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Stability of thermoelastic contact
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Department of Mechanical Engineering and Applied Mechanics, University of Michigan, Michigan, USA

SYNOPSIS The stability of nominally uniform contact between two elastic half-planes is investi-
gated, assuming a pressure/gap dependent interface resistance.

Long wavelength sinusoidal perturbations in pressure are generally unstable, if the heat flows
into the more distortive body, the critical wavelength depending on the contact resistance func-
tion. Perturbations grow at different rates and there is an optimum range of wavelengths which will
eventually dominate the transient process.

A remarkable conclusion is that in some cases the steady-state solution with uniform pressure
is unique, but unstable, indicating that oscillatory behaviour must occur.

investigated for various one-dimensional sys-
tems, using perturbation methods [5,6,712 In all
these cases, it was found that when the steady-
state solution is unique it is also stable,
whereas when multiple solutions are obtained,

1 INTRODUCTION

When elastic contact occurs between two conform-
ing or nearly conforming bodies, relatively

small changes in surface profile can have a sub-
stantial effect on the contact pressure distri-
bution and on the magnitude of the contact area.
We should not be surprised, therefore, to find
that thermoelastic deformations - though small
in most engineering applications - are often
sufficient to have a major effect on the mechan-
ics of contact.

Solutions of classical thermoelastic con-
tact problems - such as the Hertzian contact of
two spherical bodies at different temperatures
[1,2] - confirm this conclusion and also expose
the striking result that neither existence nor
uniqueness theorems can be proved for such prob-
lems with conventional idealized boundary condi-
tions.

Barber [2] showed that difficulties over
existence can be overcome in a one-dimensional
system by postulating a continuous pressure
dependent thermal contact resistance at the
interface and Duvaut [3] has proved an existence
theorem for a boundary condition of this form.
Duvaut also proved that the thermoelastic con-
tact problem is unique if the contact resistance
varies sufficiently gradually with pressure, but
experience with specific problems suggests that
this is too severe a restriction and that mul-
tiple solutions may occur in practical situa-
tions. For example, Srinivasan and France [4]
report evidence of erratic performance of duplex
heat exchanger tubes which they attribute to the
existence of multiple steady-state solufions to
the contact problem at the interface between the
two component tubes, this conclusion being sup-
ported by a computer simulation of the contact
problem utilizing empirically obtained data for
the thermal contact resistance.

The possibility of multiple solutions
raises questions of stability, which have been
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they are alternately stable and unstable.

Nothing is yet known about the stability of
two and three dimensional thermoelastic contact,
though Comninou and Dundurs [8] have shown that
two dissimilar half-planes may exist in a stead-
y-state Involving periodic contact and separa-
tion zones in addition to the trivial state with
uniform contact pressure. Also, Richmond and
Huang [9] have suggested that the growth of a
sinusoidal perturbation in an otherwise uniform
contact pressure between a solidifying casting
and the mould may be responsible for experimen-
tally observed waviness in nominally plane cast
surfaces. It seems probable that the occurrence
of solidification is not a prerequisite for such
behaviour and that a sinusoidal perturbation
between two contacting half-planes may be unst-
able because of the interaction of thermoelastic
distortion and a pressure dependent thermal con-
tact resistance. This is the question to be
investigated in the present paper.

2 FORMULATION

We consider the problem of two half-planes, y>0
and y<0, making contact at the common plane

¥ = 0 (see Figure 1). The half-planes are
pressed together by a uniform pressure pg and
transmit a uniform heat flux, qy = qp in the
positive y direction. The half-planes are of
different materials, the appropriate material
properties being distinguished by the suffix 1,
for the half-plane y>0, and 2 for the half-plane
y<0.

Some readers may feel that the infinite
extent of the contact plane lends artificiality
to the problem and may introduce spurious
effects. An alternative model is that of two

981



thin walled cylinders of radius, r, with plane
ends, pressed together by a force, P, and trans-
mitting a heat flux, Q (see Figure 2.). Provided
shell bending effects can be neglected, this
System can be 'unwrapped' to give a plane stress
problem for two contacting half-planes, the only
restriction being that the solution must be
periodic in x with period 27r. The effect of
shell bending in an isothermal problem for this
geometry is discussed by Azarkhin and Barber
[10]. We shall return to this problem in the
discussion.

