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Abstract. This paper explores the effect of initial conditions on the behaviour of coupled
frictional elastic systems subject to periodic loading. Previously, it has been conjectured that the
long term response will be independent of initial conditions if all nodes slip at least once during
each loading cycle. Here, this conjecture is disproved in the context of a simple two-node system.
Counter-examples are presented of ‘unstable’ steady-state orbits that repel orbits starting from initial
conditions that are sufficiently close to the steady state. The conditions guaranteeing stability of
such steady states are shown to be more restrictive than those required for the rate problem to be
uniquely solvable for arbitrary derivative of the external loading.

In cases of instability, the transient orbit is eventually limited either by slip occurring at both
nodes simultaneously, or by one node separating. In both cases a stable limit cycle is obtained.
Depending on the slopes of the constraint lines, the limit cycle can involve two periods of the loading
cycle, in which case it appears to be unique, or it may repeat every loading cycle, in which case
distinct limit cycles are reached depending on the sign of the initial deviation from the steady state.
In the case of instability an example is given of a loading for which a quasi-static evolution problem
with multiple solutions exists, whereas all rate problems are uniquely solvable.
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1. Introduction. Many engineering systems comprise a set of elastic compo-
nents assembled using frictional interfaces such as bolted joints. These interfaces are
usually intended to prevent relative motion, but since the contacting bodies are de-
formable, it is often difficult to prevent the occurrence of microslip — i.e. frictional
slip that occurs in some localized region(s), whilst the rest of the interface remains
stuck (Johnson, 1985, [7]). Most systems of this kind will be subject to some level
of vibration, causing the interfaces to experience periodic loading superposed on the
constant load associated with the joint clamping force. In this case, microslip leads
to the dissipation of energy in the form of heat (Wentzel, 2006[11]) and can cause the
development and propagation of fretting fatigue cracks (Nowell et al., 2006, [10]).

Previous studies of elementary discrete elastic systems with frictional interfaces
have shown that the steady state (and in particular the steady-state energy dissi-
pation) can depend on the initial condition when there is elastic coupling between
the normal and tangential contact problems (Klarbring et al., [9], 2007, Ahn et al.,
2008, [2]). However, in a related study of the frictional dissipation in an elastic body
containing multiple microcracks, Jang and Barber (2011), [6], found that this history
dependence occurred only for relatively moderate values of the periodic load ampli-
tude. For larger amplitudes, the system appeared to converge on a unique steady
state.

A possible explanation for this behaviour was advanced by Barber (2011), [5], who
conjectured that the steady state would be unique if the amplitude of the periodic load
was sufficient to ensure that all nodes in the discrete system slip at least once during
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†Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109-2125,

U.S.A.
‡Samsung SDI Central Research Center, Gongse-dong, Giheung-gu, Yongin-si, Gyeonggi-do, Ko-

rea

1



2 L.-E. Andersson, J. Barber and Y.-J. Ahn

each period. A heuristic argument for this conjecture is that dependence on initial
conditions depends on the system posessing ‘memory’, and this memory essentially
resides at any given time in the tangential displacements of the nodes that are not
slipping, since these nodes could be located anywhere in a finite space bounded by
the appropriate friction cone. Now if all nodes slip at least once during each cycle
(but not necessarily all at the same time), the memory of the initial conditions must
be passed from node to node during the cycle and there is every reason to expect
that this will lead to a degradation of memory over time. In the present paper, we
shall examine the implications and limitations of this conjecture in the context of the
simple two-node two-dimensional system used by Ahn et al., (2008), [2].

2. Ahn’s slip-displacement diagram. Ahn et al., (2008), [2] showed that the
evolution of a discrete two-dimensional frictional elastic system could most conve-
niently be characterized by tracking the motion of the system in v-space, where vi is
the tangential (slip) displacement of the i th contact node. Since the support structure
is linear elastic, the vectors of normal and tangential nodal contact forces, p, q respec-
tively, must be related to the vectors of normal and tangential nodal displacements
w, v by equations of the form{

q
p

}
=

{
qw

pw

}
+

[
A BT

B C

]{
v
w

}
,(2.1)

where qw,pw are the contact forces that would be produced if the nodes were all
welded in contact with vi = wi = 0. Notice that

K =

[
A BT

B C

]
(2.2)

is the reduced stiffness matrix for the system and hence must be symmetric and
positive definite. It follows that A,C must also be symmetric and positive definite,
but no such restriction applies to the matrix B which defines the coupling between
normal and tangential effects.

