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βΛ Ångström turbidity parameter [−], page 30

p̌ Rejection threshold for difference in annual precipitation series [%], page 10

∆e Vapor pressure deficit [Pa], page 38

∆GMT Time difference between the local time zone and Greenwich Mean Time

[h], page 57

∆T Variation of mean monthly temperature from CTS and FUT scenario [◦C],

page 49

∆Tday Daily temperature amplitude [◦C], page 48

∆tSL Time difference between the standard and local meridian [h], page 57

δ Solar declination [rad], page 22

η(i) Random deviate of annual precipitation, page 9

η(t) Random deviate of the stochastic component of wind speed, page 43

η−1 Mean duration of the cell [h], page 7

γ Coefficient controlling the transition function of the cloud process [h−1], page 18

γ Daily angle, page 29

γn Skewness of η(i), page 9

γn Skewness of η(t), page 43

γdWS
Skewness the stochastic component of wind speed, page 43

γh,l Second moment of Yh in the NSRP model, page 7

γPyr Skewness of annual precipitation, page 9

γFUT
Pyr

Skewness of annual precipitation for future climate conditions, page 49

VIII



f̂i Observed statistical properties or moments, page 8

κ(h) Skewness of Yh in the NSRP model, page 8

Λ1 First band UV/VIS of shortwave radiation, page 29

Λ1e Effective wavelength for the entire band Λ1, page 62

Λ2 Second band NIR of shortwave radiation, page 29

Λ2e Effective wavelength for the entire band Λ2, page 62

λ ,= 1 , 2 , 3 , 4 Spectral bands of the Slingo (1989) model, page 32

λ−1 Mean storm origin arrivals [h], page 7

µc Mean number of cell per storm [−], page 7

µFUT
c Mean number of cell per storm for future climate conditions [−], page 49

µh Mean of Yh in the NSRP model, page 7

ωi Weights in the objective function, page 8

ωΛ Single scattering albedo [−], page 29

d∆e Mean of the stochastic component of vapor pressure deficit [Pa], page 38

dT h Average of the stochastic component of air temperature [◦C], page 22

dWs Mean of the stochastic component of wind speed [m s−1], page 43

Patm Mean of the atmospheric pressure [mbar], page 45

P yr Average annual precipitation [mm], page 9

P
FUT
yr Average annual precipitation for future climate conditions [mm], page 49

Φ Local latitude [rad], page 22

Φ′ Local longitude [angular degree], page 57

Φ(h) Probability that an arbitrary interval of length h is dry, page 7

ρ(h) Lag-1 autocorrelation of Yh in the NSRP model, page 8

ρg Ground albedo referring to a large area of 5-50 [km] radius surrounding the

point of interest, page 29

ρm Lag-1 autocorrelation function of correlated deviation in cloud cover simula-

tion, page 18

ρcsB,Λ Cloud albedo, which is different for direct beam [−], page 32

ρcsD,Λ Cloud albedo, incident diffuse radiation fluxes [−], page 32

IX



ρd∆e Lag-1 autocorrelation of the stochastic component of vapor pressure deficit

[−], page 38

ρdT Lag-1 autocorrelation of the stochastic component of air temperature, page 22

ρdWs Lag-1 autocorrelation of the stochastic component of wind speed [−], page 43

ρPatm Lag-1 autocorrelation of the atmospheric pressure [−], page 45

ρPyr Lag-1 autocorrelation of annual precipitation, page 9

ρs,Λ Sky albedo [−], page 29

σ Stefan-Boltzmann constant [W m−2 K−4], page 22

σ2
M Variance of cloud cover in the “fair weather region, page 18

σ2
m Variance of correlated deviation in cloud cover simulation, page 18

σd∆e Standard deviation of the stochastic component of vapor pressure deficit [Pa],

page 38

σdT,h Standard deviation of the stochastic component of air temperature [◦C], page 22

σdWs Standard deviation of the stochastic component of wind speed [m s−1], page 43

σPatm Standard deviation of the atmospheric pressure [mbar], page 45

σPyr Standard deviation of annual precipitation [mm], page 9

σFUT
Pyr

Standard deviation of annual precipitation for future climate conditions [mm],

page 49

τN Cloud optical thickness [−], page 33

τS(t) Hour angle of the Sun [rad], page 57

τaΛ Spectral aerosol optical depth [−], page 29

θ Scale parameter of the Gamma distribution of rainfall intensity [mm h−1],

page 7

θFUT Scale parameter of the Gamma distribution of rainfall intensity for future

climate conditions [mm h−1], page 49

ω̃λ Single scatter albedo of cloud optical properties, page 64

ε(i) Standard normal deviate, page 9

ε(t) Normal random deviates, Beta distributed random deviates in the cloud com-

ponent, page 18

φS,T Local solar illumination angle [rad], page 71

X



ς Coefficient controlling the transition function of the cloud process [h−1], page 18

x⃗ Position, page 33

∆̂e Deterministic component of vapor pressure deficit [Pa], page 38
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1 Introduction

Records of meteorological variables around the world are often very short, with

substantial gaps and low spatial coverage. This creates a problem of data inadequacy

in numerous applications. In order to overcome such a problem, weather generators

as the tools capable of generating consistent time-series of climatic variables have

been proposed and used in the past (Wilks and Wilby , 1999). Specific motivations for

using a weather generator can be found in several fields of science. These models have

been significantly used in agricultural applications, e.g., studies of crop sensitivity

and productivity to climate realizations (Semenov and Porter , 1995; Mavromatis

and Hansen, 2001; Dubrovský et al., 2004). In water resource engineering, climate

simulators were used to generate long time series of precipitation that are required

for flood risk analysis or water resource evaluations (Fowler et al., 2000; Wheater

et al., 2005). Other possible applications are related to the generation of inputs to

hydrological models (e.g., Rigon et al., 2006; Ivanov et al., 2008a), ecosystem models,

or in long-term land management and erosion studies (e.g., Collins et al., 2004;

Istanbulluoglu et al., 2004). Sometimes the weather generators are also employed to

replace missing data from recorded time-series.