We postulate the existence of a thermal
contact resistance, R at the interface, which is
a function of contact pressure. No restrictions
are imposed on the nature of this function
except that it be continuous. However, typical
experimental results are given in [4] and are
shown in Figure 3. We note that the resistance
is very sensitive to contact pressure when the
pressure is low.

3 THE TEMPERATURE PERTURBATION

The system of Figure 1 (or Figure 2) clearly has
a trivial steady-state solution in which the
contact pressure is uniform and equal to pg. In
this case, the contact resistance is R(pg), the
temperature is everywhere linear in y and inde-
pendent of x and the heat flux is also indepen-
dent of x and equal to q0.

We investigate the conditions under which a
perturbation in this steady-state solution which
is sinusoidal in x can Brow exponentially in
time. The perturbation in temperature is there-
fore written in the form

T = f(y)ebtcos(mx) 1)

where the function f(y) has to be chosen to sat-
isfy the transient heat conduction equation

Zmii it AT
DT ky 3E (2)
where ki (i = 1,2) is the thermal diffusivity of
the material.

Substituting (1) into (2) and solving for
f(y), we find that the perturbation in tempera-
ture in the two half-planes can be written

T = Ajexp(bt-ajy)cos(mx) (3)
where Aj are two arbitrary constants and

ai2 = m + b/kg (4)

The perturbation must decay away from the
contact plane and hence we must take the posi-
tive root of equation (4) for a1 and the nega-
tive root for as.
4 THERMOELASTIC STRESSES AND DISPLACEMENTS
A particular solution of the thermoelastic prob-
lem corresponding to the temperature field of
equation (3) can be obtained in terms of a ther-
moelastic potential, ¢ , where

2uy = Vo (5)
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and

2ua(1+v)T (6)

v2$ =
1-v

(see Westergaard [11], section 64). In these
equations, a is the coefficient of thermal
expansion, y is the modulus of rigidity and v is
Poisson's ratio of the material.

It can be verified by substitution that the
potential function

2u1a1(1+v1)k1A
(1-v1)b
bt

b4 1{e-a1y - Ele'mY}
m

* e”“cos(mx) (7)

satisfies equations (3,6), for the half-plane
y>0. The corresponding tractions and normal dis-
placement at the contact plane y = 0 are

a, e i s * = 0 (8)
Xy 3xay g,
. il 32¢1 2k 2u1a1(1+\)1)A1m
vy 9y2 (1-v{)(aq+m)
4 bt

cos(mx) ; y = 0 (9)

3¢
2].11Uy = W’l =0

Similarly, for the half-plane y<0, we can
use the potential

-

b s e Soeny;
2 (1-v2)b m
. ebtcos(mx) {11}

which also gives Oxy = Uy = 0 ony =0 and
2
z =d ] u2a2(1+v2)A2m
¥y 1-vp)(m-ap

y AN ¢ (12)

ebteos(mx) :

5 THE CONTACT PROBLEM

We require that the half-planes make friction-
less contact at the interface ¥ = 0 and hence
that

Uyl = uyp Yig=io (13)
Oxy1 = Oxy2 = O y = 0 (14)
Oyyl = Oyy2 ¥y oz (15)

We also require that the heat flux be con-
tinuous at the interface and hence

9yl = Qg2 Vi =80 (16)

The particular solution of the previous
section already satisfies conditions (13,14) and
it can be made to satisfy (16) by defining the
constants Ay in terms of a new constant, A, such
that

A4Kqjaq = AgKoas = A C17)
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where Ki are the thermal conductivities of the
materials.

However, the solution does not satisfy
(15). We must therefore superpose an isothermal
solution corresponding to each half-plane being
loaded by a sinusoidal normal traction.

It is readily verified (for example by
using a potential of the form Cexp(-my)cos(mx)

in the solution of Green and Zerna [12], section
5.7), that a normal traction

Oyy = Bycos(mx) (18)

on the surface y = 0 of the half-plane y>0 pro-
duces a normal surface displacement

_B-vy)

y = i cos(mx) (19)

u

We superpose this solution on the thermo-
elastic field of equations (7-10) and a similar
solution, with By replacing By, for the half-
plane y<0. To retain continuity of normal dis-
placements at the interface (condition (13)), we
require

B1(1~v1} v 32(1-u2)
H1 H2

= 0 (20)

and imposing condition (15) for the complete
solution, we obtain

211161Am¢-:pt ' _ 2u252Amebt
f1—v15a1ia1+m§ 1 Z1-vgiagim-a25
+ B> (21)

where the distortivity, § = a(1+v)/K.

