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SUMMARY

Solutions are obtained for some steady-state thermoelastic contact problems in
which heat is generated due to friction at the interface between two semi-infinite
solids. It is assumed that only one of the solids is a thermal conductor and that
the shear tractions at the interface do not influence the normal tractions.

A general solution is obtained in terms of a single haronic potential function
which tends to zero on the surface outside the contact area, whilst inside this ares a
linear combination of the function and its normal derivative is prescribed. Approxi-
mate solutions are obtained for the particular cases in which the contact area is a
circle or a strip and the surface of one of the contacting solids is spherical, evlindrical
or plane. .

1. Introduction

I'r two semi-infinite elastic solids slide against each other, the generation
of heat at the interface due to friction will induce temperature gradients
and thermal stresses and there will generally be a consequent change in the
distribution of contact stress and in the extent of the area of contact (1).

Elastic contact problems of this type are extremely intractable, since
they involve moving sources of heat, combined normal and tangential
loading of the solids and a contact area whose extent is not known a priori.
However, some interesting analytical results can be obtained subject to
the following simplifying assumptions:

{i) the contact area is stationary with respect to one solid, in which a
steady flow of heat is established;
(ii) the other solid is a non-conduetor;
(iii} the coupling between tangential and normal traction at the inter-
face can be neglected;
{iv) the coefficient of friction is constant throughout the contact area.

Assumption (iii) is not required if the elustic properties of the two solids
are similar.

In this paper, we shall reduce this simplified problem to that of
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determining a single harmonic potential function satisfying certain mixed
boundary conditions. A general solution will be given for the axisymmetric
case, making use of a method due to Collins (2).

The corresponding two-dimensional problem will also be briefly dis-
cussed in the interests of completeness. 1t has been previously treated by
Burton (3, 4), but the present formulation provides a more rapidly
convergent solution.

2. General solution
The heat input ¢, to the thermally conducting solid must be equal to
the rate of frictional heat generation throughout the contact area A.

Hence
g. = —pVo.. on 4, (1a)

where p is the coefficient of friction, V is the sliding speed and o.. is the
normal contact stress. Tensile stresses are regarded as positive and the
conducting solid occupies the space z > 0 in Cartesian coordinates (z, ¥, 2)
or cylindrical polar coordinates (r, 8, z). Outside the contact area, we
assume that there is no heat flow from the surface, i.e.

g. =0 onA4. (1b)

The mechanical boundary conditions determining o, can be stated as

u, = u{x,y) ond, (2a)
0. =0 ond, (2b)
0z =09, =0 ond and 4, (2¢)

where u, is the normal displacement at the surface and u(z, ¥) is a pre-
scribed function related to the shape of the contacting solids.

The statement {2¢) that shear stress is zero even within the contact area
deserves some comment in view of the fact that the same shear stresses are
responsible for the heating effect under consideration. In fact, all that is
assumed is that the shear stress has a negligible effect on the normal
contact stress distribution. and hence that the boundary-value problem
for determining the latter is the same as that which would be generated if
the contact was frictionless, except for the inclusion of the appropriate
heat input (1a}). This assumption is exact if the two solids have similar
mechanical properties since shear contact stresses will then produce equal
and opposite normal displacements on the two surfaces and maintain
conformity without changing the normal contact stress. The additional
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internal stresses and displacements due to frictional stresses can readily be
calculated once the surface values are known.

A suitable general solution to the equations of steady-state thermo-
elasticity in terms of two harmonic potential functions ¢, w is

u=4(1-v)k-i‘i—O(l—v)v¢+(1-2y)vw+,.v—-(3 4)k—, (3)

_ 2(1-y) 02¢

N a(l +v) o2%
where u is the displacement vector, T' is the temperature rise above a
suitable datum, and v, « are respectively Poisson’s ratio and the coefficient
of thermal expansion for the material. This is solution B of reference (5).
It is obtained from that given by Williams (6} by writing w = ¢ —3.