The generation of meteorological variables in a weather generator is frequently

based on empirical statistical models. In these cases, statistical properties and cor-

relations among variables are inferred from observed data. Precipitation is the most

important variable in weather generators. It is frequently modeled by using an ap-

proach of separating the process of precipitation occurrence from the problem of

determining the precipitation amount (Wilks, 1999; Wilks and Wilby , 1999; Srikan-

than and McMahon, 2001). Other climate variables, or their residuals, since the

mean and variance are typically removed, are simulated by means of regression

equations. The regression parameters are usually estimated differently for wet, dry,

and transitional states. The time scales at which these variables are simulated can

range from daily to annual. A number of well known models can be listed in the

category of empirical statistical approaches, such as the WGEN (Richardson, 1981;

Richardson and Wright , 1984), the WXGEN model (Sharpley and Williams, 1990)

used in the hydro-sedimentological SWAT model, the CLIGEN model (Nicks et al.,

1995) used in the hydro-sedimentological WEPP model, LARS-WG (Semenov and

Barrow , 2002), ClimGen (McKague et al., 2003), and Met&Roll (Dubrovský et al.,

2004).

A physically consistent method to generate meteorological variables is to directly

use dynamic meteorological models, that solve the non-linear partial differential

equations governing the dynamics of the atmosphere (Cox et al., 1998). While being

attractive, this approach has been mainly used for weather forecasting but not for

long-term weather realizations, given the computational feasibility constraints of

such simulations.

A third intermediate approach can be defined as the joint use of empirical sta-

tistical relations and physically-based methods. In essence, the approach adopts
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stochastic models using some description of the underlying physical process, such

as a simulation of rain cells and clustering, the cloudiness dependence on precipita-

tion, the dependence of temperature on long- and short-wave radiation, etc. This

third approach has received particular attention in rainfall modeling but it has been

almost neglected in the implementation of complete climate simulators. A recent

effort to fill this gap was undertaken by Ivanov et al. (2007), based on the earlier

developed methodology of Curtis and Eagleson (1982), who proposed a weather

generator at the hourly scale. While a number of variables are simulated stochas-

tically, the approach attempts to preserve the underlying physical relations among

them. The use of causal physical relationship within a weather generator allows one

to simulate finer temporal scales (hourly or minute). Using an empirical statistical

weather generator for the same purpose is more difficult since statistical correlations

become more complex to model at shorter time scales.

Wilks and Wilby (1999) underlined that testing a weather generator in attempt to

only reproduce the mean climate, for the way itself in which weather generators are

realized, is somewhat naive. The real challenge is in reproducing higher order mo-

ments, correlations among the variables, and low and high frequency properties such,

as extreme events and inter-annual variability. The latest efforts to test and improve

weather generators are directed towards these directions (Wilks, 1999; Hansen and

Mavromatis, 2001; Kyselý and Dubrovský , 2005; Fowler et al., 2005; Kilsby et al.,

2007). A comparison between inter-annual variability of observed and simulated

data is a crucial test of reliability of a weather generator. For instance, it has been

noticed previously that a common characteristic of weather generators is the under-

estimation of the inter-annual variability (Wilks, 1989, 1999; Wilks and Wilby , 1999;

Srikanthan and McMahon, 2001; Kyselý and Dubrovský , 2005). Several studies at-

tempted to quantify this underestimation sometimes referred to as “overdispersion”

(Katz and Parlange, 1998;Wilks, 1999). The random generation of numbers produce

in the realizations a smaller variance than that of the corresponding observed data.

Wilks and Wilby (1999) suggest that a possible explanation for the missing variance

is that climate statistics change somewhat in the real world from year to year. A

simple weather generator, with the underlining assumption of stationarity, cannot

capture such a variation. In order to capture such a behavior, the model internal

parameters should change in time, thus violating the stationarity assumption.

The issue of under-predicting inter-annual variability and extremes is the most

difficult challenge for weather generators. Especially when a weather generator is

used for simulation of future scenarios, both low and high frequency statistics should

be tested (Kyselý and Dubrovský , 2005; Semenov , 2008). The capability of such

models to reproduce extremes is related to the internal structure of the model. On

the other hand, the capability to generate inter-annual variability is introduced by

conditioning the model with external information. A common approach is to link

parameters of the weather generator to some properties of large-scale atmospheric

circulation. For instance, different sets of weather generator parameters can be

used for different ranges of values assumed by large-scale atmospheric properties.
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Several climate characteristics have been used for this scope: the mean monthly

sea level pressure (SLP) (Katz and Parlange, 1993); the geostrophic wind direction

(GWD) (Kiely et al., 1998); the air masses provenance (Wallis and Griffiths, 1997);

the objective Lamb weather type of atmospheric circulation (Fowler et al., 2000);

and the low-frequency realizations of monthly variable such as precipitation (Wilks,

1989) or temperature (Hansen and Mavromatis, 2001; Kyselý and Dubrovský , 2005).

The possibility to condition models externally allows one to use a weather gener-

ator when constructing climate change scenarios. The dependence of weather gen-

erator parameters on properties of large-scale atmospheric circulation links weather

generators and General Circulation Models (GCMs). GCM realizations, in fact, can

provide information about climate properties suitable to condition a weather genera-

tor. The GCM-predicted changes of large atmospheric patterns can therefore affect

the weather generator parametrization and thus their realizations. Wilks (1992)

pioneered the use of weather generator for climate change studies, and there is a

recent evidence of a growing interest in such studies (Semenov and Porter , 1995;

Katz , 1996; Semenov and Barrow , 1997; Fowler et al., 2000, 2005; Elshamy et al.,

2006; Kilsby et al., 2007; Manning et al., 2009).

An hourly weather generator, AWE-GEN (Advanced WEather GENerator), is

presented in this technical note. The generator is capable of reproducing low and

high-frequency characteristics of hydro-climatic variables and essential statistical

properties of these variables. The weather generator employs both the physically-

based and stochastic approaches and is a substantial evolution of the model presented

by Ivanov et al. (2007). Enhancements of the original formulation are the following:

a new formulation of the precipitation module based on the Poisson-Cluster process;

a new formulation of the module simulating vapor pressure instead of dew point

temperature; simulation of the daily cycle of wind speed; significant modifications

of the shortwave radiation module, in particular the inclusion of explicit simulation

of the photosynthetically active radiation; minor modifications of the cloudiness and

air temperature components; and a new model to reproduce time-variability of the

atmospheric pressure.

An important capability for simulating the inter-annual variability of the precipi-

tation process has been added. The capability to reproduce a wide set of statistics

including extremes is also tested. Furthermore, a procedure to take into account non-

stationary change of climate has been incorporated in the AWE-GEN framework.

The procedure is based on a stochastic downscaling of GCM predictions (Fatichi

et al., 2011). The variables simulated by the weather generator at hourly scale are

precipitation, cloud cover, shortwave radiation with partition into various type and

spectral bands, air temperature, vapor pressure, wind speed, and atmospheric pres-

sure. These variables are typically necessary as inputs for ecological, hydrological,

geomorphological, and crop-dynamic models.