Equations (2.1) define the linear relations that must hold between the contact
forces qi, pi and the corresponding nodal displacements vj , wj by virtue of the linear-
elastic nature of the supporting structure. However, these forces must also satisfy the
inequalities associated with the Coulomb friction law. In particular, if all the nodes
are in contact (w = 0), the frictional inequality governing (say) negative slip (v̇i < 0)
at node i is qi ≤ µipi, where µi is the corresponding coefficient of friction and the
dot denotes the derivative with respect to time t. Here, we adopt the convention that
compressive normal tractions are positive. Using equation (2.1), we can express this
condition in terms of v as

N∑
j=1

(aij − µibij) vj ≤ µip
w
i − qwi ,(2.3)

which restricts v to one side of a certain hyperplane in v-space. As the external loads
vary periodically in time, the right-hand side of this inequality changes, indicating that
the corresponding hyperplane moves in the space whilst retaining the same normal
(defined by the stiffness matrix and the friction coefficients). Each node contributes
two such hyperplanes (one for positive and one for negative slip) and their motion
during the loading cycle ‘pushes’ the point v in accordance with the frictional flow
rule at the corresponding node.
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(a) (b)

Fig. 1. (a) A two-node frictional elastic system, (b) sign conventions for the nodal contact
forces qi, pi

This procedure is best explained in the context of a simple system with just
two contact nodes, which can be visualized as two particles connected to ground
and to each other by generalized linear springs as illustrated in Figure 1(a), though
equally it could represent a finite element discretization of a continuum problem in
which the contact region contains only two nodes. Sign conventions for the nodal
contact forces qi, pi are shown in Figure 1(b) and similar directions are taken for
the nodal displacements vi, wi, so that (for example) a positive value of wi indicates
that a positive gap opens up between the node and the obstacle. For this system, the
inequalities (2.3) define just the four frictional constraints

(a11 − µ1b11)v1 + (a12 − µ1b12)v2 ≤ µ1p
w
1 − qw1 O1

−
(a11 + µ1b11)v1 + (a12 + µ1b12)v2 ≥ −µ1p

w
1 − qw1 O1

+

(a21 − µ2b21)v1 + (a22 − µ2b22)v2 ≤ µ2p
w
2 − qw2 O2

−
(a21 + µ2b21)v1 + (a22 + µ2b22)v2 ≥ −µ2p

w
2 − qw2 O2

+ ,

(2.4)

which control the motions O1
−: v̇1 < 0 ; O1

+: v̇1 > 0 ; O2
−: v̇2 < 0 ; O2

+: v̇2 > 0 .
For more detail on the way in which these constraints govern the motion of the point
P (v1, v2) under periodic loading, the reader is referred to Ahn et al (2008).

3. A restricted class of loading scenarios. Initially we restrict attention to
the class C1 defined as follows:-

Definition 3.1. The class of loading scenarios C1 is such that there exists a
steady-state periodic orbit in which

(i) Each of the constraints in (2.4) is active once and only once per cycle, and
(ii) There exists no point in the orbit at which more than one constraint is active.
In physical terms, condition (ii) means that the two nodes never slip at the same

time, and neither goes into a state of separation, since incipient separation corresponds
to the case where the two constraints for the separating node are both active.

This situation can be realized by maintaining the external normal tractions pw1 , p
w
2

constant and varying the tangential tractions in the form

qw1 = q̄1 + q̂1 cos(ωt) ; qw2 = q̄2 + q̂2 sin(ωt) .

In other words, the tangential normal tractions oscillate periodically out of phase with
each other. If the amplitudes q̂i are suitably chosen, it is easily contrived that slip at
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node i occurs only when qwi (t) is near its maximum or minimum [i.e. near ωt = 0, π
for node 1 and ωt = π/2, 3π/2 for node 2] and hence that there are no occasions when
both nodes slip simultaneously.

A simpler scenario in class C1 that is useful for illustrative purposes is to select
time-varying functions pwi , q

w
i such that the right-hand sides of conditions (2.4) remain

constant and located at a ‘rest’ position that allows a range of values v, except that
in each loading cycle, the constraints advance and recede one at a time.

A typical scenario of this latter form is shown in Figure 2, where the four con-
straints advance and recede in the sequence O2

−, O1
+, O2

+, O1
−, . . .. In this figure, the

lines O1E
+ , O1E

− , O2E
+ , O2E

− represent the extreme positions of the four constraints (i.e.
the positions that exclude the maximum region of the space).

Starting from the initial condition A, the external loading causes O2
− to move

downwards. When this line reaches the point A, negative slip (v̇2 < 0) commences at
node 2 and continues until O2

− reaches its extreme position O2E
− . The constraint then

recedes and both nodes remain stuck until the loading causes O1
+ to advance. This

time, positive slip (v̇1 > 0) commences at node 1 when O1
+ reaches the instantaneous

point (v1, v2) and continues until this constraint reaches its extreme value O1E
+ . With

this sequence of loading, it is clear that the transient trajectory will comprise an
alternating set of horizontal and vertical motions in Figure 2, with each segment
terminating at a point on the extreme position of the relevant active constraint.

In Figure 2, we illustrate this transient evolution process from two initial con-
ditions, A and B, and demonstrate that each converges asymptotically on a unique
periodic rectangular orbit defined by the black line.

The transient trajectory and the periodic rectangular orbit depend upon the
slopes of the constraint lines, which we define through the angles αi, βi in Figure 3.

The sign convention is chosen such that αj is measured clockwise from the direc-
tion of slip governed by the constraint to the constraint line, whilst βj is measured
anticlockwise from the same direction of slip to the other constraint line at the given
corner. Notice that with this convention, all the angles βj are positive in Figure 3,
except at the top left corner, where β2 < 0.