Equations (20,21) can be solved for By in
terms of A and the results used to express the
perturbations in the temperature difference,
heat flux and contact pressure at the interface
y = 0, in terms of the single constant, A. The
expressions obtained are

1 1 bt
AT = To-Ty = A(—— - L )ePboos(my)
agks  agky
(22)
A - - bt
qQ = gy = Ae’‘cos(mx) (23)
$ §
B = UM( L FEER 2 )
P Yy aj(aq+m)  az(m-as)
« AmePtcos(mx) (24)
where
o (1-v4) % (1=v,) (25)
2M H1 H2

6 PERTURBATION OF THE THERMAL RESISTANCE
RELATION

To complete the solution, we linearize the equa-
tion defining heat conduction across the thermal
contact resistance, R, for small perturbations
about the steady-state.

The definition of the pressure dependent.
contact resistance, R, implies that
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ay = T /R(p) (26)

where T* is the temperature drop across the
interface. Hence for small perturbations about
the steady state, we have

RoAq + qgAR = AT (27)
Finally, noting that
R = "R'AD (28)

we substitute for AT, Aq, Ap from equations
(22-24) to obtain the characteristic equation

8

8
4MR'gnm( 1 + 2 )l
do aq(ag+m)  az(m-ay) o
it i Pl e (29)
K1a1  Kpap

Remembering that aj is defined in terms of
b through equation (4), this can be treated as
an equation for the exponential growth rate, b,

7 IMPLICATIONS FOR STABILITY

The parameter, m, defines the spatial frequency
of the sinusoidal perturbation in the horizontal
direction. A random initial perturbation may be
conceived as decomposed into a spectrum of such
frequencies and if the exponential growth rate
associated with any one of them has a positive
real part, the steady-state solution with uni-
form pressure will be unstable.

The system shown in Figure 2 is periodic
with wavelength 2nr and hence only admits the
frequencies

m = n/r (30)

where n is an integer. In particular, there is a
ninimum value, mq = 1/r.

In contrast, all positive values of m are
admissible for the contact of two half-planes
(Figure 1).

8 ONE BODY RIGID

We consider first the case where body 2 is a

rigid perfect conductor, in which case equation

(29) reduces to
HMKR'qOS

Grara + RgKm(a/m) + 1
+a z

where we have dropped the suffices on the mate-
rial properties of body 1 and on ai.

=00 (31)

This equation can be solved for a/m to give

2
a/m =

Wit 1 1 e
z(1 § RoKm) + [H(1 ﬁafﬁ)

X HMR'6q0]1/2 (32)
Rom

All the physical parameters and m must be
positive, but the contact resistance, R, falls
with increasing pressure, so that R'<0. Also,
the parameter a describes the exponential decay
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of the perturbation with ¥ and hence must have a
positive real part. We therefore conclude that
equation (32) has physically meaningful solu-
tions if and only if

f
_ 16MR qu S A
Rom RpKm
in which case, the solutions for a/m will be
real. In all the following discussion, it should

be noted that R'<Q and hence expressions con-
taining (-R'qq) will be positive for g5>0.

5 (33)

Furthermore, these solutions will only cor-
respond to exponentially growing perturbations
if a>m and hence

]
ey Ty (34)
Rom RDKm

Thus, instability only occurs when the heat
flow is directed into the deformable body (gp>0)
and exceeds a certain critical value. A similar
conclusion was reached for the one-dimensional
problem of an elastic rod making contact with a
hot rigid wall [5].

The condition (34) also shows that the
longer wavelength disturbances (smaller values
of m) become unstable first. For the configura-
tion of Figure 1, all wavelengths are admissible
and hence instability occurs if

-2MR'K8qq > 1 (35)

For the two-cylinder configuration of fig-
ure 2 (here cylinder 2 could be replaced by a
rigid plane), the lowest admissible value of m
is 1/r and hence

-2MR'Kéqy > 1 + EQE (36)
r

for instability.

