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Half-Planes With Wear

We study the transient contact of two sliding bodies with a simple geometry. The
model employs the Archard law o f wear in which the rate of material removal is pro-
portional to pressure and speed of sliding. The problem is Sormulated in terms of

Iwo governing equations with unknown pressure and heat flux at the interface. The
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equations are solved numerically, using appropriately chosen Green’s Sunctions. We
Start with a single area of contact. As a result of frictional heating and thermal ex-
pansion, the contact area shrinks, which leads to Surther localization of pressure and
temperature. The role of wear is twofold. By removing protruding portions of the
two bodies, wear tends to smoothen out pressure and temperature. On the other

hand, it causes the contact area to grow sufficiently large to become unstable and
bifurcate. Areas carrying load are eventually removed by wear, and the contact
moves elsewhere. The system develops a cyclic behavior in which contact and non-
contact areas interchange.

Introduction

Temperature and pressure development at the contacting
surfaces of two bodies can be unstable in the sliding process
involving fricational heating. This phenomenon, known as
thermoelastic instability, has been observed in many practical
sliding systems [1-4]. If wear is absent and one body is a rigid
insulator, the process tends to a known steady state [5, 6]. In-
stability of transient contact for nominally conforming sur-
faces was studied in [7, 8, 9]. It was shown that there exists
some critical value of sliding speed, V., for which the
pressure, if started with a sinusoidal disturbance, remains un-
changed. For V < ¥V, the disturbance decays and otherwise it
grows without limit. For V > V.., the superimposed pressure
eventually becomes insufficient to keep the two bodies in con-
tact throughout the nominal contact area and patch-like con-
tact develops.

The transient development of patch-like contact in the
absence of wear was treated in [10], using the Green’s function
representation of [11]. The presence of wear complicates the
process. It has been shown for related problems [12, 13] that
in some cases wear damps the growth of disturbances, while in
other cases wear in itself gives rise to oscillatory behavior.

In this paper, we use the Green’s function representations of
[11] to study the contact problem of two sliding half-planes
with wear. We modify the technique of [10], which allows us
to relax some of the earlier restrictions. Numerical results
show that the system develops a cyclic behavior in which con-
tact and separation areas interchange periodically.

The Model. The model considered is shown in Fig. 1. Two
bodies are pressed together by force P. One of the bodies
slides on the surface of the other and heat is generated due to
friction. The surface of body 1 is slightly rounded to give an
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Fig. 1 Model fo surface contact

initial Hertzian pressure distribution. This also ensures that
the contact area will remain substantially stationary with
respect to body and 1 and move at the sliding speed ¥, over
body 2. Both bodies are elastic and thermal conductors,
Shearing tractions on the surface are assumed to be propor-
tional to the normal pressure, with coefficient of friction w. In
solving the contact problem, we take into account the coupling
effect between normal and shear tractions. Wear is assumed to
follow Archard’s law [14] according to which the rate of
material removal, w, is proportional to pressure and speed of
sliding. In the heat conduction problem, we assume that
temperatures of the two bodies are equal at the interface in the
contact region, and there is no heat flux across the surfaces in
the separation region.

Governing Equations and Boundary Conditions. One way
to treat the problem is to write down the governing integral
equations in terms of appropriately chosen Green’s functions.
We use the fundamental solution corresponding to the release
at time 7 = 0 of a unit quantity of heat per unit length in z
direction at x = 0, ¥ = 0 on the surface of a half-plane. For
body 1 the temperature is given by [15]}

IEquauicm (1) differs from the result in [15] by a factor of 2, since the latter is
the solution for a point source in an infinite body, whereas in the present
problem all the heat passes into the half-plane y > 0.
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The corresponding normal displacements on the traction free
surface are [11]
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In equations (1) and (3) o, £, Py, €y, and v, are, respectively,
the coefficient of thermal expansion, thermal diffusivity, den-
sity, specific heat, and Poisson’s ratio for the material of the
first body. The function &, (R) is related to the complex error
function discussed by Miller and Gordon [16]. Numerically ef-
ficient series for small and large arguments are given in [11].

If we fix the coordinate system for the first body, fun-
damental solutions for temperature and normal displacements
of the second body will be

exp(— B?)

Tr=—m 4
zﬂkzpzczf ( )

U, =~ ®, (R) 3

_ az(.l +V2)

- & (B (5
= 1(B) )
where
- V§)2 2
g =V +y i

4k, 1

Using these results, the system of governing equations for the
unknown pressure distribution and temperature on the surface
can be written
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In equations (7)-(9), u(x, t) is the relative surface displace-
ment of the two bodies, p is the contact pressure, g, and g, are
the heat fluxes directed into bodies 1, 2, respectively, and w is
coefficient in Archard’s wear law. Equation (7) states that the
two bodies are in contact in the region A (7). In particular, the
first two integrals in (7) give the contribution of elastic
displacements caused by the pressure and frictional (tangen-
tial) stresses, and the next two integrals take into account ther-
mal displacements caused by frictionally generated heat flows
g, and g, across the surfaces. The first right hand side term is
a mismatch of the initial surface profiles and the last term
shows the contribution of wear to the surface geometry. The
constant, ¢, represents a relative rigid body displacement of
the two bodies. Expression (8) states that temperature is con-
tinuous at the interface. Finally, (9) states that the total heat
flux into both bodies is equal to the frictionally generated
heat.