We also note from this figure that

αi =
π

2
− βi−1 implying cosαi = sinβi−1 (mod 4) .(3.1)

The angles αi, βi cannot be chosen arbitrarily, since they must be defined in terms
of the stiffness matrices A,B of Section 2. If we denote the i-th row vectors of the
matrices A and B by ai and bi respectively then the normals of the obstacles Oi

± are

ni
± = ai ± µib

i = (ai1 ± µibi1, ai2 ± µibi2), i = 1, 2,

see also (2.4) and Figure 3.

By comparison with the constraint conditions (2.4), it can be shown that the
angles βi take the values

β1 = arctan

(
a12 + µ1b12
a11 + µ1b11

)
; β2 = − arctan

(
a21 − µ2b21
a22 − µ2b22

)
(3.2)

β3 = arctan

(
a12 − µ1b12
a11 − µ1b11

)
; β4 = − arctan

(
a21 + µ2b21
a22 + µ2b22

)
(3.3)
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Fig. 2. Convergence of a two-node system on a unique steady state. The steady state periodic
orbit (black) attracts the red and blue orbits.

The matrix A must be symmetric and positive definite, but we must also im-
pose the following restriction on the coefficients of friction µi to ensure that the rate
problem is well-posed [8].

Condition 3.1. The necessary and sufficient condition for the rate problem to
have a unique solution for all time-derivative of loads is that all matrices with elements

aij ± µibij

i.e. all matrices

A + MEB

with E = diag{ε1, ε2} and M = diag{µ1, µ2} and εi = ±1, i = 1, 2, should be P -
matrices, i.e. that they should have all principal subdeterminants positive. In other
words

a11 + ε1µ1b11 > 0, a22 + ε2µ2b22 > 0(3.4)

(a11 + ε1µ1b11)(a22 + ε2µ2b22)− (a12 + ε1µ1b12)(a21 + ε2µ2b21) > 0.(3.5)
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Fig. 3. Definition of the angles αi, βi.

It is straightforward to demonstrate that these conditions are equivalent to

−π
2
< βi <

π

2
, 0 < αi < π(3.6)

0 < αi + βi < π ,(3.7)

where i = 1, 2, 3, 4. These inequalities define the shaded hexagonal region ABCDEF
in Figure 4.

4. Convergence criterion. Suppose there exists a steady-state orbit vss(t) and
that during some transient trajectory the slip displacements are defined by v(t). Re-
calling that only one node is allowed to slip at a given time t, we define a measure ∆
of the deviation from the steady state such that

∆ = v1(t)− vss1 (t) if v̇2 6= 0

= v2(t)− vss2 (t) if v̇1 6= 0(4.1)

Figure 5 represents a phase t < t1 of positive slip at node 2 under the influence
of constraint O2

+. If the next phase t > t1 involves slip at node 1, we see that with
the definition (4.1)

∆+ = ∆− tanβ4 .

Similar arguments can be applied to the remaining constraints, leading to the
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iiα   −  β   = 0
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D
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F

Fig. 4. Regions of α−β-space satisfied by (3.6) and (3.7) (shaded). The condition (4.6)2 below
is satisfied only if all four points lie in the central square BCEF .

results

∆+ = −∆− tanβ1 O1
+

∆+ = −∆− tanβ3 O1
−

∆+ = ∆− tanβ4 O2
+

∆+ = ∆− tanβ2 O2
−

(4.2)

where the constraint referred to is that active before the transition.
We conclude that after a full cycle in Figure 2, the distance ∆ has been multiplied

by a factor

R =
∏

1≤i≤4
(tanβi) .(4.3)

Also, after m cycles this distance is multiplied by a factor

∏
1≤i≤4

(tanβi)
m
.(4.4)

An alternative form of equation (4.3) can be obtained by using (3.1), giving

R =
∏

1≤i≤4

(
cosαi

cosβi

)
.(4.5)

We conclude that if the loading is such that a periodic orbit vss(t) belonging
to class C1 exists, then this orbit will attract all other orbits v(t) having an initial
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1v   (t  )
ss

+
2

β4
1v(t  )

+
∆

-
∆

v(t)

v   (t)
ss

Fig. 5. Transition from slip at node 2 to slip at node 1.

position v(0) sufficiently close to vss(0), i.e., (v(t) − vss(t)) → 0 as t → ∞, if and
only if |R| < 1. Moreover in such cases, the convergence is exponential in time.

We also note that a sufficient condition for |R| < 1 is

R(1)
i = | tanβi| < 1 all i or R(2)

i =

∣∣∣∣cosαi

cosβi

∣∣∣∣ < 1 all i .(4.6)

5. Restrictions on the values of βi. We first note that the ratio R(2)
i defined

in equation (4.6) is less than unity for points located in the square BCEF in Figure 4,

but in the two triangles ABF and CDE, we have R(2)
i > 1. In other words, there

are some values of the angles αi, βi that satisfy conditions 3.1, but which lead to an
increase in the deviation of the transient trajectory from the periodic orbit, suggesting
the possibility of orbits of class C1 that repel other orbits.