Although we are aware of the possible inaccuracy related to the random number-

generation (Meyer et al., 2007), this problem has not been addressed herein. The

random generator tools available in the Matlab c⃝ software are used.
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2 Data and model validation

The performance of AWE-GEN has been tested to reproduce observations at sev-

eral locations with different climates. The weather generator has been validated for

10 airport meteorological stations located in the USA: Tucson (Arizona), Muskegon

(Michigan), Albuquerque (New Mexico), Boston (Massachusetts), Nashville (Ten-

nessee), San Francisco (California), Chicago (Illinois), Miami (Florida), Philadel-

phia (Pennsylvania), Atlanta (Georgia), and one meteorological station in Italy

(Firenze University). Time series of hourly meteorological variables ranging in du-

ration from 8 to 40 year period were available for these stations. The data for

the USA location have been downloaded by Webmet meteorological resources cen-

ter (http://www.webmet.com/). The data for Firenze have been provided by the

Tuscany Functional Center. It should be noted that given gaps or absence of some

meteorological variable, the test has not been realized for all variables in each sta-

tion. The results of weather generator performance are shown only for Boston (MA),

where time series of 80 years are simulated starting with 18 years of observations.

The accuracy of the results is very similar among all the stations. Information about

the data are available in the Webmet web-site.

The precipitation component has been further tested for four stations in the Tus-

cany region (Italy): Arezzo, Camaldoli, Vallombrosa and Firenze Ximeniano (data

from: Tuscany Functional Center). Twenty-five years of precipitation at 20 minute

resolution were available for these locations. This dataset for its particularly ac-

curacy has been the object of previous studies where precipitation properties were

analyzed and rainfall models developed (Becchi et al., 1994; Veneziano and Iacobel-

lis, 2002; Cowpertwait et al., 2002).

3 Precipitation

Existing weather generators emphasize precipitation as the primary variable of

interest (Wilks and Wilby , 1999; Srikanthan and McMahon, 2001). The underlying

reason is that, due to the nature of coupling physical mechanisms, other hydro-

climatic variables are affected directly or indirectly by the precipitation occurrence.

Consequently, a correct reproduction of the precipitation regime influences all of

the other weather variables. The use of models of stochastic precipitation has been

addressed by the scientific community for many years, given their possible use in

flood mitigation design, and in agricultural and ecological applications, etc. There

is, indeed, a need of precipitation data across a range of temporal scales and for dif-

ferent purposes such as design of storm-water sewerage systems, flood hydrographs,

and reservoir size. Among the first contributions in this field are worth to be men-

tioned the studies of LeCam (1961); Todorovic and Yevjevich (1969); Todorovic and

Woolhiser (1975); Waymire and Gupta (1981a,b,c); Foufoula-Georgiou and Letten-

maier (1987). The first models of rainfall were developed treating separately the

process of rainfall occurrence from the modeling of rainfall intensity. Frequently,
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the occurrences of wet and dry states were simulated using Markov chains and the

precipitation intensity with statistical distributions such as the Exponential or the

Gamma distribution. Although more complex physically-based methods have been

proposed, it is still common for weather generators to use this approach to generate

precipitation.

Currently, generation of stochastic precipitation is mainly achieved with two meth-

ods, i.e., using models based on multifractality and Poisson-cluster models. Other

approaches exist, but they have received less attention. The multifractal approach is

based on observed scale invariance of the precipitation process, called multifractality.

Multifractality implies that the rainfall process looks statistically the same at small

and large scales, except for simple transformations (Veneziano and Iacobellis, 2002).

The number of models that use multifractal scaling of rainfall has grown in the past

decade (Koutsoyiannis et al., 1998; Veneziano and Furcolo, 2002; Veneziano et al.,

2002, 2006).

In AWE-GEN, the method based on the Poisson-cluster model is used to simulate

rainfall (Onof et al., 2000). The development of the Poisson-cluster models has began

with Rodriguez-Iturbe et al. (1987) and Rodriguez-Iturbe and Eagleson (1987) and

was further developed by Rodriguez-Iturbe et al. (1988), Entekhabi et al. (1989), and

Cowpertwait (1991); Cowpertwait et al. (1996). Both Neyman-Scott and Bartlett-

Lewis types were used as stochastic point process. These two are different types of

Poisson processes of storm origins. In Poisson processes each storm has associated

a random number of rectangular pulse (cells) with random intensity and duration.

Different cells and storms may overlap to produce the total hyetograph. At any

time the rainfall is the sum of the cells active at that time, eventually belonging

to different storms. The difference between the Neyman-Scott and the Bartlett-

Lewis types, is concentrated in the method of cell origin displacement within a

storm. In the Neyman-Scott model the time between storm origin and origin of

each cell is considered a random variable. Conversely, in the Bartlett-Lewis model,

the time between cell origins is considered to be a random variable. A schematic

representation of the two models is shown in Figure: 1.

The development of Poisson-cluster models has continued, over the years, extend-

ing the models into two-dimensional space, in order to provide a framework for

modeling multi-site and spatio-temporal rainfall data (Cowpertwait , 1995; Northrop,

1998; Cowpertwait et al., 2002; Wheater et al., 2005; Cowpertwait , 2006; Leonard

et al., 2008). Another improvement has been introduced explicitly calculating the

theoretical function of the third moment of the rainfall process, in order to better fit

the extreme values (Cowpertwait , 1998; Cowpertwait et al., 2002). The process has

been also generalized allowing convective and stratiform rain cells to occur (Cowpert-

wait , 1994). This purpose was reached overlapping two rectangular pulse models,

thus enhancing the capability of the model in reproducing finer structure of the

rainfall process (Cowpertwait , 2004; Cowpertwait et al., 2007).

Reliability of the Poisson-cluster model has been confirmed by a comparative anal-

ysis of its performance with numerous observed time series of precipitation. The
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Figure 1: Schematic representation of Neyman-Scott and Bartlett-Lewis models with
rectangular pulses.

model has demonstrated the capability to fit the essential characteristics of the

precipitation process at a large number of time scales, including extreme events

(Cowpertwait , 1991; Cowpertwait et al., 1996; Cowpertwait , 1998; Onof et al., 2000;

Cowpertwait et al., 2002; Burton et al., 2008).