The integrals in (7, 8) should be performed over the domain
of contact A (¢); this is also the range of definition of the in-
tegral equations. The contact area may be simply or multiply
connected and is unknown in advance. It is defined by condi-
tions of no-tensile-pressure

P(xt)=—a,,(x,0,0)=0, xeA(r), (11)
no-interpenetration
x2 t
uy(x,!)ac—?— Vjo wp (x,t)dt,  xeA(t), (12)
and equilibrium
[, Pundr=P) (13)

In equation (12), r is the initial radius of curvature of body 1
and ¢ is a rigid body displacement. As we mentioned earlier,
one of the surfaces is assumed to be rounded, but we could
take any other surface which suits our purpose. In equation
(13), P(r) is the prescribed force pressing the two bodies
together, and A (¢) is the part of the surface out of contact.

Dimensionless Formulation. To reduce the number of
parameters, we write
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The effective Young’s modulus is defined by
I
ElEz(l V%) (20)
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and dimensionless quantities are denoted by asterisks. If one
body is an insulator and wear is absent, A, in (19) becomes the
half-width of the area of contact in the steady state [5]. This is
the motivation for using A4, as a reference length dimension.
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Substituting these into equations (7, 8, 13) and dropping
asterisks, yields
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Parameter A, is related to Dundur’s constant [18]
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and describes the coupling between tangential and normal
tractions. We note that there is no coupling for two similar or
incompressible materials or if one body is incompressible and
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the other is relatively rigid (e.g., rubber on steel). The rigid
body displacement ¢ is not a parameter, but has to be found as
part of the solution.

In general, the solution depends on the seven dimensionless
parameters 4, —A,, but in many important cases the number
of parameters is substantially reduced. For example, if one
body is a rigid nonconductor and the coupling between normal
and tangential tractions can be neglected, in the absence of
wear the problem depends on one parameter [10]. For two
similar materials, 4, = A4, = A; =1, A5 = 0 and the solu-
tion depends on three parameters.

Numerical Implementation. The problem is discretized in
space by dividing the contact area into many strips and
representing the pressure, heat flux and temperature by
polygons. These polygons are made by combining triangular
shape functions which are used as numerical Green’s func-
tions. These in turn are derived by integration of (1) and (3)
for linearly distributed heat flow. Results for the
displacements can be found in [10], and for temperature they
can be derived from those given in [15] for a continuous point
source of unit strength; i.e.,
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where —Ei( - X) = L} du is the exponential integral,

For a linearly distributed source g{x) = g,x results are ob-
tained by integration, giving
2q,t
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The problem is discretized in time by replacing the actual
distribution of heat flux and pressure by a piece-wise constant
representation. The contact area and pressure are updated at
the end of each time step on the basis of accumulated ther-
moelastic displacements. The unknowns are the heat fluxes q,
and q,, the temperatures at each node in the contact area, and
the rigid body displacement ¢. Algebraic equations corre-
sponding to (23, 24) are written for all nodes. One more equa-
tion comes from (25). The contact area is unknown in advance
and is found by iteration. If it is not guessed correctly,
negative pressure develops at some points and overlapping at
some others. We then release points of the first type and in-
troduce contact for points of the second type, and repeat the
procedure. The convergence of this algorithm is demonstrated
in [17]. It proves to be numerically efficient. Experience shows
that no more than ten iterations were required even for
multiply-connected areas of contact.

We basically follow a numerical procedure similar to that
described in [10]. However, generalization of the problem
leads to a substantial increase in the volume of computations.
When both bodies are conductors, equations (23, 24) are
coupled and symmetry about the mid-point is not preserved.
In addition, wear introduces new features into the process
which makes it desirable to compute many more time steps.
Because of this, we have to pay serious attention to numerical
efficiency of implementation. For example, the computations
became numerically unstable if a triangular heat input is far
away in space or time from the node of interest [17]. To over-
come this problem and reduce computational time, the cor-
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Fig. 2 Development of pressure distribution for A4 = 25 no coupling
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Fig.3 Development of pressure distribution for A4 = 25, Coupling bet-
ween normal and tangential tractions is included.

responding Green’s functions are replaced by those for a line
or point source. We also sacrificed a variable time step. This
has the advantage that when we g0 to the next time step, we
have to compute Green’s functions only for the most remote
time step, all the others being already available.