To explore this question further, we note that the definitions (3.2, 3.3) imply that
the angles β1, β3 will have the same sign if and only if |µ1b12| < |a12| and that the sign
in this case will be that of a12. Similarly, β2, β4 will have the same sign if and only if
|µ2b21| < |a12| and the sign in this case will be that of −a12. Thus, it is impossible
for all four values βi to have the same sign. The only remaining possibilities are (1)
that two angles are positive and two negative, or (2) that three are positive and one
negative, or vice versa. These two cases exhibit significant qualitative differences and
will be considered separately.

5.1. Two positive and two negative angles. We first note that the inequal-
ities (3.4, 3.5) imply that

− tanβi tanβi+1 < 1 (mod 4) .(5.1)

If (for example) β1 > 0, β2 > 0, β3 < 0, β4 < 0, two of these inequalities will be
satisfied identically (i.e. for all values of βi of the stated sign), but the remaining two
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can then be combined to establish the condition

0 <
∏

1≤i≤4
(tanβi) < 1 .(5.2)

If instead we have β1 > 0, β2 < 0, β3 > 0, β4 < 0 (the only qualitatively different
case), none of the inequalities are satisfied identically, but a similar combination leads
to (5.2) as before. In view of (4.3), we conclude that periodic orbits of class C1 will
always attract other orbits provided any two of the four angles βi are positive and
the other two negative.

We also note that for this case R > 0 implying that phases of positive slip at node
1 (for example) in successive cycles both lie on the same side of the steady state orbit.
In other words, the asymptotic approach to the steady state is in a sense monotonic.

5.2. Three angles of one sign and one of the other. For this case, the
inequalities (5.1) still hold and two of them are identically satisfied, but the remaining
two contain only three of the four angles βi and hence cannot be combined to establish
(5.2). It follows that we are unable to establish convergence of C1 orbits for this case,
and indeed we shall present a counter-example in the next section.

Also, for this case R < 0 implying that successive phases of positive slip at node
1 in successive cycles lie on opposite sides of the steady state orbit. We shall refer to
this phenomenon as ‘alternation’.

6. Example 1: An unstable C1 orbit. We consider the example

A =

[
1.0 0.5
0.5 1.0

]
; B =

[
0.5 0.25
0.95 0.95

]
, with µ1 = µ2 = 1 .

The matrix A is clearly positive definite and it is easily verified that these values
satisfy the conditions (3.4, 3.5). The angles are given by

β1 = 0.464, β2 = 1.460, β3 = 0.464, β4 = −0.639 ,

so

tanβ1 = 0.500, tanβ2 = 9.000, tanβ3 = 0.500, tanβ4 = −0.744

and

R =
∏

1≤i≤4
(tanβi) = −1.673

for which |R| > 1, indicating instability.
Simple loading conditions were chosen such that each constraint resides at a ‘rest’

position (shown as dashed inclined lines in Figure 6) except that each advances to an
extreme position (solid lines in Figure 6) and then recedes, in the sequence O1

+ (green),
O2

+ (blue), O1
− (red), O2

− (maroon). Regions of v1 − v2-space that are excluded by
the rest positions of the constraints are shown shaded in this and subsequent figures.
Figure 6 shows the resulting rectangular steady-state orbit (black dashed line) and
the transient evolution from a position A relatively close to the steady state. This
transient was determined using arguments similar to those used in connection with
Figure 2, but the results were also confirmed using the numerical algorithm described
by Ahn & Barber (2008) [1].
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Fig. 6. Transient response for a system with a repelling periodic orbit. starting from an initial
condition A close to that orbit. Notice how segments governed by a given constraint alternate between
inside and outside the repelling orbit.

Notice that successive cycles deviate further from the steady state. This behaviour
was obtained from all starting positions, as indeed is implied by condition (5.2). Notice
also that during the second cycle, the transient trajectory is on the opposite side of
the steady state to that during the first cycle, as implied by the condition R < 0.
This alternation continues as long as condition (i) of definition 3.1 remains satisfied.

6.1. Limit cycle. When a periodic orbit in class C1 is unstable, deviations from
it grow exponentially until a condition is reached at which condition (i) of definition
3.1 is violated. In other words, a situation is reached where two constraints are
simultaneously active. In the example of Figure 6, this occurs when the motion
v̇2 < 0 intersects the rest position of constraint O1

+. At this point, the trajectory
immediately achieves the stable limit cycle illustrated in Figure 7, which involves a
period of simultaneous slip v̇1 > 0, v̇2 < 0 at both nodes. The numerical code was
used to track the evolution of this system from a range of initial conditions, all of
which converged on this limit cycle after a finite number of loading cycles. Notice
that because of the alternation discussed above, the limit cycle extends over two cycles
of the external loading.

Extensive exploration of the transient behaviour of this example suggest that this
same limit cycle is achieved for all initial conditions.
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Fig. 7. The limit cycle for Example 1 (orange). The dashed black line defines the unstable
rectangular orbit.

