thermal
contact resistance is available for this material combination [6, 11], being summa-
rized in Figure 6 of [6]. The corresponding material properties used are given in
Table 1 of [6]. In the classification ot rererence [12], this is a type 2 imalciial com
bination, for which instability can be obtained for sufficiently large heat flux in either
direction, the stability boundaries being defined by Figure 3 of [12].

Small Perturbations

We anticipate that the behavior of the system should follow that described by the
linear analysis [11, 12] as long as the perturbation on the steady-state with uniform
pressure and heat conduction is sufficiently small. We can therefore use the results
of this analysis to test the satisfactory operation of the simulation algorithm as a
whole.

Initial conditions. When the steady state is unstable, growth of the dominant ei-
genfunction of the stability analysis should be triggered by any initial perturbation.
It is convenient, however, to test the algorithm by choosing parameters such as to
make the longest wave length Fourier term have a positive growth rate and using an
initial condition in which this term is given a small initial value.

[ TSR,
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Fig. 2 Dimensionless growth rate of a disturbance for Q* = 100.

Real roots. The simplest behavior is associated with the case where the heat flow
is directed into the stainless steel body, in which case the analysis of [12] predicts
that all unstable sinusoidal perturbations have real exponential growth rates. The
exponential growth rate b can be characterized by a relation between dimensionless
growth rate B*, heat flux 0*, and spatial frequency R*, where

_ (RoK])Zb o —2E,E2R’a|q0
k, E, + E,

B* R* = R,K,m, (46)

and R" = 0R/dp is the derivative of the contact resistance with respect to pressure
at the steady-state pressure p,, at which the resistance is R,. For more details of the
relations between these quantities, the reader is referred to [12].

Figure 2 shows the dimensionless growth rate for 0* = 100. The parameter
values were chosen so as to make the first wave (i = 1) occur near the maximum
growth rate. With this choice, all the higher wave numbers (i > 1) have negative
growth rates and are therefore stable. Figure 3 shows the growth of the Fourier cosine
coefficient pj, which was given an initial perturbation. The growth is monotonic and
initially exponential with a growth rate close to that predicted by the perturbation
analysis. None of the higher pressure coefficients were observed to grow to signif-
icant values.

Complex roots. For the opposite direction of heat flow—into the aluminium alloy
body—we anticipate perturbations with complex as well as real growth rates. Figure
4 shows the real part of the dimensionless growth rate for Q* = —200. This cor-
responds to a point below the line R in Figure 2 of [12], and we therefore find a

i B
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Fig. 3 Growth of the coefficient p} for 0* = 100.

120
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Fig. 4 Dimensionless growth rate of a disturbance for 0* = —200. The two curves in the range 0 <
R* < 1.2 correspond to real growth rates, whereas, in R* > 1.2, B* is the real part of a complex growth
rate.
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range of wave lengths with real growth rates and a contiguous range with complex
growth rates. The parameter values were chosen so as to make the first wave (i =
1) occur near the maximum growth rate in the real range. With this choice, the wave
numbers / = 2, ..., 5 fall into the complex range with positive growth rate, while
higher wave numbers (i > 6) have negative growth rates and are therefore stable.

Figures 5 and 6 show the growth of the Fourier cosine coefficients p¢ for i =
I, ..., 5. The system is initially dominated by the first wave number on which the
perturbation was imposed, but the coefficients for i = 2, ..., § start to grow after
an initial period. Notice that the growth of the first coefficient is monotonic, as we.
should expect in view of the real growth rate predicted in Figure 4, whereas the
higher wave numbers exhibit oscillatory growth (Fig. 6) associated with complex
growth rates. The results show that the coefficient p§ grows only very slowly and
that the higher coefficients do not grow significantly, as we should anticipate from
Figure 4. The curves for i > 6 are omitted for clarity, but no significant growth was
observed for wave numbers up to the truncation limit i = 10.

Growth of the initially unperturbed wave numbers may be triggered by round-
off errors in the computations or by excitation of harmonics of i = 1 by nonlinearities
as the perturbation passes beyond the linear range. The latter is the more probable
mechanism, since double precision was used in the computations and round-off er-
rors would be small. We also note that in the early stages of the process, the most
rapidly growing oscillatory perturbations correspond to i = 3, 4, whereas Figure 4
indicates that i/ = 2, 3 should have the most rapid growth rates. However, the the-
oretically predicted behavior becomes dominant at later times. This is consistent with

B =y O i=e

E e = S B
2 20.0-
15.0 4
10.0 -

P, /P,
5.0
0.0'L—I—F' ~ i
=5.0 T ] T T 1
0.0 1.0 2.0 3.0 4.0 5.0
t(sec) *10°

Fig. 5§ Growth of the coefficients p{ for [ = 1, ..., 6, with 0* = —200.

i e
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Fig. 6 Enlarged view of Figure 5, showing the oscillatory development of waves with complex growth
rates, p{ fori = 2, ..., 6, with 0* = -200.

an excitation mechanism based on nonlinearities—not all coefficients will be equally
excited by such a mechanism, but once initiated, the most rapidly growing coeffi-
cients will dominate the perturbed distnibution.