The component of stress acting on the z-plane, s, is given by
S 32(» Fw

(4)

where G is the shear modulus, and the normal components of displace-
ment and stress at the surface z = 0 reduce to

=2(1-») = (¢ @), (6)

0, = —2G ‘5“; (7)

The tangential stress at the surface is identically zero, as required by
condition (2¢), and the heat input per unit area is

g = —g 8T _ KA F

: bz al+v) 82 ®)

where X is the thermal conductivity of the material.

On examination of the boundary conditions (1b), (2b), it is clear that
{1a) applies throughout 4 as well as 4 and hence this condition can be
satisfied by taking

—i = —fuw, (9)
where B = FeulG(1+v)/K(1—-v). (10)
Substituting for ¢ into equations {6) and (7) we obtain
Ow

= =2l—w» - z =

u, (=) {ﬁw+ 62} 0, (11)
52

o = =26 2, z =0, (12)

Sl
4
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and the boundary-value problem is thereby reduced to the search for a
single harmonic potential function w in z > 0, satisfying

Sw _ u(z, y)

,8w+3z— ity on 4, (13a)
2
aa—z—‘;" =0 on 4. (13b)

Since w and its derivatives are harmonie, it follows that

22 fw - duw
sa{fer i) = v {per 32}

where V¢ = 8%/ox?+ &*/8y* and hence
w Po  Viu(x
13%;;‘)"“3;5'= %(-:’—v—";) on A, (13¢)
from (13a).

Conditions (13b), (13¢) define the boundary-value problem of the third
kind for the harmonic function 9%w/&z?. Similar boundary conditions are
encountered in determining the steady-state temperature in a solid, part
of whose boundary is maintained at zero temperature, whilst on the rest
of the boundary there is radiation into a medium at a prescribed tempera-
ture. However, the sign of the constant, B, obtained in this example is
opposite to that defined by equation (10) and the uniqueness theorem for
the boundary-value problem of the third kind does not apply to the
thermoelastic contact problem. This point will be clarified by the subse-
quent examples. We note that the methods used for solving this problem
in sections 3.1, 4.2 below can equally be applied to the corresponding heat
conduction problem, in which the radiating region is a circle and a strip
respectively.

In solving the boundary-value problem defined by conditions (13b),
{13¢), certain continuity conditions must be imposed at the boundary
between A and 4. If the surfaces of the contacting solids are continuous
up to and including the first derivative, the contact stress and hence
#w[d22 must tend to zero at this boundary. This condition is the same as
that requiring continuity of potential (temperature) in the boundary-value
problem of the third kind.

3. The axisymmetric problem
We assume that the contacting solids are initially convex, in which
case the contact area must be simply connected} and hence a circle.

t It can be shown that the contact area in any thermoaclastic contact problem is simply
connected provided that the contacting solids are initially convex. The proof is derived from
the argument of section 9 of reference (7).
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Taking the radius, a, of this circle as the unit of length and defining non-
dimensional coordinates p = rfa, { = z/a, the problem is to find a
harmonic function V{p, {) in { > 0 satisfying

%lg-]-aﬁV = f(p) for 0<p<gl, z=0, (14a)
V=0 for p>1, z=0, (14b)
where V = BPwfoz? (15)
__t 4 u(p)
and 1e) = 2(1—vjp dp{ P ( a )} {16)
This problem is treated by Collins (2), who gives the solution
T jnd
, W WTIVIYY 17
As J‘l(p T 4o
where j(f) is an odd function of ¢ satisfying the Fredholm integral equation
i
j(t)+%§j J&)log fs~t|ds = Lt), O0<tgl, (18)
o
and tdtf =y {fo sf(s) ds} dp. (19)
Suhstituting for f(p) from equation (16) and integrating, we obtain
_ 14 [ pd(a)ldpdp
0 = iy Efo &= p?)t (20)