3.1 Neyman-Scott Rectangular Pulse model

The total intensity of precipitation Y (t) of the Neyman-Scott Rectangulr Pulse

(NSRP) model is the sum of the overlapping cells at any time t. This statement

could be expressed formally with equation (1):

Y (t) =

∫ ∞

u=0
Xt−u(u)dN(t− u) , (1)

where dN(t−u) is 1 if there is a cell at the time t−u and 0 otherwise, and Xt−u(u) is

the intensity at time t owing to a cell with origin at t−u. Given the characteristic of

the rainfall measurements, rainfall data are available in aggregated form. Therefore,

theoretical derivations of the statistical properties of the aggregated process Y
(i)
h are

needed to estimate the parameters of the model. The aggregated rainfall depth in

the ith interval of arbitrary length h is:

Y
(i)
h =

∫ ih

(i−1)h
Y (t)dt . (2)
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Under the hypothesis of stationarity the nth moment of the process is E{(Y (i)
h )n} =

E{(Y (j)
h )n} and the indexes i and j could be omitted (Cowpertwait , 1998). The the-

oretical properties of a Neyman-Scott rectangular pulse model for a single site were

derived up to the second order moments of Yh by Rodriguez-Iturbe et al. (1987). The

probability that an arbitrary interval of length h is dry was derived by Cowpertwait

(1991) and the third moment was successively derived by Cowpertwait (1998). The

theoretical expressions for the statistical properties of the NSRP model are a func-

tion of the statistical distribution chosen to model the random processes of storms

and cells occurrence and intensity.

The Neyman-Scott Rectangular Pulse (NSRP) model used to generate the internal

structure of precipitation process in AWE-GEN is primarily based on the approach

of Cowpertwait (1998); Cowpertwait et al. (2002); Cowpertwait (2004). The storm

time origin occurs as a Poisson process with the rate λ [h−1], a random number

of cells C is generated for each storm according to the geometrical distribution

with the mean µc [−]. Cell displacement from the storm origin is assumed to be

exponentially distributed with the mean β−1 [h]. A rectangular pulse associated

with each precipitation cell has an exponentially distributed life time with the mean

η−1 [h] and intensity X [mm h−1]. The latter is distributed according to the Gamma

distribution with the parameters α and, θ. X must be positive and its probability

density function is:

P (X) =
Xα−1e−X/θ

Γ(α) θα
. (3)

An overview of the NSRP parameters is provided in table 1. The distributions

adopted for the random process within the NSRP model fully define the statistical

properties of the aggregated process E{Yh} over an arbitrary time-scale h (Cowpert-

wait , 1998). The mean is:

µh = E{Yh} = λµcE{X}h/η , (4)

and the second moment is:

γh,l = COV {Y i
h , Y

i+l
h } = λη−3A(h, l)[2µcE{X2}+ [E{X}]2β2E{C2 − C}/(β2 − η2)]

−λ[E{X}]2B(h, l)E{C2 − C}/[β(β2 − η2)] , (5)

where A(h, l) and B(h, l) are defined in Cowpertwait (1998) (see Appendix A). The

moments of the rainfall intensity for the Gamma distribution are E{Xn} = θnΓ(α+

n)/Γ(α); and for the geometric distribution with mean equal to µc are E{C2 −
C} = 2µc(µc − 1) and E{(C2 − C)(C − 2)} = 6µc(µc − 1)2. The third moments

ξh = E{[Yh−E{Yh}]3} is also defined in Cowpertwait (1998) (see Appendix A). The

probability that an arbitrary interval of length h is dry Φ(h) = P (Yh = 0) is taken

from Cowpertwait (1991) and Cowpertwait et al. (1996) with some modifications to

make use of the geometrical distribution rather than the Poisson distribution in the

generation of the random number of cells within a storm (see Appendix: A).
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Table 1: The parameters of the point Neyman-Scott Rectangular Pulse model.

Parameter Explanation

λ−1 Mean storm origin arrivals [h]

β−1 Mean waiting time for cell origins after the origin of the storm [h]

η−1 Mean duration of the cell [h]

µc Mean number of cell per storm [−]

α Shape parameter of the Gamma distribution of rainfall intensity [−]

θ Scale parameter of the Gamma distribution of rainfall intensity [mm h−1]

3.2 Parameter fitting procedure

The utilized model has six unknowns and, thus, at least six equations are required

in order to estimate these parameters. An exact estimation of the six parameters

would need six statistical properties or moments, f̂i, inferred from the observed

data. The f̂i should be successively compared with the statistical properties obtained

from the theoretical equations of the NSRP model, fi. Theoretically the following

equation should be verified:

fi(λ, β, η, µc, α, θ) = f̂i . (6)

From equation (4) and the equation for the first moment, E{X}, one of the six

parameters can be made explicit in terms of the mean, E{Yh}, and the remaining

parameters. Usually, θ is derived as a function of the other parameters (Cowpertwait ,

1998; Cowpertwait et al., 2002, 2007):

θ =
η E{Yh}
α λ µc h

. (7)

Including equation (7) the problem reduces to the estimation of only five parameters.

Rather than fitting exactly the parameters of the model, it is more desirable to use

a wider set of statistical properties, e.g., m > 5, and to find the best approximate

solution. This solution allows one to better reproduce a larger set of statistical

properties instead of exactly reproducing few of them. In order to achieve this

purpose, an objective function Fobj is defined following the procedure proposed by

Cowpertwait (2006); Cowpertwait et al. (2007):

Fobj =

m∑
i=1

ωi

[(
1− f̂i

fi

)2
+

(
1− fi

f̂i

)2]
, (8)

where ωi are the weights in the objective function to emphasize the importance of

certain statistical properties over the others. The choice of the m statistical proper-

ties, of f̂i, and of the weights ωi into the objective function depends on the primary

scope of the rainfall model. In the weather generator context, f̂i are selected such

that allow the model to fit a wide set of statistical properties without emphasiz-
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ing any one in particular. After having carried out a large number of tests using

available data, the four following properties were selected: the coefficient of varia-

tion, Cv(h) =
√
γh,0/µh, the lag-1 autocorrelation, ρ(h) = γh,1/γh,0, the skewness

κ(h) = ξh/γ
3/2
h,0 , and the probability that an arbitrary interval of length h is dry,

Φ(h). The utilized fitting procedure assumes that rainfall time series are available

as the coarsest temporal resolution of 1 hour. It specifically uses the statistical

properties of the rainfall process at four different aggregation periods, h, 1, 6, 24,

and 72 hours. The weights, ωi, are taken equal to “1” for all statistical properties

and for the four different aggregation times. Totally, m = 16 statistical properties of

rainfall observations are used to fit the five parameters (λ, β, η, µc, α) and E{Y1} is

finally used to estimate θ. Given the high non-linearity in the parameter functions,

the automated procedure should be well constrained to avoid unrealistic values of

the parameters (e.g., Cowpertwait (1998)). The adopted feasible regions are taken

from Cowpertwait (1998): 0.0001 < λ < 0.05; 0.01 < β < 0.99; 1 < µc < 80;

0.5 < η < 30; 0.1 < α < 20; in comparison to the original formulation, the regions

of validity for η, µc, and α are restricted to reduce the tendency of the optimization

procedure toward the boundaries. Overall, the simplex method (Nelder and Mead ,

1965) is used as a minimization method for the imposed objective function. The

method has been previously employed with good performance also in terms of its

convergence characteristics (Cowpertwait , 1998; Cowpertwait et al., 2007). In order

to take into account the seasonality of site climatology, the parameters are esti-

mated on a monthly basis, i.e., six parameters for each months need to be inferred

to completely define the NSRP model.

