Math 116-031 - Quiz 2

Name:
Chapter 7

1. (a) [4 points] Consider the integral $\int_{0}^{1} e^{-t^{2} / 2} d t$.
(i) Which of the approximations LEFT(3), RIGHT(3), MID(3) or $\operatorname{TRAP}(3)$ gives the closest overestimate to the exact value of this integral? You don't have to justify your answer.
$\operatorname{MID}(3)$ (because $e^{-t^{2} / 2}$ is decreasing and concave down on the interval $[0,1]$.)
(ii) Write out and compute the Riemann sum for that (one) estimate. You may use your calculator.

$$
\operatorname{MID}(3)=\frac{1}{3}\left(e^{-(1 / 6)^{2} / 2}+e^{-(3 / 6)^{2} / 2}+e^{-(5 / 6)^{2} / 2}\right)
$$

(b) [8 points] Circle true or false. No explanation is necessary.

TRUE false Say $f(x)$ and $g(x)$ are two functions with the same derivative $\left(f^{\prime}(x)=g^{\prime}(x)\right)$, and suppose that $f(1)=g(1)$ too. Then in fact $f(x)$ and $g(x)$ are equal.
true FALSE If f and g are continuous functions on $[a, b]$, the average of $f(x) g(x)$ over that interval is the average of $f(x)$ times the average of $g(x)$.
true FALSE At least one of $\operatorname{LEFT}(n), \operatorname{RIGHT}(n), \operatorname{MID}(n)$, or $\operatorname{TRAP}(n)$ is an underestimate of $\int_{a}^{b} f(x) d x$, no matter what $f(x)$ or n is.

TRUE false The function $A(x)=\int_{1}^{x} e^{\cos (t)} d t$ is increasing for every x.

Notes:

(a) Since $f(x)$ and $g(x)$ have the same derivative, $f(x)=g(x)+C$ for some constant C. But $C=0$ since $f(1)=g(1)$.
(b) We did an example of this in class.
(c) If $f(x)$ changes its direction and/or concavity in the middle of the interval $[a, b]$, there are no guarantees as to whether any of the sums will be over- and underestimates. (Alternately, if $f(x)$ is a constant function, then all four sums are exactly correct, not underestimates.)
(d) The derivative is $A^{\prime}(x)=e^{\cos (x)}$, which is positive.

(c) Let $F^{\prime}(x)=f(x)$, where $F(x)$ has these values: | x | 0 | 0.5 | 1 | 1.5 | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $F(x)$ | 1 | 4 | 9 | 13 | 17 | and $f(1)=2$.

Compute the following [4 points each]:

$$
\int_{0.5}^{1} \frac{1}{x^{2}} f\left(\frac{1}{x}\right) d x=\int_{2}^{1} f(u)(-d u)=\int_{1}^{2} f(u) d u=F(2)-F(1)=8
$$

This used the u-substitution $u=\frac{1}{x}$ and $d u=\frac{-1}{x^{2}} d x$.

$$
\int_{1}^{1.5} e^{f(x)} f^{\prime}(x) d x=\int_{f(1)}^{f(1.5)} e^{u} d u=e^{f(1.5)}-e^{f(1)}=e^{f(1.5)}-2
$$

This used the u-substitution $u=f(x)$ and $d u=f^{\prime}(x) d x$. (The answer can't be simplified further since we don't have any other values of $f(x)$. I left them out by mistake - oops!)

$$
\begin{aligned}
\int_{1}^{2} x f^{\prime}\left(x-\frac{1}{2}\right) d x & \left.=\int_{0.5}^{1.5}\left(u+\frac{1}{2}\right) f^{\prime}(u) d u \quad \text { (by the substitution } u=x-\frac{1}{2}, d u=d x\right) \\
& =\left.\left(u+\frac{1}{2}\right) f(u)\right|_{0.5} ^{1.5}-\int_{0.5}^{1.5} f(u) d u \quad \text { (by integration by parts) } \\
& =2 f(1.5)-f(0.5)-(F(1.5)-F(0.5)) \\
& =2 f(1.5)-f(0.5)-9 .
\end{aligned}
$$

(The answer can't be simplified further.)
(courtesy of a friend from UMinnesota):
OH HI THERE, SIR ISAAC NEWTON, COULD YOU PLEASE FIND ME THE DERIVATIVE OF F(X) WITH RESPECT TO X? AND HURRY!
anagrams to...
HERE, A NEAT IDEA: WE WRITE F(X PLUS H) MINUS F(X) OVER H, DECIDE H IS VERY TINY, FACTOR OUT THIS H PART. DONE! COOL!