3.1. The homogeneous equation
- We first consider the case in which the surfaces are both plane, i.e. u(p)
is a constant. Substituting into equation (20), we find that I(¢) is identically
zero and hence the Fredholm equation (18) is homogeneous.
To obtain an approximate solution, we write
§ = cos 8, t = cos ¢, (21)

and represent j(¢) in the form

Jé) =

i

s

a; cos (21 —1)¢, 0

N
-
M
A
E

1

giving

z a, cos (20— 1)+
i=1

“B "S 4 cos (2j— 1)6 log |cos 8- cos ¢ sin 8.6 = 0,

0 /=
0<¢<m (23
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Only odd multiples of ¢ are required in the series (22) since j(¢) is odd with
respect to §m.

The expression sin 8 cos (2j —1)8 can be expanded as a Fourier series
in the range 0 < 6 < mas

sin @ cos (Z/—1)8 = > by; cos (25— 1)4, (24)
i=1
2 1 1
where by = ~= {4(1.__3.)2_ i +4(‘5+j—— Y 1}- (25)

We now substitute into equation (23) and perform the integration,
making use of the result

J.ﬂ cos nf log jcos f—cos ¢| df = — w, n # 0, (26)
0
(see (8)) to obtain
= . 2 & by cos(2t—1
z a, cos (2i—1)p—af Z Z s (2i-£1) i =0 (27)
i=1 i=] f=]1

and hence, equating coefficients of cos (2i—1)¢,

S bsay = (2i-Dafaf, i=1,2,3, .. (28)
f=1

The matrix of coefficients of this system of equations can be made
symmetric by the trivial change of variable z; = a,(2: — 1)*. We can there-
fore deduce that all the eigenvalues are real. Furthermore, they must all be
positive, since negative eigenvalues are ruled out by the uniqueness
theorem for the boundary-value problem of the third kind (9).

On truncating the series to twelve terms, the first six eigenvalues of #/2a8
are found as 0.7830, 0.3063, (.1902, 0-1378, 0-1080 and 0-088%. The
coefficient matrix is strongly diagonal and gives a rapid convergence with
increasing number of terms. For example, a change from ten to twelve
terms only affects the first five eigenvalues in the sixth significant figure.
An alternative iterative solution for the first eigenvalue showed no further
change in the sixth significant figure from the value 0.783002 for increases
in the number of terms beyond eleven. :

To find the corresponding contact stress distribution, we substitute into
equation (17}, noting that when { = 0,

L) dt
V(p, 0) = —L UJZ(T)#")' 0<p<l (29)

The contact stress distributions corresponding to the first three eigen-
values are shown graphically in Fig. 1. Only the first eigenvalue satisfies the
requirement that contact stress should be everywhere compressive. In
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—0H- .
Fic. 1. Contact pressure distributions associated with the first 3 eigenvalues of
=/2af. The Hertzian pressure distribution H is given for comparison.

general, the contact stress for the nth eigenvalue changes sign n— 1 times
in the interval 0 < p < 1. Thus, the eondition that contact stress should
be non-tensile guarantees uniqueness for this particular contact geometry.

A previous estimate for the first eigenvalue was obtained by Burton (10)
using a different method in which the contact stress (and hence also the
heat input) was represented by a truncated power series in p. A correspond-
ing power series was obtained for the displacement due to combined
heating and loading, and a system of simultaneous equations was thereby
obtained for the coefficients. This method works quite well for the two-
dimensional case (see below, section 4), but the mathematical complexity of
the axisymmetric case persuaded Burton to restrict his series to only three
terms and hence the value he obtained (0-84) does not agree very closely
with that derived from the present more exact method. We might also
note that a power series in p is not well adapted to the representation of a
function which tends to zero with (1 —p?)! as p— 1,