3.3 Low-frequency properties of the rainfall process

Previous efforts of validation of the NSRP model at larger time intervals, for

instance at the yearly time scales, have indicated that the variance of the simulated

process was smaller than the one inferred from observed data. As already stated in

the introduction, due to their nature the conventional weather generator techniques

often fail to capture entirely inter-annual variability (Wilks and Wilby , 1999). This

observation is related to the underlying assumption of stationarity of precipitation

process. This underestimation of inter-annual variability can be problematic for

numerous applications in hydrology or when climate change scenario needs to be

explicitly introduced. Kilsby et al. (2007) highlight that this problem is present not

only in the framework of weather generators but in the physically-based climate

models as well.

Attempts to resolve this issue have typically used an external conditioning of the

parameters of the rainfall models. The conditioning was derived by climate charac-

teristics, such as monthly statistic (Wilks, 1989) or indices of large-scale circulation

(Kiely et al., 1998). These approaches have been used with Markov chain or renewal

process of precipitation. However, examples to link NSRP models to patterns of

large-scale circulation also exist (Fowler et al., 2000, 2005). The external condition-
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ing allows one to produce realizations for a non-stationary climate. For instance,

changes in large-scale circulation patterns can be inferred from climate models and

transferred into “future” meteorological realizations using a rainfall generator.

In this study, the capability of reproducing low-frequency properties of the pre-

cipitation process is introduced selecting externally the total annual precipitation

generated with the NSRP model, on the basis of an annual precipitation model, as

explained later in this section. Following this approach, the variance and autocor-

relation properties of precipitation process at the annual scale are preserved. Note

that this does not automatically assure the preservation of the monthly variance

of precipitation. The preservation of the annual variance, without preserving the

monthly one might induce a theoretical error. For instance, extremely drought years

may be obtained with a uniformly lower amount of precipitation in all of the months

rather than due to a drastic reduction of rainfall in a few months and vice-versa for

extremely wet years. This artifact becomes larger as the difference between the sim-

ulated and the observed variance of monthly precipitation increases. Fortunately,

the “overdispersion” at monthly scale is generally limited and the artifacts imposed

by the methodology are typically negligible, as shown in the result analysis. Fur-

thermore, it can be argued that inter-annual variability of precipitation is the the

preferred property to be preserved for most agricultural, ecological, and hydrological

applications.

Markov-type models have been commonly used to reproduce annual time series

of precipitation (Srikanthan and McMahon, 1982, 2001), although they neglect the

long term persistency of the process (Koutsoyiannis, 2003). In this study the inter-

annual variability of precipitation is simulated using an autoregressive order-one

model, AR(1), with the skewness modified through the Wilson-Hilferty transforma-

tion (Wilson and Hilferty , 1931; Fiering and Jackson, 1971):

Pyr(i) = P yr + ρPyr(Pyr(i− 1)− P yr) + η(i)σPyr

√
1− ρ2Pyr

, (9)

where P yr [mm] is the average annual precipitation, σPyr [mm] is the standard devi-

ation, and ρPyr is the lag-1 autocorrelation of the process. The term η(i) represents

the random deviates of the process and is skewed according the Wilson-Hilferty

transformation:

η(i) =
2

γn

(
1 +

γn ε(i)

6
− γ2n

36

)3
− 2

γn
, (10)

where the skewness of η(i) is γη = (1− ρ3Pyr
)γPyr/(1− ρ2Pyr

)1.5; γPyr is the skewness

inferred from observations and ε(i) are the standard normal deviates. The Wilson-

Hilferty transformation is not exact. However, the lag-one autocorrelation and the

coefficient of skewness of annual rainfall data are usually within the limits of validity

of the transformation and thus no significant errors are introduced (McMahon and

Miller , 1971).

TheNSRP model that captures intra-annual precipitation regime (the high-frequency
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properties) is coupled with the AR(1) model (equation 9) that reproduces precipita-

tion inter-annual variability (the low-frequency properties) in the following manner.

First, the NSRP model is used to simulate precipitation series at the hourly time

scales for the period of one year. The obtained total precipitation is then compared

with the annual value estimated with the autoregressive model (9). If the differ-

ence between the two values is larger than a certain percentage p̌ of the measured

long-term mean annual precipitation, the simulated one-year long hourly series are

rejected, a new series is generated and the above comparison is repeated. Once the

difference between the two values is below the p̌ threshold, the simulated with the

NSRP model time series of precipitation are accepted. The entire procedure is re-

peated until all annual values generated with the model AR(1) model have matching

hourly series generated with the NSRP model. The rejection threshold p̌ can be cho-

sen according to the information about observational errors of annual precipitation.

An illustrative example of the coupling between the two methods is shown in Figure

2 for the location of Tucson airport (AZ), with p̌ = 2.5%. As seen, the inter-annual

variability of precipitation process is reproduced correctly.
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Figure 2: The annual precipitation simulated with the NSRP model (red line) after the
external selection based on the AR(1) precipitation series (magenta dots) has been carried
out. The vertical bars denote the p̌ = 2.5% of the long-term average annual precipitation.

Given the stationary nature of the NSRP model, the search of “suitable” years

can be computationally exhaustive for locations characterized by a high variance of

annual precipitation. For instance, it can be the case when observed time series have

limited duration. The short duration leads to a larger variance and does not permit

a correct evaluation of the internal parameters of the NSRP model. The compu-

tationally exhaustive search of “suitable” years is only related to time constraints,

because although it is not easily demonstrable, it should be expected that some rare

combination of random numbers in the NSRP model would reproduce total annual

precipitation equal to the one simulated by the annual model, AR(1).

