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The conductive heat transfer between two different materials in contact can cause
the system to be unstable due to the interaction between thermoelastic distortion and
pressure-dependent interface resistance. This article investigates the stability of a
system consisting of a layer and a half-plane using a perturbation method.

INTRODUCTION

It is well known that mathematical difficulties arise in the solution of steady-state
thermoelastic contact problems if conventional idealized boundary conditions are ap-
plied [1]. Barber [2] and Duvaut [3] showed that difficulties of existence can be
overcome by assuming a pressure-dependent thermal contact resistance at the inter-
face, but multiple solutions are still possible with this boundary condition (2, 3].

Early studies of the stability of steady-state solution of such problems suggested
that when the steady-state solution is unique, it is also stable, whereas when multiple
solutions are obtained, they are alternately stable and unstable [4]. However, if the
two contacting bodies are both deformable and have different thermal diffusivities,
the stability behavior is more complex and examples can be found of unique steady-
state solutions that are unstable [5].

More recently, the stability of the two-dimensional contact of two dissimilar
half-planes has been investigated by examining the conditions under which a sinu-
soidal perturbation in contact pressure can grow exponentially with time [6, 7]. This
technique was suggested by earlier work on related problems by Dow and Burton
[8] and by Richmond and Huang [9]. The configuration has no characteristic length,
so the stability behavior depends on material properties alone and can be classified
depending on the relative magnitudes of the ratios of two thermal properties for the
materials. Most of the material combinations considered exhibited one of two kinds
of behavior. For the simpler of these, characterized as type 1, instability occurs only
when the heat flows into the material of higher distortivity, which is also the con-
dition required for nonuniqueness of the steady-state solution. However, for type 2
material combinations, instability can occur for either direction of heat flow if the
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NOMENCLATURE

b exponential growth rate

h layer thickness

H dimensionless layer thickness

J dimensionless thermomechanical parameter
k thermal diffusivity

K  thermal conductivity

m  spatial frequency of sinusoidal perturbation
Po  unperturbed contact pressure

Ap  perturbation in contact pressure

qo  unperturbed heat flux

Ag perturbation in heat flux

Q* dimensionless heat flux

r ratio of material properties

R pressure-dependent contact resistance
R*  dimensionless thermal resistance

T temperature

T*  temperature drop

AT  perturbation in temperature drop
displacement

coefficient of thermal expansion
Dundurs’ constant

distortivity

modulus of rigidity

Poisson’s ratio

thermoelastic potential

stress

isothermal potential

g9 TTET Oome =

magnitude of the heat flux is sufficiently large, thus allowing the possibility of unique
but unstable steady states.

The present article takes a first step toward investigating the effect of a finite
geometry on the stability of thermoelastic contact by extending the results of Zhang
and Barber [7] to the case where heat is conducted across an interface between an
elastic layer and half-plane. A question of particular interest is whether the stability
boundary is determined by the longest possible wavelength of perturbation—as in
the case of two half-planes—or whether the “optimum” wavelength is related to the
layer thickness.

STABILITY OF A LAYER AND A HALF-PLANE

The system consists of a layer, 0 = y =< h, and a half-plane, y = 0, which make
contact at their common place y = 0 as shown in Fig. 1. The layer is pressed against
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Fig. 1 A layer on a half-plane, pressed together and transmitting heat.

the half-plane by a uniform pressure p,, and a uniform heat flux g, = g, is imposed
at the exposed surface y = h. The properties of the layer and half-plane are identified
by the subscripts 1 and 2, respectively.

Temperature Perturbation

As in [6], we investigate the conditions under which the sinusoidal perturbation in
temperature,

T = f(y)e" cos mx 1)

can grow exponentially with time. The temperature perturbation must satisfy the
transient heat conduction equation

10T

VT =-— 2
k ot @)

where k; (i = 1, 2) is the thermal diffusivity of the material.
Substituting (1) into (2) and solving for f(y), we find that the perturbation in
temperature can be written as

T, = "(Aj e + A¢®”) cos mx  for the layer (3)
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T> = ™A™ cos mx for the half-plane @)

where A; and A, are arbitrary constants and
, b
= ""‘; a,a,>0 (5)

In the event that g, is complex, it is defined to have positive real part. In Eq. (4),
we take only the positive exponential term because the perturbation in temperature
must decay as y — —x.

