THE ROLLING CONTACT OF MISALIGNED
ELASTIC CYLINDERS

J. R. Barberf

A solution is given for the tangential tractions developed between two rolling cylinders of identical elastic

materials, whose axes are slightly misaligned. A critical misalignment angle is found, above which slip occurs

throughout the contact area. For smaller angles, the contact area contains regions of adheston and microslip.
Results are given for the extent of these regions and for the axial force generated due to the misalignment.

1 INTRODUCTION

In a recent paper, Engel and Adams (1)} describe a
series of experiments and an approximate analysis on
the wear due to misalignment of a pair of cylindrical
rollers transmitting a normal force but no torque. From
an engineering point of view, their most striking con-
clusion is the relatively small misalignment angie
(<0-2°) at which significant microslip and hence wear
can occur, since perfect alignment cannot be guaranteed
in any practical system.

In this paper, a more exact analysis of the contact
problem is given, taking account of the extent and
influence of microslip and of the two-dimensional
nature of the traction distribution.

2 STATEMENT OF THE PROBLEM

The problem to be considered is the rolling contact
of two cylinders of identical elastic materials, but different
radii, Ry and Rp, whose axes are misaligned by a small
angle, ¢.

The misalignment has two principal effects: the contact
area will become an ellipse rather than a strip, and the
rollers will tend to run off along the axis, if unconstrained.
It follows that an axial force will be generated if the
rollers are in fixed bearings and this force must be
distributed over the contact area as a tangential traction.
In general, we might expect the contact area to contain
regions of adhesion and regions of microslip.

It will be assumed throughout that there is no net
force in the rolling direction—i.e., that no torque is
transmitted between the rollers.

3 BOUNDARY CONDITIONS

With these assumptions, the normal and tangential con-
tact problems are uncoupled and the former becomes
merely an example of the classical Hertzian contact
theory.

If there were no tangential elastic displacement of
the surfaces, there would be a steady axial slip velocity
of ¢V, where ¥ is the corresponding rolling velocity
at the contact area. This potential slip must be taken
up by elastic deformation in any region of adhesion
and hence, as a point on the rollers moves through
such a region, it will become progressively more displaced
elastically.
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Relative to a frame of reference which moves with
the contact area, a point on the rollers has a velocity
— V. It follows that the relative elastic displacement in gn
adhesive region is

ur=—4y+f(x) )

where y, x, are co-ordinates in the rolling direction and
the slip direction respectively, and f(x) is an arbitrary
function of x. The origin of co-ordinates can be taken at
the centre of the contact ellipse without loss of generality.

In a region of microslip there is no constraint on the
relative tangential displacement, but the tangential
traction must be pp(x, ¥) and be in the same direction -
as the relative slip, where p is the coefficient of frxiction
and p(x, y) is the local Hertzian contact pressure.

4 METHOD OF SOLUTION

The problem is very complex for general values of the
misalignment angle, since (i) the relative slip (and
hence the traction) in microslip regions can deviate
from the axial due to elastic deformations, and (ii)
the boundary between adhesive and microslip regions is
difficult to determine.

However, if the misalignment angle ¢ is small, the
contact ellipse is slender and an approximate solution
can be obtained using Kalker’s line integral equuations
(2). The method is based on an asymptotic expansion
of the three-dimensional solution in terms of the slender-
ness ratic of the contact area. To a first approximation,
the relative slip and hence the tangential traction are
axial and conditions approximate to the two-dimensional
solution based on local values. Since conditions vary
only slowly along the axis, the first perturbation on
this solution can be expressed in terms of force resultants
across the contact width and only affects ‘rigid body’
type displacements at a given axial position.

It will be shown below that ship occurs throughout the
contact area except at small values of ¢, for realistic
values of the controlling parameters.