In order to reach the convergence in a reasonable computational time, an ad-

justment procedure similar to that proposed by Kyselý and Dubrovský (2005) is
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introduced after a pre-defined number of iterations without a satisfactory match.

Specifically, discarded one-year long hourly NSRP precipitation series are first se-

lected that have the closest match to the precipitation simulated with the AR(1)

model. These series are subsequently multiplied by a correction factor to match the

annual precipitation simulated with the AR(1) model. This correction alters the

internal structure of the data generated with the NSRP model. However as justified

by Kyselý and Dubrovský (2005), the magnitude of such an adjustment is several

times lower than the inter-diurnal or diurnal variability, and consequently the effect

of the adjustment procedure is insignificant. The correction are minimized by choos-

ing the discarded precipitation series with the total annual precipitation as closest

as possible to the unmatched annual precipitation simulated by the AR(1) model.

As concluded from our numerous experiments, such adjustments were found to be

necessary only for a few years in a millennium and only for stations with limited

records.

Overall, it is theoretically possible that the proposed procedure might somewhat

alter the intra-annual structure of the rainfall process because of the applied correc-

tion factors and since the output of the NSRP model is sampled in a non-random

fashion. However, it is argued that these drawbacks are minor with respect to the

overall capability of reproducing the inter-annual variability of precipitation pro-

cess. The negligible effect of the procedure is confirmed by the results obtained for

precipitation statistics at shorter aggregation periods (shown in the result analysis).

Furthermore, using long-term simulations we have successfully verified that the re-

sults of simulating high-frequency precipitation are not distinguishable between the

cases when the model feature of inter-annual variability is enabled or not (results

not shown).

When inter-annual variability is the most important statistical property to repro-

duce, the proposed procedure could be enhanced using an ARFIMA(p, d, q) model

instead of the AR(1). Without describing the details of using an ARFIMA model,

such a type of model allows one to take into account the long-memory eventually

present in the time series (Montanari et al., 1997; Koutsoyiannis, 2000, 2003).

3.4 Results and validation

The capability of the model to reproduce the main statistics of the precipitation

process at different aggregation periods is tested. The simulated mean, variance,

lag-1 autocorrelation, skewness, frequency of non-precipitation, i.e. the probability

that an arbitrary interval of length h is dry, and the transition probability from a

wet-spell to another wet-spell are compared with observations at the monthly scale.

The comparison is shown at the periods of aggregation of 1, 24, and 48 hours (Figure

3, 4 and 5).

Reproducing statistical properties different from the ones used in the calibration

of precipitation parameters such as transition probability from wet-spells or all the

statistics different from mean at aggregation of 48 [h] is challenging. The results

shown in Figure 5 for the 48 [h] aggregation period confirm that the statistical
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Figure 3: A comparison between observed (red) and simulated (green) monthly statis-
tics of precipitation (mean, variance, lag-1 autocorrelation, skewness, frequency of non-
precipitation, transition probability wet-wet), for the aggregation period of 1 hour.
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Figure 4: A comparison between observed (red) and simulated (green) monthly statis-
tics of precipitation (mean, variance, lag-1 autocorrelation, skewness, frequency of non-
precipitation, transition probability wet-wet), for the aggregation period of 24 hours.
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Figure 5: A comparison between observed (red) and simulated (green) monthly statis-
tics of precipitation (mean, variance, lag-1 autocorrelation, skewness, frequency of non-
precipitation, transition probability wet-wet), for the aggregation period of 48 hours.

properties are also preserved at this aggregation time. After the verification of

statistics at short aggregation periods, the entire annual cycle of the rainfall process

is checked in Figure 6. The simulated process perfectly preserves the mean but

underestimates the monthly variance of observations, almost in every month. These

differences are related to the poor skill of the NSRP model in reproducing, the low

frequency variances as discussed in Section 3.3.

The precipitation component must be checked to properly reproduce also extreme

values including rainfall maxima and occurrences of dry and wet periods. The per-

formance of the NSRP model with regards to the reproduction of the extreme values

is influenced by its internal structure (probability distributions of random variables).

Specifically, the distribution used to simulate the random intensity of the rainfall

cell, X, directly affects the realizations of extremes. A Gamma probability distribu-

tion as previously tested by Cowpertwait (1998) is employed. Weibull and Mixed-

Exponential probability distributions have been also tested and compared with the

Gamma. Nonetheless, no appreciable differences have been observed. All of these

probability distributions provide consistent results in terms of fitting of extreme val-

ues of precipitation intensity. The simulated and observed extreme precipitations

for time aggregation periods of 1 hour and 24 hours are illustrated in Figures 7a and

7b. For all test locations, there is a good match between the simulated and observed

values, especially for the return periods at up to 20-30 years. This is not appreciable

for the location at Boston (Figure 7a,b), where only 18 years of observed values

were available. For larger return periods, multiple simulations would be necessary
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Figure 6: A comparison between observed (red) and simulated (green) monthly precipi-
tation. The vertical bars denote the standard deviations of the monthly values.

to define the mean and confidence intervals of extreme precipitation and effectively

corroborate the weather generator (Semenov , 2008). Cumulative probabilities asso-

ciated with the data are estimated with the method of plotting position (Cunnane,

1978).

Extremes of dry spell and wet spell durations are generally poorly captured by the

model, especially for dry climates. Simulations and observations sometimes differ

also for return periods of less than one year. The results for Boston are illustrated

in Figure 7c, where extreme dry spells are well simulated, while extreme wet spells,

are slightly overestimated for return periods larger than 10 years (Figure 7d).

The fractions of total time that precipitation exceeds a certain depth are shown for

different aggregation periods in Figure 8a. As seen, precipitation events with depth

larger than 1 [mm] are somewhat overestimated for aggregations periods longer than

48 [h]. Conversely, the fractions of time with precipitation depth larger than 20 [mm]

is slightly underestimated for the same aggregation periods. This is consistent given

the preservation of precipitation average at each aggregation period. Errors of such

type are almost unavoidable in the NSRP model, as parameterized in AWE-GEN.

They might be related to the use of a single set of parameters to describe rainfall

cells and clusters, that in the natural process are the result of different mechanisms,

such as stratiform and convective rainfall. The use of NSRP models that overlap two

different kind of cells (Cowpertwait , 2004; Cowpertwait et al., 2007) might be used

to reduce this error. The distribution of dry spell duration (Figure 8b) is usually

represented reasonably well, although for temperate climates its mean is slightly

underestimated. For Boston it is underestimated by 0.7 days, as confirmed from

Figure 8b. In drier climates, the mean is usually preserved but the shape of the

distribution can deviate from the observed one for intermediate dry spell durations.