3.2. Contact of a sphere and a plane
We now consider the non-homogeneous case in which the surface of the
conducting solid is slightly spherical. If the radius of the sphere is R, the
funetion u(p) takes the form .
2

ulp) = _a.)"; + constant, (30)
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and the function I{t) is obtained from equation (20) as

206 2acos¢

i = Tal—-wR a(l-wR

(31)

Thus, the integral equation (18) takes the form

2a cos ¢

61+ [ ) log oos 8- cos ] sin 05 = — 228,

0<d<m (32)

and using the same procedure as in section 3.1, this can be expressed as

= by, cos (2 1) 2a cos ¢
S a; cos (2i— 1)} —a, i = 33
- ¥—ap Z“Z (2i—1) Tx(1-W)R (33)
Writing z; = a(l —v)Ra,f2a, (34)
and equating coefficients, we have
a > byx—(2—l)x; = &, for i=1,23, .., (35)
i=1

where the b;; are given by equation (25} and §;; is the Kronecker delta.

3.3. Relation between load and contact area

It is of interest to discover how the radius of the contact area a varies
with applied load P, sliding speed I and the radius of the sphere R. As
in the isothermal Hertzian contact problem, it is convenient to find the
applied load, treating the contact radius as known, and then invert the
relationship.

The load P is given by

P = —f: dmra.(r, 0) dr = 4ma®G j: pV(p, 0) dp, (36)

from equations (12) and (13).
Substituting for V{p, 0) from equation (29), we obtain

tydtd
I~ T

If we reverse the order of integration and perform the inner integral. this
reduces to

P = —4—:02(:‘} {j(f) dt. (38)
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Finally, substituting for j(t) from equations (21) and (22) we obtain

in w
P = —4na?@@ I z a; €os ¢ cos (2t — 1)¢ sin ¢ de

0 i=1
_ 8afG 2 x
T (-0R & (Zi+1)2i-3) (39)

For the trivial case # = 0, we have the Hertzian solution
Se?@
P = =
Py 3(1-w)}R (40)

and hence equation (39) can be expressed in the non-dimensional form

T

PIPy =3 Zl @+1)(2—3) )

This expression is a function of ag only (see equation (35)) which increases
without limit as a approaches the first eigenvalue. The reciprocal P[P
obtained using a series of twenty terms is plotted against af in Fig. 2.

16}
-4
03
7

Py 06 Axisvmmetric
], U"'-) ']‘“'()_
(hf — dimensional

(h3 =
0-2
(01—

2-006

00 01 3 05 10 ! 1-5 24

Fic. 2. Relationship between the reciprocal of non-dimensional load and contact
area for the axisymnctric and two-dimensional geometries.

The solution of equation {35) only satisfies the requirement of non-tensile
contact stress in the range 0 € ¢ < 2-006.
The thermoelastic contact area is always smaller than the Hertzian, the
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difference being most pronounced at high speeds and loads when the radius
approaches the plane surface value

_ 2.006K(1—v)

T o FG(14v) ' (42)

If the load is increased at constant speed, this expression defines a constant
limit which the contact radius approaches but cannot exceed. (In the
corresponding isothermal case the contact radius increases with load
without limit.)

If the load is kept constant whilst the speed is increased, the contact
radius is reduced without limit, approaching inverse proportionality with
speed as defined by equation (42) at very high speeds.

4, The two-dimensional problem

The corresponding two-dimensional (plane strain) problem is that in
which two semi-infinite solids make contact over the strip —a < xz < q,
the geometry and contact pressure being independent of y. Writing
¢ = zfa, { = zfu, the problem is to find a two-dhmensional harmonie
function V (¢, £) in { > 0 satisfyving

FHET =10, JH<1 s=0, (432)
¥ =0 ¢ > 1, z=0, (43b)
d2
where f(&) = ﬁ@{g}’ (44)

{(cf. equations (14) and (15}).