If the heat flux, qp is regarded as given,
condition (34) can be interpreted as defining a
maximum value of m for instability, which is

S R L (37)
cr Ro RoK

All perturbations of longer wavelength will
then have positive exponential growth rates, but
the growth rate is a function of m and has a
maximum at some value, m* where O<m*<m,,.. Figure
4 shows the dependence of m#* on the heat flux
ag. A very similar behaviour is observed in the
sliding contact of elastic solids with frie-
tional heat generation [13] where the critical
wavelength is found to dominate the transient
process. However, in the present system, the
non-linearity of the contact resistance-pressure
relation would be expected to modify the behay-
iour of the transient process, once the pertur-
bation had grown to a significant magnitude.

9 TWO DEFORMABLE MATERIALS

In the preceding section, the only physi-
cally admissible solutions corresponded to real
eigenvalues for the exponential growth rate, b.
It follows that roots of equation (31) can only
enter the unstable domain through the origin and
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hence that the stability boundary is defined by
the condition, b = 0.

When both materials are deformable, the
behaviour is more complex. If we examine first
the condition, b = 0, we find that aq = -a2 = m
and equation (29) reduces to

2MR'(81-82)qp + Rom + %}~-+ELJ = 0 (38)
1 2

which has solutions only if
90(81-82) > 0 (39)

i.e. if the heat flow is directed into the more
distortive material. This conclusion accords
with our knowledge of the steady-state behaviour
of thermoelastic contact, where multiple solu-
tions are generally observed for this direction
of heat flow [5,6,8]. In particular, we note
that Comninou and Dundurs' solution with peri-
odic contact and Separation zones for the prob-
lem of Figure 1, provides a steady-state solu-
tion towards which an unstable sinusoidal per-
turbation can grow.

However, a closer examination of equation
(29) shows that (39) is not a necessary condi-
tion for real positive values of b to occur.
Suppose we arbitrarily choose two materials
which have equal distortivities, but different
diffusivities, such that k1>k2. The first term
in (38) is then zero for all values of gqg and
the other terms are always positive, so we con-
clude that there are no solutions of (29) with
infinitessimally small real values of b. How-
ever, if b is not infinitessimal, the difference
in diffusivities ensures that ai<-ap (see
equation (4)) and hence that the first term in
equation (29) is negative for positive qg. The
remaining terms in (29) are positive and hence
we conclude that there must be some value of qqp
which will satisfy the characteristie equation
for any given non-zero value of b.

In mathematical terms, this means that, as
g0 increases, the complex zeros of equation (29)
pass into the positive half-plane across the
imaginary axis instead of through the origin,
giving exponentially growing oscillatory solu-
tions. At higher values of qp, a zero is
obtained at a finite point on the positive real
axis, which then bifurcates, one branch
approaching zero and the other infinity asymp-
totically.

Since we have taken the distortivities to
be equal, the steady-state thermal distortion of
the two bodies will be complementary - i.e. the
local expansion of body 1 will exactly conform
with the local contraction of body 2 [14] - and
hence the heat flow will have no effect on the
contact problem. It follows that the classical
uniqueness theorem for isothermal elasticity
applies and that the steady-state solution with
uniform pressure and uniform heat flux across
the interface is unique.

However, we have Just demonstrated that,
with a sufficiently high value of qQ, there is a
perturbation with a real positive exponential
growth rate. Thus, we reach the remarkable con-
clusion that there are conditions for which the
system has a unique steady-state solution which
is unstable.
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We must presume that the growth of the per-
turbation will eventually be curtailed by the
non-linearity of the contact resistance relation
or by separation, but since there is no other
steady-state solution, the system must settle
into an oscillatory state. The possibility of
oscillatory behaviour of thermoelastic contact
has been discussed ever since difficulties with
existence were first discovered with the classi-
cal boundary conditions [15]. Indeed, Clausing
[16] reports slow periodic variations in exper-
imental measurements of thermal contact resis-
tance which may be attributable to this mecha-
nism. A linear perturbation analysis as devel-
oped here cannot be used to draw conclusions
about the long term behaviour of the system, but
a numerical treatment of the corresponding tran-
sient contact problem is in progress and will be
reported later.
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Fig 1

The two dissimilar half-planes, y>0, y<0, pressed
together by a uniform pressure, P and transmitting
auniformheatﬂux,q0
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Fig3  Typical experimental results for the variation of
Q thermel contact resistance with pressure

Fig2  Contact of two thin-walled cylinders on an end face
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Fig4 Effect of heat flux, Qo, on the frequency of the most rapidly
growing perturbation, m*, and the maximum frequency for
instability, Me,
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