7. More complex orbits. We next define a broader class of loading conditions
C2 such that condition (ii) of Definition 3.1 is retained, but (i) is relaxed — i.e. we
permit cases where there exists a steady state in which one or more of the constraints
is active multiple times in each cycle.

The most general orbit in C2 involves the action of the four constraints in any
sequence, with any number of segments. For example, we might have

O1
+ O2

− O1
− O2

+ O2
− O1

+ O2
+ O1

− O1
+ O1

− O2
− O1

+...

repeating from this point onwards. However, if any segment is followed by slip in the
opposite direction at the same node, we see from Figure 5 and equation (4.1) that
there is no change in ∆ and the final state is the same as if only the second of the
two slip segments had been present. Thus, for the purpose of calculating the change
in ∆ during a complete cycle, the above sequence can be condensed to

O1
+ O2

− O1
− O2

− O1
+ O2

+ O1
− O2

− O1
+...

It then follows that during one loading cycle, the initial value of ∆ is multiplied by
the ratio

R = (− tanβ1)(tanβ2)(− tanβ3)(tanβ2)(− tanβ1)(tanβ4)(− tanβ3)(tanβ2)

= (− tanβ1)2(tanβ2)3(− tanβ3)2(tanβ4) .
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Notice that each of the factors in this expression defines a transition either from
slip at node 1 to node 2 (β1, β3) or from node 2 to node 1 (β2, β4). The number of
these transitions must clearly be equal, so for the most general orbit in C2, we shall
have

R = (− tanβ1)p(tanβ2)q(− tanβ3)r(tanβ4)s ,(7.1)

under the restriction

p+ r = q + s .

The stability criterion |R| < 1 will be satisfied for all p, q, r, s and hence for all
loading cycles in class C2 if and only if

max (| tanβ1|, | tanβ3|) < min (| cotβ2|, cot |β4|) .

If this is not satisfied, so that there exist two values (say β1, β2) such that

| tanβ1| > | cotβ2| or | tanβ1 tanβ2| > 1 ,(7.2)

then we can choose r = s = 1 and p = q to obtain

|R| = |(tanβ1 tanβ2)q(tanβ3)(tanβ4)| ,

and this can be made to exceed unity by choosing q sufficiently large. The inequality
(7.2) can also be written in the alternative form

| tanβ2| > | tanα2|

using (3.1), and hence, in view of (3.6, 3.7),

|β2| > α2 or |β2| > π − α2 .

Thus, unstable orbits can exist if and only if at least one of the four points αi, βi lies
in one of the triangles ABF and CDE in Figure 4.

We also note that if

R < 0 ,

the transient trajectory will alternate. If the orbit is also unstable, we anticipate that
there will be a unique limit cycle that involves two loading cycles, as in the example
in Section 6.

If R > 0 the trajectory will approach or diverge from the periodic orbit mono-
tonically and in cases of instability (R > 1) we anticipate two distinct limit cycles,
the one reached depending on which side of the unstable orbit is the initial condition.
We present an example of this kind in the next section.

8. Example 2: An unstable C2 orbit with two limit cycles. We consider
an example using the same stiffness matrices as in Section 6 and coefficients of friction
µ1 = µ2 = 0.98. However, the loading cycle was modified such that constraints O1

+

and O2
− were active twice per cycle, the other constraints being active only once. The

constraints are active in the order O2
− ,O1

+ ,O2
− ,O1

+ ,O2
+ ,O1

− and the corresponding
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Fig. 8. First limit cycle for Example 2.

steady-state orbit is shown as a dashed black line in Figure 8. It is traversed in the
anticlockwise direction and it is unstable with

R = 3.614 .

Since R > 0, the transient response remains on the same side of the steady state
in successive cycles and a different limit cycle is obtained depending on the initial
perturbation. The orange limit cycle in Figure 8 corresponds to the case where the
initial point is slightly to the left of the top left corner of the steady state orbit and,
as in Example 1, the limiting process comprises the occurrence of slip at both nodes
simultaneously, due to the intersection of a segment of slip governed by O2

− (maroon)
with the rest position of O1

+ (green).
If instead we choose an initial condition slightly to the right of the top left corner,

the first violation of condition (i) occurs when a segment of slip governed by O2
−

intersects with the rest position of O2
+ (i.e. the other constraint for the same node).

For these two constraints to be active simultaneously, it is necessary that p2 should be
zero, showing that this intersection defines the beginning of a segment of separation
at node 2. In this case, when O2

− recedes, the node will re-establish contact at a point
that (i) lies on the same horizontal line (since no slip occurs at node 1 throughout this
process) and (ii) lies on both O2

+ and O2
−. Since we have assumed loading conditions

such thatO2
+ remains stationary during this phase of the loading, this point is uniquely

defined by condition (i) and O2
+ and hence contact is re-established at the same point

at which it separated.
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Fig. 9. Second limit cycle for Example 2.

