1. [6 points] Each of the following questions is worth 2 points.
(a) If $f(x)$ is an even function and $\int_{-2}^{2}(3 f(x)-5) d x=4$, find $\int_{0}^{2} f(x) d x$.

Solution. Expanding the integral gives $3 \int_{-2}^{2} f(x) d x-\int_{-2}^{2} 5 d x=4$.
The first integral equals $6 \int_{0}^{2} f(x) d x$ since $f(x)$ is even, and the second integral is $5 \cdot 4=20$, so:

$$
6 \int_{0}^{2} f(x) d x-20=4, \text { so } \int_{0}^{2} f(x) d x=4 .
$$

(b) The average value of $f(x)=\frac{10}{x^{2}}$ on the interval $[1, a]$ is equal to 2 . Find the value of a.

Solution. First of all, the antiderivative is $\frac{-10}{x}$. The average value of $f(x)$ on the interval $[1, a]$ is defined by

$$
\frac{1}{a-1} \int_{1}^{a} \frac{10}{x^{2}} d x=\frac{1}{a-1}\left(\frac{-10}{a}+\frac{10}{1}\right) .
$$

So, set this equal to 2 and multiply through by $a(a-1)$ to clear the denominators:

$$
\frac{1}{a-1}\left(\frac{-10}{a}+\frac{10}{1}\right)=2 \quad \Longleftrightarrow \quad-10+10 a=2 a(a-1)
$$

This is a quadratic equation in a with solutions $a=1,5$. We reject $a=1$ (otherwise the $\frac{1}{a-1}$ wouldn't make sense at the beginning), so the answer is $a=5$.
(c) If the class is collectively answering calculus problems at a rate of $Q(t)$ questions per minute (where t is measured in minutes since you began the quiz), describe in a sentence what $\int_{5}^{15} Q(t) d t$ means.

Solution. $\int_{5}^{15} Q(t) d t$ is the total number of calculus questions answered by the class between the 5 th and 15 th minutes of the quiz.
(d) Let $A(x)=\int_{5}^{\ln (x)} \frac{\cos (t)}{t} d t$. Compute $A^{\prime}(x)$.

Solution. Let $y=\ln (x)$. Then, by the chain rule,

$$
A^{\prime}(x)=\frac{d}{d x} \int_{5}^{y} \frac{\cos (t)}{t} d t=\left(\frac{d}{d y} \int_{5}^{y} \frac{\cos (t)}{t} d t\right) \cdot \frac{d y}{d x}=\frac{\cos (y)}{y} \cdot \frac{1}{x}=\frac{\cos (\ln (x))}{x \ln (x)}
$$

(e) Use a left hand sum with $n=4$ rectangles to approximate $\int_{1}^{3} x \ln (x) d x$. Don't convert to decimal numbers or simplify (you can write in terms of \ln).

Solution. With 4 subdivisions, the rectangles will have width $\Delta x=0.5$, so

$$
\begin{aligned}
\operatorname{LEFT}(4) & =0.5(f(1)+f(1.5)+f(2)+f(2.5)) \\
& =0.5(1 \ln (1)+1.5 \ln (1.5)+2 \ln (2)+2.5 \ln (2.5)) .
\end{aligned}
$$

2. [5 points] Poussey and Taystee are working in the Litchfield Library, putting books in their correct locations on the shelves. By working together, they can re-shelve 10 books per minute. Meanwhile, books are being returned to the library at a variable rate of $f(t)$ books per minute (and then need to be re-shelved). Assume there are 21 books waiting to be shelved when they begin their work.

Let $B(t)$ be the number of books waiting to be shelved, t minutes after they start working. Write a formula for $B(t)$ using a definite integral.

Solution. There are initially 21 books waiting to be shelved; and $B(t)$ decreases by 10 per minute and increases at a variable rate according to $f(t)$. So:

$$
B(t)=21-10 t+\int_{0}^{t} f(s) d s \quad \text { OR } \quad B(t)=21+\int_{0}^{t}(f(s)-10) d s
$$

(Note: I used a dummy variable s in the integrand. $B(t)$ is only a function of t, that is, the upper endpoint of the integral.)
3. [5 points] On the graph below, we have the graphs of f, f^{\prime} and $f^{\prime \prime}$. Identify which is which [3 points] and include a short explanation of your reasoning [2 points].

$$
\begin{aligned}
& I=f \\
& I I=f^{\prime} \\
& I I I=f^{\prime \prime}
\end{aligned}
$$

There are many possible ways to figure out the solution. For example, towards the right, $I I I$ (dashed line) has a local minimum, but neither of the other graphs is zero, so the derivative of $I I I$ does not appear. Thus $I I I=f^{\prime \prime}$.

Next, to figure out which is f^{\prime}, one way is to notice that at $x=0, I I I$ is positive and the only line with positive slope is $I I$ (the solid line), so $I I=f^{\prime}$. That leaves $I=f$ by process of elimination.