Thermoelastic Stresses and Displacements

A particular solution of the thermoelastic problem [10] corresponding to the above
temperature field can be obtained in terms of a thermoelastic potential ¢, where

2pu, = Vo, (6)
Vzd)i _ 2po(l + )T, )

(I -v)

and a;, p;, and v, are, respectively, the coefficient of thermal expansion, modulus
of rigidity, and Poission’s ratio of material i.

It can be verified by substitution that potential functions which satisfy (3), (4),
and (7) are given by

JIKI - a - bt

b, = _b (Ape ™™ + Ape™) + Ce ™™ + Cre™ | cos mx (8)
Jsz y my br

b, = 5 A,e™ + Ce™ |e” cos mx 9

where the dimensionless thermomechanical parameter J, is defined by [11]

. 2o,p(1 + v)k;
(1 -v)K;

i
and K is the thermal conductivity. In Eq. (9), we take only the positive exponential
term because the thermoelastic stresses must decay away from the contact plane.

The corresponding tractions and normal displacement in the layer are

o,
2#-"1“;1 = B;

JIKI —ay ayy —my my bt
= Tal(wﬂme T+ Ape™) — mChem™ + mC,e™ |e” cos mx (10)
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¥
Gy = —
o ax ady
JlKl -g a —m m br _x
= —m|—a,(—Aje M+ Ape™) —mCe ™+ mCpe™ |e”sinmx (11)
’d,
2 JIKJ —awy a —my my | _br
i T(Aue Y+ Ape®) + Cpe™™ + Cppe™ | cos mx (12)

Similarly, for the half-plane we obtain

2Wau, = aih = (JZK2 aA e + C me’"") e cos mx (.13)
Uy ay 3 12 2
a’ J.K
Oy = = —m (3—-3 @A™ + sze”'-") €” sin mx (14)
é dx dy b
& [J-K
Oz = _aftz - m“(% Ase™ + Cze’"’)e"’ cOs mx (15)

The Contact Problem

The heat flux and traction at the upper surface of the layer are prescribed to be
uniform and hence the perturbations in these quantities are zero; i.e.,

Op1 = Oy = 0 g =0 at y=h (16)

We also require that there be frictionless contact and that the heat flux be continuous
at the interface y = 0 and hence

— 0-”2

Op1 = 0y =0 Ty Uy = Uy 9 = q aty=0 (17)

The solution of Egs. (10)—(15) is not sufficiently general to satisfy these mechanical
boundary conditions. We must therefore superpose an additional isothermal solution,
a suitable form being provided by solution B of Green and Zerna [12] with the
harmonic potentials

U, = (Bye ™ + B,e™)e" cos mx (18)
> = B,e™e" cos mx (19)

The additional traction and displacement components are then
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al,
2y, =y — — (3 — 4wy,
dy
= [ym(=Bue™™ + Bipe™) = (3 = 4v))(Bye™™ + Bype™)]e” cos mx

%, )
LINPPRPNLL
ax

T =
LI ax ay
= [_ymz(_Bne_m'v t Bpe™) + (1 — 2v)m(B,1e™™ + B,e™)]e” sin mx

3, b,

o, =y— — 21 —v)—
wl )" ayz ( 1 ay
= [m*y(By1e”™™ + B,e™) — 2(1 — v)m(— Byie™™ + B,e™)]e" cos mx

for the layer (0 =< y = h) and

o
2oty =y —= = (3 = 4wl = Balmy = (3 — 4v)]e™e" cos mx
¥

R ol
Oz =y —— — (1 = 2v)) — = By[— m% + (1 — 2v,)m]e™e" sin mx
dx dy dx
R o
Op2 =Y P 22 =21 = wy) Fyg = By[m* — 2(1 — vy)mle™e” cos mx

for the half-plane (y = 0).