Fig. 10. Stable orbits in class C2 for Example 2.
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In contrast to the procedure defining the limit cycle of Figures 6 and 7, this
intersection is not unique, since it depends on the value of v1 during the preceding
slip segment and hence also on the initial condition. However, once a period of
separation has occurred, a further evolution of the trajectory occurs, governed by the
rest position of O2

+ instead of the extreme position of O2
−. This has the same effect

as a reduction of the ratio R to a value less than unity and hence the trajectory tends
exponentially to a limit cycle involving a period of separation at node 2. This limit
cycle is shown in orange in Figure 9. Notice that the short vertical extension of the
orbit near the corner B represents the tangential displacement that occurs (out and
back) during the period of separation at node 2.

8.1. Limiting behaviour remaining in C2. Examples of class C2 can reach
limiting orbits without violating condition (ii) of Definition 3.1 if the rest positions of
the constraints are sufficiently far removed as to remain inactive. We first note that
if the second advance of O1

+ is temporarily disregarded, we can construct a stable
rectangular orbit which is shown as the dashed orange line in Figure 10. Furthermore,
if the system reaches this orbit, the second advance of O1

+ will indeed not cause any
slip, so this orbit is a stable limit cycle for the system. In this case (with sufficiently
distant rest positions), initial conditions slightly to the left of the top corner of the
unstable black orbit are repelled from this orbit until the divergence is sufficient to
render the second advance of O1

+ inactive, after which the system is attracted to the
rectangular orange orbit.

A starting point slightly to the right of the top left corner of the black orbit leads
to a different situation where eventually the first advance of O1

+ becomes inactive and
the segment of negative slip at node 1 is followed by a segment of positive slip at the
same node. This orbit is represented by the dashed blue line in Figure 10 and it is
also stable.

9. An example of non-uniqueness for the quasi-static evolution prob-
lem. Using a construction like that in Section 7 we will show that the condition (4.6)
is also closely connected to the question of uniqueness for the quasi-static evolution
problem.

We will give an example of an elastic system for which the rate problem has a
unique solution for all loadings, but where there exists a time dependent external
loading −f(t) = (qw(t),pw(t))T with f ∈ C∞[0,∞) such that the evolution problem
has infinitely many solutions.

A similar non-uniqueness result has been given previously by Ballard [4]. The
non-uniqueness example in Ballard’s paper is for a one node system with three spatial
degrees of freedom and with an initial state with so called grazing contact, i.e., with
the initial reaction force being equal to zero. For the example that we shall present
the number of nodes is two, and the spatial degrees of freedom are two. Further
we consider a loading where we have full contact, i.e., with a strictly positive normal
contact force at all times. A significant difference between the examples is that Ballard
shows that a counterexample exists for arbitrarily small coefficients of friction. Our
analysis shows that there exists an elastic systems with two nodes and two spatial
dimensions such that all rate problems are uniquely solvable but that there still exists
multiple solutions to the time evolution problem.

There are also some similarities regarding the construction of the applied force.
In Ballard’s paper an applied force is used where the tangential component fT (t)
changes direction at t→ 0+, i.e., so that the normalized vector fT (t)/|fT (t)| has no
limit (although fT (t) has a bounded time derivative). In our paper the external force
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field is constructed so that one changes between stick at node 1, slip at node 2 and
vice versa stick at node 2, slip at node 1 infinitely many times as t→ 0+. The force
field and the resulting displacement field are C∞ in time.

The present counterexample shows that imposing conditions of full contact (non-
grazing contact) and restriction to two spatial dimensions and systems where all rate
problems are uniquely solvable, is not enough to guarantee uniqueness for the time
evolution problem.

Assume that we have an elastic system with two nodes and two spatial dimen-
sions such that the conditions (3.4) and (3.5) guaranteeing that all rate problems are
uniquely solvable, are valid, but that the condition 4.6 is violated so that for example
cosα1/ cosβ1 > 1.

Let times {ti}∞i=−∞, with ti < ti+1 be given. Then we can alternatingly apply
the obstacles O1

+ and O2
+ to two different initial states in the following way. First,

for all t2n+1 the obstacles O2
+(t2n+1) will have the same position. Next, considering

an interval t2n < t < t2n+2 the obstacles have for t = t2n the positions O1
+(t2n)

and O2
+(t2n) as shown in Figure 11 and we consider the initial states which are the

intersections between O2
+(t2n), O1

+(t2n) (the blue point) and O2
+(t2n+1), O1

+(t2n) (the
red point) respectively.

Then, while O1
+ remains constant, O2

+ advances to the position O2
+(t2n+1) and

then recedes to the position O2
+(t2n+2), which is reached for some t′ < t2n+2, and

remains constant for t′ < t < t2n+2. It follows that the blue point is moved vertically
to a new position. Then the obstacle O1

+ moves to a position O1
+(t2n+2), which is

reached for some t′′ < t2n+2, and O1
+(t) is constant for t′′ < t < t2n+2. It follows

that the blue point will move horizontally to a new position. Further the position is
chosen such that both the red point and the blue point (new positions) are positions
on the obstacle O1

+(t2n+2). Consequently the red and blue initial points have moved
to new positions such that their distance have been multiplied by a factor

cosα1

cosβ1

sinβ1
sinα1

= tanβ1 tanβ4 := d2 > 1.