The distribution of the wet spell durations is generally captured by the weather

generator with respect to the mean and the shape of the probability distribution

(Figure 8c). This performance is realized whether the climate is dry or wet.
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The errors seen in Figure 8a, are generally negligible. For example, the difference

in the fraction of time precipitation depth exceed 1 [mm] at aggregation time of 96

[h] is typically around 0.1 but usually less than 0.05. These errors are acceptable

and imply that only a small amount of rainfall is transferred from intense rainfall

to drizzle. Errors in the representation of dry spell duration mean between 0.5

and 1.5 days are generally not desirable. It should be noted that this is usually

the most difficult precipitation property to be simulated by the weather generator.

This feature is important since the distribution of dry spell duration significantly

affects the simulation of all other variables. Fortunately, it has been checked that

although some inaccuracy can be appreciated, it does not influence the simulation

performance of the other variables, as testified from the results in the following.
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Figure 7: A comparison between the observed (red crosses) and simulated values of
extreme precipitation (green crosses) at (a) 1-hour and (b) 24-hour aggregation periods;
(c) extremes of dry and (d) wet spell durations. Dry/wet spell duration is the number of
consecutive days with precipitation depth lower/larger than 1 [mm].
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4 Cloud cover

Cloud cover is an important climatic variable directly affecting radiation fluxes and

indirectly influencing air temperature and relative humidity. This variable is often

neglected in empirical statistical weather generators (Richardson, 1981; Semenov

et al., 1998; Parlange and Katz , 2000). Commonly, weather generators simulate

variables dependent on cloud cover, such as air temperature, on the basis of pre-

cipitation occurrence, e.g., dry and wet states. The latter are only weak implicit

proxies for the process of cloud cover, that is not explicitly included. In simula-

tions of the hydrological cycle and energy budget, the cloud cover is often assumed

constant or its definition is oversimplified. This is a theoretically incorrect assump-

tion incompatible with the high-frequency variation of cloud cover and its effect

on shortwave radiation fluxes. In some applications, such as modeling of snowpack

or vegetation dynamics, this assumption can lead to unrealistic results. The cloud

cover simulated in AWE-GEN is based on the framework first developed by Curtis

and Eagleson (1982) and further modified by Ivanov et al. (2007).

4.1 Model

Cloud cover N(t) is the fraction of the celestial dome occupied by clouds. It

can be measured in oktas [0 − 8] or in cloud fraction [0 − 1], where 0 signifies

clear sky conditions and 1 is used to describe complete overcast conditions (Muneer

et al., 2000). The fraction notation will be used in the following. In the model

of Ivanov et al. (2007), N(t) [−] is considered to be a random variable that has

different dynamics during intra-storm and inter-storm periods. During an intra-

storm period, i.e. the hours with precipitation different from zero, the value of

cloudiness is assumed to be equal to 1. During an inter-storm period, the existence

of the “fair weather” region, R0, is assumed. The region is sufficiently distant from

storms, thus the cloud cover can be assumed stationary and fully characterized by

the first two statistical moments: the mean E{N(t)}t∈R0 = M0 and the variance

V AR{N(t)}t∈R0 = σ2
M of the process. The length of the post-storm transition

period after which the cloud cover process can be considered stationary is indicated

with TR [h]. The second assumption is that the transition of the cloud process

between the boundary of a storm period and the fair-weather takes place through an

exponential function J(t). The latter is characterized by two coefficients controlling

the transition rates, ς and γ [h−1], and by the average cloud cover of the first hour

after a storm and of the last hour of an inter-storm: J1. The expression for the

cloudiness becomes:

N(t) = M0 +
(
J1 −M0

)(
1− J(t)

)
+m(t)J(t) , (11)

where m(t) is the stationary sequence of correlated deviation with E{m(t)} = 0;

V AR{m(t)} = σ2
m and autocorrelation function ρm(l) (where l is the lag). The time

varying conditional expectation and variance of cloud cover under this assumption
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have been estimated from Curtis and Eagleson (1982):

E{N(t)}t∈tb = M0 +
(
J1 −M0

)(
1− J(t)

)
, (12)

V AR{N(t)}t∈tb = σ2
mJ(t)2 . (13)

The stationary sequence of correlated deviation m(t) is modeled through an AR(1)

model where the random deviates ε(t) are distributed following a Beta probability

distribution with parameter a and b and evaluated with the same procedure of

lower and upper bound constraining proposed by Ivanov et al. (2007). The a and

b parameters are estimated on the basis of the of the discretized cloudiness [0:0.1:1]

at the step before N(t − 1) and therefore are in total eleven parameters. The

procedure proposed by Ivanov et al. (2007) allows to use a different distribution of

the correlated deviation m(t) function of the cloudiness N(t − 1). This has been

shown to improve significantly the results of the model in comparison to a fixed

distribution for ε(t), as used in Curtis and Eagleson (1982). The AR(1) model for

m(t) can be expressed as follows:

m(t) = ρmm(t− 1) + ε(t)σm
√

1− ρ2m . (14)

The transition function is calculated with the same expression defined by Ivanov

et al. (2007):

J(t) =
(
1− e−ς(t−t0)

)(
1− e−γ(t0+tb−t)

)
, (15)

where t0 is the time at which inter-storm period begins and tb is the length of the

inter-storm period. The decay coefficients ς and γ are taken equal and are calculated

with the procedure proposed by Curtis and Eagleson (1982). Assuming symmetry

for the transition period, the second term of equation (15) can be neglected. Further,

equation (15) can be reduced to 0.99 =
(
1− e−ς(TR)

)
, when t0 = 0 and J(t) = 0.99

for t = TR. It follows that γ = ς = 4.61/TR.

The differences with the formulation of Ivanov et al. (2007) include the relaxation

of the requirements of the minimum length of inter-storm period between two suc-

cessive precipitation events; and the explicit computation of cloudiness in the first

hours following and preceding rainfall spells J1, instead of using a theoretical value

equal to 1.