Boundary Conditions

(20)

(25

(22)

(23)

(24)

(25)

Superposing the solutions of Egs. (10)-(15) and imposing the boundary conditions

(16) and (17), we get a system of nine equations:
—(-A; +ApaK, = -A
_Azasz —_— -A

A“ea!h - Algea]h = 0

J.K,s
—m[ 2b-al(_A|1 + Ap) — mCyy + mc@j, + (1 —2v)m(B,, + B;) =0

-,

—m( 'bzazA, % sz) + (1 — 2v)mB, = 0

(26)
(27

(28)

(29)

(30)
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—m[% a(—Ap e + Ape™™) — mCpe™™ + mC,ze""']
+ [—m’h(=Bye™™ + Boe™) + (1 = 2v)m(Be™ + B,e™)) =0 (31)
mz[{‘—;& (Aye™ + Ape™) + Ce™ + Cue’""J
Himh + 2(1 — v)m]B, ™™ + [m’h — 2(1 — v)m)B,e™} =0  (32)

2 JIK;
m T (An+ApR) + C +Ciy | — 201 = v)m(—B,, + By)
2 JZKZ
= m TAz + Ci) — 2(1 - vZ)mB2 =0 (33)

1 | JiK,
-E_p._ T a(—Ay +Ap) —mC, +mC, -3 - 4v)(By, + Byy)
1

1 Aa,
—— |+ Cm—3—-4v,)B, | =0 (34)
2“.2 b

These equations can be solved for A, B,, C,, Ay, A, By, B3, Cyy, and Cy, in
terms of A. The perturbations in contact pressure, temperature difference, and heat
flux at the interface can then be determined by substituting for these constants in the

expressions
2 JZKZ bt
Ap=-o,=|-m 5 A, + Cy ) + 2m(1 — v,)B, |€” cos mx (35)

AT=T,-T, = (A, — A, — Ap)e” cos mx (36)

Ag = —Ae” cos mx (37)

Perturbation of the Thermal Resistance Relation

To complete the solution, we linearize the equation defining heat conduction across
the thermal contact resistance, R, for small perturbations about the steady state.
The definition of the pressure-dependent contact resistance, R, implies that

I*

=— 38
R@) (38)

49y
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where T* is the temperature drop across the interface. Hence for small perturbations
about the steady state, we have

Ry Aq + g0 AR = AT (39)
Finally, noting that
AR =R'Ap (40)
we can substitute for AT, Ag, and Ap from Eqgs. (35)—(37) to obtain the characteristic
equation for the exponential growth rate b.
It is convenient to cast this equation in dimensionless form by defining dimen-

sionless layer thickness, thermal resistence, and heat flux, respectively, through the
relations

H=mh R* = RymK, O* = —4a,(1 + v))g,R'M 41)

where

L_(-w) (-

— (42)
M B (2
and the ratios of material properties
kz 82 KZ
R R
where the distortivity 8, = a1 + v)/K..
With this notation, the characteristic equation can be written as
R* + D\(H, 2)Q* + Dy(H, 2) = 0 (43)
where
1 rs
DI - _[ - ]
GG+ D GG+ 1)

r

" 2
(C3=D{l = [(1 — &QH* + 2H + 1) — 4H]e # — ae™*}

1 1
{ ( - 1) + (4He ™ — ™)
r,rZC, tanh C;H
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1+a&l 1 1 27 5B
: —— ~ " [(H+ 1)+ (H- 1)e
1-aC, rrC, tanh C\H rr.C, sinh C,H

nr

=2
—{—+(1 +&)2H* + 2H + 1)

1
+((1 - &)2H* + 2H + l)—4H)(—- w52 ):le"”

rnra 1 _&Cz r,r2C,

1 l1+a&l 1 -
= Pt @l—— — 1] ~& -— + e
nr 1-&C, rrC,

1 1 1 1
D2=(—+ )+(——l)—— (44)
C] r3C2 tanh CIH Ct
1/2
a, b B i
Ci=—={1+ 5 =(1+2) (45)
m nm'k,
a2 b 1/2 5 1/2
C,=—={1+ - =1|1+—- (46)
m m kz T

and & is Dundurs’ constant [13], defined byf

& = Bl = vp) = (1 — vy) 47)

Mol —v) + (1 — vy)

We can recover the characteristic equation for the problem of two half-planes
by allowing H to approach infinity, in which case the second terms of D, and D,
become zero.