This procedure is repeated for all intervals (t2n, t2n+2) giving the positions of the
obstacles as in Figure 11.

Writing the equations of the obstacles as

(a11 + µ1b11)v1 + (a12 + µ1b12)v2 = s1(t) = −µ1p
w
1 (t)− qw1 (t)(9.1)

(a21 + µ1b21)v1 + (a22 + µ1b22)v2 = s2(t) = −µ1p
w
2 (t)− qw2 (t)(9.2)

we have s2(t2n+1) = s2(t−∞) independent of n. Further, denoting

lim
n→−∞

si(tn) = si(t−∞),

we have for i = 1, 2 and all n,

(si(t2n+4)− si(t2n+2))/(si(t2n+2)− si(t2n)) = d2 > 1,

and

(si(t2n+2)− si(t−∞))/(si(t2n)− si(t−∞))) = d2.

In order to proceed we need to specify in detail the time-parametrization of the
external force-field over all the intervals (t2n, t2n+2).
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O1
+(t2n)

O2
+(t2n)

O2
+(t2n+1)

O1
+(t2n+2)

O1
+(t2n+4)

O2
+(t2n+3)

vb

vr

O2
+(t2n+4)

O2
+(t2n+2)

s2

s1

t2n

⌧1

⌧2
⌧3

⌧ 0
t2n+2

t2n

t2n+2

⌧ 0

⌧ 00

t

t

Fig. 11. Non-unique solutions

Let A1 and A2 be functions in C∞[0, 1] with the general properties depicted in
Figure 12, i.e., −A2(t) = 1 if t ∈ [0, τ1] and −A2(t) = d2 if t ∈ [τ4, 1] , A2(t) = 0
if t ∈ [τ2, τ3], and A2 is decreasing and increasing respectively on [τ1, τ2] and [τ3, τ4].
Similarly A1(t) = 1 if t ∈ [0, τ4], A1(t) = d2 if t ∈ [τ5, 1], and A1 is increasing on
[τ4, τ5]. Further τ4 = τ ′ and τ5 = τ ′′ respectively correspond to the values t′ and t′′

above.

Now, for n ≥ 2 we take t−2n = 1/n. Then we have t−∞ = 0 and, for t ∈ [ 1n ,
1

n−1 ]
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we take,

s2(t)− s2(0) = Cd−2nA2(n(n− 1)(t− 1/n)),

where C is some constant. Here 1
n(n−1) is the length of the interval [ 1n ,

1
n−1 ] and

A2(n(n − 1)(t − 1/n)) a translated and dilated version of the function A2. Taking
n = 2, t = 1 we get

s2(1)− s2(0) = Cd−4A2(1) = −Cd−2,

whence we conclude that we must choose C = d2(s2(1)− s2(0)). Therefore we choose

s2(t)− s2(0) = (s2(1)− s2(0))d2(1−n)A2(n(n− 1)(t− 1/n)),

if t ∈ [ 1n ,
1

n−1 ]. Similarly we define

s1(t)− s1(0) = (s1(1)− s1(0))d2(1−n)A1(n(n− 1)(t− 1/n)),

It is clear that si ∈ C∞(0, 1]. For the k-th derivative we get

s
(k)
i (t) = (si(1)− si(0))d2(1−n)A(k)

i (n(n− 1)(t− 1/n))nk(n− 1)k

if t ∈ [ 1n ,
1

n−1 ]. Since the k-th derivatives of Ai are bounded on [0, 1] we conclude that
for some constant C,

|s(k)i (t)| ≤ Cd−2nn2k, if t ∈
[

1

n
,

1

n− 1

]
.

Since limn→∞ n2k/d2n → 0 as n→∞ it follows that limt→0 s
(k)
i (t) = 0 for every k-th

derivative, i.e., that si ∈ C∞[0, 1].
Finally, in order to define the external force field we use (9.1) and (9.2), giving

qw1 (t) = −µ1p
w
1 (t)− s1(t)(9.3)

qw2 (t) = −µ1p
w
2 (t)− s2(t).(9.4)

Now we may, for example, choose pw1 (t) and pw2 (t) to be constant and large enough
(to ensure that contact is not lost) and choose qw1 (t) and qw2 (t) according to (9.3) and
(9.4). Then we have defined an external force-field f(t) which is in C∞[0, 1]. Further,
the evolution problem with initial conditions v(0), f(0) given by

(a11 + µ1b11)v1(0) + (a12 + µ1b12)v2(0) = s1(0)

(a21 + µ1b21)v1(0) + (a22 + µ1b22)v2(0) = s2(0)

and

qw1 (0) = −µ1p
w
1 − s1(0)(9.5)

qw2 (0) = −µ1p
w
2 − s2(0).(9.6)

has two different solutions vb(t) and vr(t), infinitely differentiable for 0 ≤ t ≤ 1 and
satisfying the same initial condition for t = 0 and the rate problem for all t. Their
orbits are shown in Figure 11 coloured in blue and red. It is also easy to see that
there are infinitely many solutions being intermediate to the red and blue ones.