All of the above results are in exact accordance with the predictions of the two
half-plane model. We can therefore conclude with some confidence that the algo-
rithm is accurately modeling the system there described. We next turn our attention
to the long-term behavior of the system, especially to the conditions holding after
separation first occurs.

Long-Term Behavior

Experience with the two-rod model [6] suggests that when the steady-state solution
of a thermoelastic contact problem is nonunique, some of the solutions will be stable.
Thus, if we start the system from an unstable steady state, the system will gravitate
to a stable state and then stay there; however, if a unique steady-state solution is
unstable, some form of oscillatory behavior must be anticipated, such as that shown
in Figure 8 of [6].

Examples of both kinds of behavior will be presented in the next two sections.
In both cases, the radius of the contacting cylinders was taken as r = 25 mm and
the mean contact pressure p, to be 0.16 MPa, which lies in a range where the thermal
resistance exhibits significant pressure sensitivity.
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Multiple steady states. We expect multiple steady-state solutions when the heat
flow is directed into the stainless steel body, since this is the material with the greater
distortivity. For this direction of heat flow, the exponential growth rate associated
with unstable perturbations is always real (cf. the section on real roots). Figure 7
shows the development of the contact pressure distribution with time for g* = 6.
For this value, only the first harmonic is unstable; hence, the perturbation in contact
pressure preserves a sinusoidal form to quite large amplitudes. Separation occurs
when ¢ = 21 s, after which the pressure distribution converges quite rapidly on a
steady state in which there is a central contact region accounting for about 40 percent
of the interface.

Qualitatively similar results are obtained at other (positive) values of Q* in the
unstable domain. Generally, increasing O* causes the final steady-state contact area
to be smaller, as might be anticipated from the solution of the corresponding ther-
moelastic Hertzian contact problem [17]. Figure 8 shows the relation between Q*
and the proportion c¢ of the interface in contact in the final stable steady state.

Unique unstable steady state. When the heat flux is directed into the aluminium
alloy body, which has the lower distortivity, we anticipate that the uniform pressure
steady-state solution will be unique. The perturbation analysis [12], however, in-
dicates that for sufficiently large negative Q* it will be unstable, suggesting some
kind of oscillatory long-term behavior.
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Fig. 8 Proportion of the interface in contact in the final steady state as a function of Q*, for Q* > 0.

As before, we choose the heat flux (Q* = —45) such that only the first Fourier
term is unstable, the corresponding exponential growth rate being complex in this
case. The development of the contact pressure distribution is shown in Figure 9.
Separation first occurs at r = 4.1 s, after which the system alternates between a state
with a contact region centered on x = 0 and one centered on x = 7r, with a period
of approximately 0.27 s. After about r = 6.5 s, a different pattern develops in which
the pressure distrioution and (e contact area remain essenually unchanged but move
along the interface with constant velocity.

This evolutionary process is illustrated in Figure 10, which shows the extent of
the contact area (shaded) as a function of time. The slope of the diagonal bands in
the upper part of the figure defines the velocity of the disturbance, which is about
0.58 m/s. The disturbance thus makes one complete circuit of the interface in the
same period (0.27 s) as that of the earlier oscillatory phase.

Qualitatively similar behavior is obtained for other values of the parameters, and
we conclude that a state with steadily moving contact area and stress and temperature
fields is the stable steady state for cases of heat flow into the aluminium alloy body,
when the heat flow is sufficient to make the uniform pressure state unstable.

CONCLUSIONS

The principal intention in the present paper has been to develop a simulation of the
thermoelastic contact between two thin-walled cylinders, with a view to investigating
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Fig. 10 Extent of the contact area as a function of time for Q* = —45, showing progression from an

oscillatory state to one involving a moving contact area.

the behavior of the system after disturbances have grown beyond the linear range

treated in earlier perturbation analyses. The results agree with the linear analysis at

small values of time, thus confirming the satisfactory operation of the algorithm.
At larger values of time, two categories of behavior are observed, namely,

1. When the heat flows into the more distortive material, the system gravitates to
a state with a discrete contact area, which appears to be a stable steady state.

2. When the heat flows into the less distortive material, initially oscillatory be-
havior is obtained, but eventually the system settles into a state in which the
contact area and the stress and temperature fields move around the interface at
constant speed while maintaining a constant form.
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