The problem can be reduced to an integral equation, using an argument
similar to that of Collins (2), but the kerne] of the resulting equation is a
complete elliptic integral which leads to a complicated approximate solu-
tion. In fact, it proves more straightforward to follow Burton (3, 4) in
representing the unknown potential 1” as a series in the contact region and
developing a corresponding integral expression for &17j8. However, the
use of a Fourier series in preference to the power series used by Burton
conduces to much faster convergence (see below).

Assuming ['(£, 0) known in the contact region, we have

%(5, 0) = éfg 1 (s, U) Jog Js— & ds. (45)
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The function V{s, 0) must be an even function of s tending to zero at
& = %1 and we can represent it as

V(6,0) = > a;sin(2-1)8, 0<8<a, (46)
i=1

where s = cos 6, £ = cos ¢.
Substituting into equation (45, 43a) and making use of equation (26),
we find

o 3 aysin@j-1)g- 5 ETNHILEZIE g,
f=1 i=1
0<¢<m (47)

We now multiply through by sin ¢ and expand sin ¢ sin (2i — 1)$, as in
section 3.1, to obtain

af i i ¢,;a; 8in (26— 1) — i (2 —1)a, sin (21— 1)¢ = f($) sin ¢,
i=1 5=1 i=1 O<d<m (49)

2 1 1
where Gy = = {4(7; —g)2-1 T4 +j=1p~ 1}- )

4.1. The homogeneous equation

On truncating the series to twelve terms and setting f(¢) = 0, the first six
eigenvalues of #/2af from equation (48) are found as 1-3567, 0-3639, 0-2106,

1-0
-9
8
07
F(£.0) 0.
F0.0) .51
0-4
03
(-2

-1

N OSSN NN NN SN S N
-0 02 04 06 us 1

¢

Fia. 3. Contact pressure distribution in the two-dimensional

thermoclastic contact of plance surfaces (¢). comnpared with

Burton’s power series approximation (b), and the Hertzian
pressure distribution (c).
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0-1482, 0-1143 and 0-0930. The diagonality of the matrix ¢, is even more
pronounced than in the axisymmetric case. If all the non-diagonal elements
are neglected, the value § obtained for the first eigenvalue only differs from

the more accurate estimate by 29%.

The first eigenvalues show no further change in the sixth significant
figure from the value of 1.35674 for increase in the number of terms
beyond four. By contrast, Burton’s power series representation gives a
value which still changes in the third figure after twenty terms (3). His
estimate for «/2af, based on an extrapolation through the trend with

increasing numbers of terms is 1-362.

As before, the first eigenvalue is the only one which is consistent with
the requirement of non-tensile contact stress. The contact stress distribu-
tion is shown in Fig. 3 in comparison with the isothermal Hertzian solution

and with Burton’s power-series approximation.

4.2. Contact of a cylinder on a plane
We now consider the case in which the surface of the conducting solid
is eylindrical with radius R, for which

2§2
u(f) = ~ E + constant {50)

and hence f() = —af2R(1—v), (51)

which is independent of ¢.

Substituting into equation (48) and equating coefficients, we find
i et — 21—y = —-§,; for 1=1,23, .., (52)
where z; = 2R(1 —vja,fa. {53)
The total applied load is
P = 2Ca f ' pe o) de

-1

- = J‘oztsln:ﬁsm(oz_lwdqs

R(l —v) =
aGax,
= —_— 54
SR(1—») (54)
If B = 0 (the isothermal Hertzian case), we have x; = 1. from equation

(52), nnd hence
PP, = 2. (55)
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Values of the reciprocal of this ratio, obtained using a series of twenty

terms, are shown graphically in Fig. 2. The effect of Ioad and speed on

contact width is qualitatively similar to that in the axisymmetric case.

If the series is truncated to one term, we obtain
Py 8af

P 37 (56)
This result is shown dotted in Fig. 2 and clearly provides a very acceptable
approximation to the more exact result.
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