We end this section by a remark.
Remark 9.1. It was shown in [3] that one has uniqueness for the evolution

problem provided that



Attractors in Frictional Systems 19

1
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1
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1

t

t
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⌧1 ⌧2 ⌧3 ⌧4 = ⌧ 0

⌧4 = ⌧ 0 ⌧5 = ⌧ 00

Fig. 12. Auxiliary functions used to define external force functions of the counterexample.

• the coefficients of friction were small enough for the rate problem to be unique-
ly solvable, in our special case such that the conditions (3.4) and (3.5) are
satisfied.

• the force-field is a piece-wise real analytic function of time
This condition of an analyticity rules out the occurrence of infinitely many oscil-

lations that are present in the previous example on non-uniqueness.

10. Conclusions. In previous papers, it was conjectured (based on heuristic
arguments involving the concept of system memory) that in discrete frictional elastic
systems where all nodes slip at least once during each cycle of periodic loading, there
would exist a unique steady state to which orbits from all initial conditions would
be attracted. In this paper, we have disproved this conjecture by demonstrating
the existence of counter-examples in the context of a simple two-node system. In
particular, there can exist steady-state orbits that are unstable in the sense that they
repel orbits starting from initial conditions that are sufficiently close to the steady
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state.
Criteria for determining the stability of a steady state have been developed and

these depend only on the loading sequence and on the slopes of the frictional constraint
lines, defined in terms of the stiffness matrix and the coefficient(s) of friction. In
particular we have shown these criteria are, in general, more restrictive than those
which guarantee that the rate problem is uniquely solvable for arbitrary derivative of
the external loading. Further the problem of establishing non-existence of unstable
steady states is closely connected to the problem of establishing uniqueness for the
quasi-static evolution problem. An example of an elastic system is given, where there
exists a loading with an unstable periodic orbit, as well as a loading with multiple
(infinitely many) solutions of a quasi-static problem.

A commonly occurring state leading to periodic frictional slip is that in which
the contact nodes are subjected to a set of mean loads and a superposed sinusoidal
oscillation due to machine vibration at a single frequency. Under these conditions, only
one segment of slip can occur per cycle at each node in a given direction and unstable
orbits for the two-node system can occur only when the slopes of the constraints
satisfy the condition established in Section 5.2. The resulting transient orbit will
then alternate on the two sides of the steady state as it evolves.

In cases of instability, the transient orbit is eventually limited either by slip oc-
curring at both nodes simultaneously, or by one node separating. In both cases the
system eventually reaches a stable limit cycle. Depending on the slopes of the con-
straint lines, the limit cycle can involve two periods of the loading cycle, in which case
it appears to be unique, or it may repeat every loading cycle, in which case distinct
limit cycles are reached depending on the sign of the initial deviation from the steady
state.

REFERENCES

[1] Y.J. Ahn & J.R. Barber, Response of frictional receding contact problems to cyclic loading,
International Journal of Mechanical Sciences, Vol.50 (2008), pp.1519–1525.

[2] Y.J. Ahn, E.Bertocchi & J.R. Barber, Shakedown of coupled two-dimensional discrete frictional
systems. Journal of the Mechanics and Physics of Solids, Vol.56 (2008), pp.3433–3440.

[3] L.-E. Andersson (1999), Quasistatic frictional contact problems with finitely many degrees of
freedom. LiTH-MAT-R-1999-22. Technical report.

[4] P. Ballard, A counterexample to uniqueness in quasi-static elastic contact problems with small
friction, International Journal of Engineering Science Vol.37 (1999) pp.163-178.

[5] J.R. Barber, Frictional systems subjected to oscillating loads, Annals of Solid and Structural
Mechanics, Vol.2 (2011), pp.45–55.

[6] Yong Hoon Jang and J.R. Barber, Frictional energy dissipation in materials containing cracks,
Journal of the Mechanics and Physics of Solids, Vol. 59 (2011), pp.583–594.

[7] K.L. Johnson, Contact Mechanics, Cambridge University Press, Cambridge, (1985), §7.2.
[8] A. Klarbring, (1999), Contact, friction, discrete mechanical structures and discrete frictional

systems and mathematical programming. In: Wriggers, P., Panagiotopoulos, P. (Eds.),
New Developments in Contact Problems. Springer, 55–100.

[9] A. Klarbring, M.Ciavarella & J.R. Barber, Shakedown in elastic contact problems with Coulomb
friction. Int. J. Solids Struct. , Vol.44 (2007) pp.8355–8365.

[10] D. Nowell, D. Dini & D.A. Hills, Recent developments in the understanding of fretting fatigue.
Eng.Fract.Mech., Vol.73 (2006), pp.207–222.

[11] H. Wentzel, Modelling of frictional joints in dynamically loaded structures: a review. Tech-
nical report, KTH Solid mechanics, Royal Institute of Technology (2006). http://www-
old.hallf.kth.se/forskning/publikationer/rapport 419.pdf

http://www-old.hallf.kth.se/forskning/publikationer/rapport_419.pdf
http://www-old.hallf.kth.se/forskning/publikationer/rapport_419.pdf