STABILITY CRITERION

The system of Fig. 1 will be unstable if and only if the characteristic equation (43)
has at least one solution for the dimensionless exponential growth rate z(= b/m’,)
that is positive or complex with positive real part. The system is clearly stable for

"It is interesting to note that & appears only in terms that tend to zero as the layer thickness H —
© and hence has no influence on the stability criterion for the thermoelastic contact of two half-planes.
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Fig. 2 Stability boundaries as a function of R* (aluminum alloy layer on a copper half-plane).

Q* = 0, and hence if Q* is increased monotonically, instability will be indicated
when the first root of Eq. (43) passes into the right half-plane, either through the
origin or by crossing the imaginary axis.

In the former case, the stability criterion is determined by setting z = 0, in which
case Eq. (43) defines a linear relation between R* and Q%*, that is,

R* + Dy(H, 0)

48
D\(H, 0) e

o* =

As z— 0, C, and C, — 1 and both the numerator and denominator of D, ap-
proach zero. However, we can use L’Hopital’s rule to recover the limiting form of
D,(H, 0), which is
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r 1 H
D,(H,0)=—2+ '-( + — )(1 + dHe ™ — ™)
2 tanh H sinh™ H

Hcosh H + sinh H
sinh H

2
+ 4e‘2”( ) —r(l + &)QH> + 2H + De ™

+ry(1 + a)e“‘”]/Z{l —[(1 = &)(2H* +2H + 1) — 4H)e ™ — Ge™*}

(49)
We also note that
D,(H,0) = i + : 50
2, _r3 tanh H >0)
200
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Fig. 3 Stability boundaries as a function of H when R* = 1.0 (aluminum alloy layer on a copper half-
plane).
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Fig. 4 Stability boundaries as a function of H when R* = 1.0 (copper layer on an aluminum alloy half-

plane).

When the roots reach the unstable half-plane by crossing the imaginary axis, the
characteristic equation (43) becomes complex and cannot be solved explicitly. How-
ever, separating real and imaginary parts and notmg that QO*, and R* must be real,

we obtain the two real equations

from which

R* + Re(D,)Q* + Re(D,) = 0

Im(D,)Q* + Im(D,) = 0

3 Im(D,)
Im(D))

R* = —Re(D)Q* — Re(D,)

(51

(32)

(53)

(54)

These equations can be solved parametrically, with z = = jw as parameter, to determine
the relation between Q* and R* at the stability boundary.
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For both real and complex cases, we find that D, — O(H) and D, = O(H™ ") as

H — 0. It therefore follows from Eqgs. (48) and (53) that a very large [O(H )] heat
flux Q* is required to cause instability when the layer thickness H is small.

RESULTS

In discussing specific cases, it is convenient to make use of the classification of
material properties introduced by Zhang and Barber [7] for the limiting case of the
contact of two half-planes.

Type 1 Material Combinations

If ry > 1and 0 < r, < 1/ry, the contact of two half-planes is unstable only for heat
flow into the more distortive material, the critical value of Q* being determined by
the condition for a root occuring at the origin.

200 -
: TYPE 1
- } TYPE3

150

*
Q“IOO -

50 |

0 i 1 1 | L | 1 i 1

0.0 0.2 0.4 0.6

1.0
1/(1+R¥

Fig. 5 Minimum heat flow QF into less distortive material for instability in case of type 1 and type 3
combinations.
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Fig. 6 Stability boundaries as a function of H when R* = 1.0 (stainless steel layer on an aluminum
alloy half-plane).

Figure 2 shows the corresponding stability chart for finite values of H, for the
case of an aluminum alloy layer and a copper half-plane. For large values of H,
stability continues to be determined by the linear real root criterion (48), but for
thinner layers and smaller values of R*, a complex instability can be obtained at
lower values of O*. More detailed investigation of Eq. (43) shows that once a root
has crossed into the right half-plane, it will remain there with increasing Q*, so the
stability criterion is determined by the lower of the curves in Fig. 2 for the appro-
priate H. The critical Q* is shown as a function of H at constant R* (= 1.0) in Fig.
3, where we note that, as predicted, Q* — » as H — 0.