5 THE NORMAL CONTACT PROBLEM

The contact pressure, p (x, y), is easily obtained from
the Hertzian contact theory (see, for example, (3))
and only the results are given here. The contact ellipse
has semi-axes @ and & in the x and y directions re-
spectively, where

— 13
a=m(3ﬂ_26)_RlR2) 2)
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than the semi-axis b of the contact ellipse. It is therefore
convenient to define a slip ratio

d_=Gabé

5~ 3P e
_mmn@ [(1 — v)2G(R1+ Ro)+/(R1R2)] 1/3 (16)
- 2u 12P
from equations (2), (3) and (4).
If we also define a non-dimensional load
2P
* =
P = Tt + R vARiRS) (17)

and and let Po* be the value of P* at which complete
microslip occurs (dfb=1), we have

p3Po* = (mmnb)3/48 (18)

from equations (16) and (17).

The parameters m and » are functions of & only (see
section 5 and Fig. | above) and, hence, equation (I8)
defines a relationship between u®Pg* and # which is
shown in Fig. 3. An adhesive contact region is obtained
if the actual normal load exceeds this critical value, in
which case

dfb=(Po*/P*)1/3 {19)

It is also of interest to find the total axial force generated
by the misalignment, which is

F=[T"[*X(p.9)dq dp (20)

On substituting for X(p, g) and ¢(p) from equations
(10) and (11), this integral is easily evaluated to obtain
the relation

1 42 danuz 34 d
F=upP [l—(1+5b—2)(1—-b—2) +§Barccosé] @n

which is shown in Fig. 4.

It should perhaps be noted that this force acts along
a Jine bisecting the small angle ¢ between the axis
of the two cylinders and, hence, has a small component
1/2(F¢) opposing the rolling motion of each cylinder.
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Thus, a torque must be applied to each cylinder to
perpetuate the motion. The power input F¢V provided
by these torque is dissipated in friction in the microslip
region.

8 CYLINDER ROLLING ON A PLANE

If one of the two solids has a plane surface (1/ Ra=0),
the contact area remains a strip for all values of ¢
and the above solution is not suitable, Howewver, the
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b=n (BP(I - v)RlRa) 13

3G (3)

P is the total normal force and v and G are Poisson’s
ratio and the moduius of rigidity, respectively, for the
material.

The non-dimensional ratios, m and n», are functions
of an auxiliary angle

=i+ kD S
and can be found from the simultanecus equations

8 K-E

T w3 sin? 3= TG

3 it sin? 5 = ©)
0 _ (nfm)}{E —(n®/m)K}

3 cos? -
2n cos? 5= 0 —2fm?) ©®

where K and E are complete elliptic integrals of comple-
mentary modulus nfm. The ratio between these equations
gives an expression for tan? (6/2) in terms of n/m and
permits an inverse solution. Tables of values are given
by Timoshenko and Goodier (3) and Kornhauser.(4).
Values of m and » at small values of & required for the
subsequent analysis are plotted in Fig. 1. '
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The derivation of equation (4) depends upon the
assumption that ¢ is small. For rollers of equal radius,
R, we have #=¢—-i.e., the auxiliary angle is the same
as the angle of misalignment.

The contact pressure distribution is

2 2 ‘
r =g [(1-55) ©

6 THE TANGENTIAL CONTACT PROBLEM

If the tangential traction in the x direction at the point
p, g is X (p, q) the corresponding relative tangentiai
surface displacement at the point x, y will be uzx, y)
where

7Guslx, y)= —ZJHW) X(x,q)In|g—y| dg
+ Fa{x){in 4(az—x2)-2v}

+ [T {Fuk )~ F’(")}| O In @/ (®)
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from equation 36(b) of reference (2) where

Fa()= 727 X(x.9) dg ©)
and
c()=bv/{l - (x¥a2)} (10)

defines the edge of the contact ellipse. Equatiora (8)
differs from Kalker’s by a factor of 2 since both rollers
will deform giving twice the relative displacement.

We also note from Kalker’s equations 36(a, b) (2)
that the coupling between a traction in the x direction
and a displacement in the y direction, and vice versa,
is small, of the order {vY In (a)/a}, and, hence, to a first
approximation the relative slip and the traction will be
purely axial.