Results

The algorithm described in the previous section was im-
plemented and used to explore the behavior of the system with
various values of the parameters.

We first consider cases where body 2 is an insulator, since
the behavior of the system is then simpler, depending only on
the parameters 44, A5, A, and comparison can be made with
the previous results. In the previous analysis [10, 17], coupling
between normal and tangential tractions was neglected (4, =
0) and there was no wear (A; = 0). The results therefore
depended only on the single parameter Ay. For A, less than
some critical value (=28), the contact area was found to
shrink smoothly until the steady-state size (A4,) was reached.
For larger values of A4, wavy perturbations in the contact
pressure distribution grew sufficiently to cause bifurcation of
the contact area, which eventually gave way to a single-
connected contact area in the steady-state. Development of the
pressure distribution is reproduced here in Fig. 2, for
reference.

Figure 3 shows the effect of introducing coupling between
the normal and tangential tractions (As = .5), still in the
absence of wear. We see that the pressure distribution still ex-
hibits the same qualitative behavior, tending continuously to a
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steady-state with a reduced contact area, but the coupling
destroys the symmetry of the system and causes the pressure
peak to be displaced to the upstream side of the origin.

The variation of maximum temperature with time is shown
in Fig. 4, curve 1. This does not tend to a steady-state, since
the half-plane heated in a finite region of its boundary does
not have a bounded steady-state solution, However, if we
relax the condition that body 2 is an insulator, we find that the
temperature also approaches a steady-state (curve 2 in Fig 4).
This can be explained by noting that the moving body is con-
tinually presenting new cool material to the contact region. As
the temperature in the contact region increases, the proportion
of frictional heat conducted into body 2 increases. Eventually
a condition will be reached where all the heat is conducted
away through the moving body, 2, and the distribution of flux
into body 1 becomes self-equilibrating. This is illustrated in
Fig. 5, for the case of similar materials. In this case, the fric-
tional heat is initially equally divided between the bodies, but
the proportion flowing into body 1 is seen to fall steady with
time,

When wear occurs, there can be no steady-state, since the
thermal bulge must eventually be worn off, transferring the
load to a different region. In fact there is ample experimental
evidence that this leads to a more or less random process, in
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Fig. 7 Development of pressure distribution with time for A, = 25in
the presence of wear, later stage

which the contact region moves periodically from place to
place over the nominal contact area, giving transient high
temperature excursions [2].

This effect is illustrated by two examples in Figs. 6-9, for
which again we take body 2 to be an insulator in the interests
of simplicity. Figures 6 and 7 show the development of the
contact pressure distribution for 4, = 25, 4; = .5 and A, =
2. These values are appropriate for ceramic/metal interfaces
at high sliding speeds [19, 20]. In the early stages, the pressure
profile follows the same pattern as in the zero wear case—Fig.
3. The contact area shrinks and the maximum pressure is
displaced upstream as a consequence of normal/tangential
coupling. However, bifurcation of the contact area then oc-
curs, after which an additional contact area appears at the ex-
treme upstream end of the original contact area. This new
region rapidly takes over the entire load, leading to a very high
contact pressure, after which it starts to move back across the
previously worn area.

Changing the dimensionless initial contact width, 4,, to 20
produces the results of Figs. 8 and 9. Again, the early behavior
is similar to that of Fig. 3, but this time a more chaotic pattern
is developed, with alternation between periods of two contact
areas and a single area. Maximum pressures tend to increase
with the passage of time, but are lower than those achieved in
the previous example.

We emphasize that the initial contact width for both the
above examples would have given no bifurcation in the
absence of wear [10, 17].

Conclusions

The introduction of wear into the analysis of the transient
thermoelastic contact of two sliding half-planes, leads to some
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unexpected results, It is natural to see wear as removing
material from the highest parts of the surface and hence
smoothing out the pressure distribution—indeed, Dow and
Burton [12] have shown that wear has a stabilizing effect on
thermoelastic contact in that it increases the critical speed re-
quired for thermoelastic instability to occur.

However, the results of this analysis show that moderate
amounts of wear have a destabilizing effect on the develop-
ment of a steady thermoelastic pressure distribution, in that
bifurcation in the contact region occurs under conditions
which would not lead to bifurcation in the absence of wear.
Moreover, wear can lead to local values of pressure which ex-
ceed those in the steady state without wear (see Fig. 7). It is
suggested that this might be explained by the tendency of wear
in combination with thermal expansion to develop a rough
surface profile [2].

The pressure and temperature distributions tend eventually
to approach a quasi-random state, which is relatively indepen-
dent of the initial condition. Ideally, we should like to be able
to characterize the statistical properties of this stage as func-
tions of the physical parameters of the system. Investigations
along these lines are continuing and will be reported later.
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