The problem of two half-planes is unchanged if the two materials are inter-
changed, provided the direction of heat flow is also reversed. This is not the case
when one of the bodies is replaced by a layer of finite thickness. Figure 4 shows
the effect of H on the minimum Q* for instability for a copper layer on an aluminum
alloy half-plane, with R* = 1.0. Note that with the labeling convention of the present
article, the type 1 material combination is then determined by r, < 1 and 0 < 1/r,
<.

At large H, we again find that instability occurs only for heat flow into the more
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distortive material (this time the half-plane, making Q* < 0), but at lower values
of H, a new feature is that instability can also occur for the opposite direction of
heat flow, being determined by a complex root. Corresponding plots for different
values of R* show that the minimum Q* (= Q%) required to precipitate this kind of
instability always occurs for a layer thickness of approximately H = |, but the cor-
responding critical Q* decreases with decreasing R*, as shown in Fig. 5.

The dimensionless layer thickness is defined by H = mh and hence H = 1
corresponds to & = 1/m = [/2m, where [ is the wavelength of the perturbation.
Thus, another interpretation of Fig. 4 is that instability for heat flow into the layer

is most likely to be associated with wavelengths of the order of 2wh.

Type 2 Material Combinations

Type 2 material combinations are characterized by the conditions 1/rp<r<l1,if
n=>lorr, <1/r, <1ifr <1 and they exhibit instability for both directions of
heat flow, even for the case of two half-planes. This behavior extends to the case
of the layer, as shown in Fig. 6, for a stainless steel layer on an aluminum alloy

200
COMPLEX ROOT

150 REAL ROOT

100

S0

-100 !

-150 ¢ |
3.0 4.0

-200
0.0 1.0 2.0

H

Fig. 7 Stability boundaries as a function of H when R* = 1.0 (aluminum alloy layer on a stainless steel

half-plane).
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half-plane. Note that, as in Fig. 3, the boundary for the heat flow into the more
distortive material (the stainless steel) is determined by a complex root at small val-
ues of H. However, this effect is not observed when the materials of the layer and
the half-plane are interchanged (see Fig. 7).

Type 3 Material Combinations

Type 3 material combinations are defined by the conditions 1 < r, < r,or 1 > r,
> ry, and permit instability only for heat flow into the more distortive material for
the case of two half-planes, the stability criterion being determined by a complex
root. Figure 8 shows the stability boundary as a function of H for a cast-iron layer
on a brass half-plane and R* = 1.0. As in Fig. 3, a region of instability for the
opposite direction of heat flow is obtained, with a minimum near H = 1. The value
of O* associated with this minimum is shown in Fig. 5 as a function of R*. When
the materials of the layer and the half-plane are interchanged (Fig. 9), this effect is
no longer observed and instability occurs only for heat flow into the more distortive
material.

200
L COMPLEX ROOT
150 REAL ROOT
100 |
P Q.
50
-..-50 -
-100 F
-150 F
-200 . | oeif G | , 1 i
0.0 1.0 20 3.0 4.0

H

Fig. 8 Stability boundaries as a function of H when R* = 1.0 (cast-iron layer on a brass half-plane).
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Fig. 9 Stability boundaries as a function of H when R* = 1.0 (brass layer on a cast-iron half-plane).

CONCLUSIONS

The above results extend the analysis of Zhang and Barber [7] to include the effect
of a finite body dimension—the thickness of a layer—on the stability of thermo-
elastic contact.

As in earlier studies, instability is found to be most often associated with heat
flow into the more distortive material except when the ratios of the material prop-
erties are characterized as type 2. However, with the layer geometry, additional ex-
amples of instability for the heat flow into the less distortive material occur when
this is the material of the layer. These conditions are associated with complex roots
and typically involve perturbations whose wavelengths are of the order 2mh, where
h is the layer thickness.

For very thin layers (H < 1), the system is generally stable, in the sense that a
very large heat flux is needed to cause instability.
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