In the adhesive region, the displacement coratains
the term —d¢p (see equation (1)), and this can only
come from the first integral on the right-hand side
of equation (8), as the other terms are indepemdent
of y. The problem is, thus, mathematically analoOgous
to the two-dimensional case of rolling with traction,
treated by Carter (5) and Poritsky (6) and extended
to arbitrary tangential loading by Heinrich and Desoyer
(7). It can be solved by superposing a traction over
the entire contact area and a traction of similar form
but opposite sign to form an adhesive region adj acent
to the leading edge. i.e., for (x%/a2)-+(¥2/b?) <1,

2 2
Xein=32 [(1-5-F)s G-ar>-d

(11a)
=3_F'£ 1_{3_21_“4 1— (- d)2
2mab a® b?f (c—d)?
(y—d)t<(c—d)? (11b)
where A4 and d are functions of x to be determined.

Substituting equations (11) into equation (8) and integrat-
ing, we obtain

3ulP d
wGuslo, =57 |5+ =T | 44
(y—d)? <(c—d)? 12)

On comparing equations (1) and (12), it follows that
the boundary conditions in the adhesive region
(y—d)2 <(c —d)? are satisfied 1f

A=(c—d)/b (13)
d =(nG¢ab?)/(3uP) (14)

The boundary conditions in the microslip region are
satisfied by equation (11a) and hence equations (11),
{13) and (14) define the solution to the problem.

The distance, d, between the centre of the ad hesive
region and the x axis is independent of x and, hence, the
adhesion-microslip boundary is a reflection oOf the
leading edge of the contact area as shown in Fig. 2(a).

Figure 2(b) shows the traction distribution defined by
equations (11) at a typical cross-section.

7 RESULTS

Microslip must occur throughout the confact area
if equation (14) defines a value of 4 which is greater
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problem is easily solved in the same manner and only
the principal results are given here for brevity.

The half-width of the contact strip is

_ {4P(1 —w)Ry\1/?

- ()
where P is the normal force per unit length.

The slip ratio—now simply the ratio between the
widths of microslip and contact strips—becomes

d_ PD* 1/2
o= (77) )
where
P
Pr==ver: 24
and
e
p2por =" (25)

(¢f equations (19), (17) and (18)).
The tangential traction in the axial direction in
yi<b?is

x0=2 [(1-h); 0-dp>@-ar e

221 J0-%)-(-5) JI- %=

(y—d)2<(b-d)? (26b)
corresponding to an axial force
d d?
F=uP (2'5—172) 27)

per unit length.
The critical misalignment angle is

P
¢0-2#J(;"G-(ff_m) (28)
at and above which the axial force is
F=uP (29)

9 DISCUSSION

The results of the previous two sections are presented
in non-dimensional terms in the interests of generality,
but it is desirable to give some indication of the angie
of misalignment above which slip occurs throughout
the contact area for practical systems.

From equations (19) and (23) it follows that greater
angles can be tolerated at larger normal loads, but
these require higher contact stresses. The critical mis-
alignment angle for a given load can be expressed in the
form

_2pp(0)
po=""r= (30)

Journal Mechanical Engineering Science @ [MechE 1980

from equations (7, 15), where p(0} is the maximaum
contact pressure. The ratio {p(0)}{G can be takern as
a measure of the severity of the normal loading. With
{p(0)}/G=0-005 and p=0-3, the critical angle is 0-003
radians (0-17°). Thus, extensive microslip can occur
at relatively small angles of misalignment.

For rollers of similar radii, the ratio of major to
minor axes of the contact ellipse is 1100 at this angle
and, hence, contact may extend from end to end of
a pair of rollers of finite length. Kalker’s line integral
method could in principle be extended to this case,
but the two-dimensional solution (section 8 above)
will probably give a reasonable, approximate result.

In this case, the radius R; in equations (22), (24)
and (28) should be replaced by

_ Rk
" (Ri+R2) G

as in normal contact problems.

10 CONCLUSIONS

The above solution defines the distribution of tangential
traction between two rolling cylinders of identical
elastic materials whose axes are slightly misaligned.
Slip occurs throughout the contact area for misalignrnent
angles above a certain critical value which is related
to the ratio between maximum contact pressure and
elastic modulus, and is relatively small for most practical
systems.

For smaller but non-zero angles of misalignment,
the contact area always contains a region of microslip,
but there is also a region of adhesion adjacent to the
leading edge.

An axial force is generated due to misalignment and
a small torque must be applied to each cylinder to
perpetuate the motion.
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