The parameters required for the model are estimate monthly and are: M0, σ
2
m,

ρm(1), γ = ς, J1, and eleven values of a and b. The procedure for the parameter

estimation follows that of Curtis and Eagleson (1982) and Ivanov et al. (2007), with

some modifications (see Appendix B). First, the threshold value TR of the transition

period is determined to identify the fair-weather region, i.e., the region where N(t) is

stationary. Once the fair-weather region is identified the parameters M0, σ
2
m, ρm(1),

γ = ς, J1 are easily evaluated with conventional techniques. The value of the first

hour of the transition period J1 is obtained as the average of all the first and last

hours of the inter-storm periods. The empirical random deviate ε(t) are estimated
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for fair weather region considering that when t ∈ R0 the transition function J(t) = 1

and equation 11 reduces to N(t) = M0 +m(t). a and b are finally evaluated from

m(t) as a function of the discretized cloudiness [0:0.1:1] at the step before N(t− 1).

This procedure might be regarded as over-parameterized. However, the complexity

of the approach is required by the difficulty of simulating a stochastic process such

as cloud cover. When time series of hourly cloudiness are available, the identification

of all parameters is computationally efficient.

4.2 Results and validation

A comparison between the observed and simulated monthly distributions of cloud

cover is shown in Figure 9 for the fair-weather period. The weather generator per-

forms generally well, in reproducing both the shape of the probability density func-

tion and the seasonality of the process. A less than perfect agreement was noticed for

few locations for summer months. This shortcoming was first noted by Ivanov et al.

(2007) and is related to the non-stationarity in the cloudiness process when passing

of atmospheric precipitation systems do not necessarily result in rainfall at a given

location. The non stationarity of cloud cover occurrence in such periods cannot be

identified from the weather generator and consequently biases in the mean value are

produced. The shape of probability density functions of total cloud cover are also

well reproduced by AWE-GEN (Figure: 10). The differences between the simulated

and observed mean cloud cover are generally less than 0.05, although sometimes

discrepancies around 0.1 are appreciable. This holds true also for other tested lo-

cations. The performance of simulating the total cloudiness is not as satisfying as

the one obtained for the fair-weather period. This is due to a higher difficulty of

reproducing the transition regions.
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Figure 9: A comparison between the observed (cyan) and simulated (magenta) fair
weather cloud cover distribution for every month. Eobs and σobs are the observed mean
and standard deviation and Esim and σsim are the simulated ones.
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Figure 10: A comparison between the observed (cyan) and simulated (magenta) total
cloud cover distribution, for every month. Eobs and σobs are the observed mean and
standard deviation and Esim and σsim are the simulated ones.
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5 Air temperature

In weather generators, air temperature is commonly simulated at the daily scale,

implying the generation of only maximum and minimum temperature or, alterna-

tively, the temperature mean and its daily range (Richardson, 1981; Semenov et al.,

1998; Wilks and Wilby , 1999; Parlange and Katz , 2000). Typically, air temperature

or its residuals are simulated through multi-regression equations between air tem-

perature and other variables. Lagged air temperature can be included to take into

account the autocorrelation process. Consequently the effects of climate variables

such as cloudiness, are considered only indirectly, i.e., in the use of different pa-

rameterizations or equations for wet or dry states. Although such an approach can

reproduce the mean and the variance accurately, it is not suitable for applications

that require information on intra-daily air temperature variation. For these reasons,

a mixed physics-based stochastic approach was developed by Curtis and Eagleson

(1982) and later enhanced by Ivanov et al. (2007). This work utilizes the same

approach with some further improvements.

5.1 Model

The generation of air temperature, T (t) [◦C], is simulated as the sum of a stochastic

component, dT (t) [◦C], and a deterministic component, T̃ (t) [◦C]:

T (t) = T̃ (t) + dT (t) . (16)

The deterministic component of air temperature, T̃ (t), is assumed to be directly

related to the underlying physical processes such as the divergence of radiative and

eddy heat fluxes. More specifically the deterministic time-gradient of temperature,

dT̃ (t)/dt, is a function of the air temperature itself and of the incoming long-wave

radiation. It is further related through two functions to the Sun’s hourly position

and site geographic location (Curtis and Eagleson, 1982; Ivanov et al., 2007). Thus

the deterministic component, T̃ (t), is expressed as follows:

dT̃ (t)

dt
= b0 − b1T̃ (t) + b2K(t)s(t) + b3K(t)r(t) + b4q(t) , (17)

where bi (i = 0, 1, . . . , 4) are the five regression coefficients of the model, q(t) =

Latm/1000 [W m−2] is a scaled incoming long-wave radiation, Latm [W m−2], and

K(t) = 1 − 0.75N3.4 [−] is the cloud attenuation factor defined by Kasten and

Czeplak (1980). The longwave radiation Latm [W m−2] is modeled using the air

temperature:

Latm = KN (N)σT 4
a , (18)

where Ta [K] is the air temperature at the reference height, σ = 5.670410−8 [W m−2 K−4]

is the Stefan-Boltzmann constant; and KN (N) = 1 + 0.17N2 is the correction for

the cloudiness N [−] (TVA, 1972). The terms r(t) [−] and s(t) [−] are functions of
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the solar height, hS [rad], defined by Curtis and Eagleson (1982):

s(t) = sin(δ)sin(Φ)− cos(δ)cos(ϕ)cos(
πt

12
) , TH rise ≤ t ≤ TH set ,

s(t) = 0 , otherwise ,

r(t) =
ds(t)

dt
=

π

12
cos(δ)cos(Φ)sin(

πt

12
) , TH rise ≤ t ≤ 12 ,

r(t) = 0 , otherwise , (19)

where t is the local hour, δ [rad] is the solar declination, Φ [rad] is the local latitude,

TH rise [local hour] is the local time of sunrise and TH set [local hour] is the local

time of sunset. For details on the calculation of these quantities see the Appendix

C. The factors r(t), s(t), and q(t) are subjected to modification daily and seasonally

and they explain the deterministic variation of air temperature. The differential

equation, dT̃ (t)/dt = f
(
T̃ (t), s(t), r(t), q(t),K(t)

)
, is solved each day to compute

the deterministic cycle of air temperature T̃ (t) once the initial value of deterministic

temperature T̃ (t − 1) is provided. Curtis and Eagleson (1982) provide a solution

method of equation (17) summarized in Appendix D.

The stochastic temperature component, dT (t) = T (t)− T̃ (t), is estimated through

an autoregressive model AR(1). At the hourly scale, the random deviate of tem-

perature exhibits a significant dependence in the hour of the day. Differences are

noticeable in the statistics of dT (t) for different phases of the day: morning, midday,

afternoon, evening, and night. The stochastic component is particularly important

for the determination of extreme of air temperature, such as minimum and max-

imum temperatures. Consequently, the average of the stochastic component dT h,

and its standard deviation σdT,h are estimated differently for each hour of the day

h ∈ [0, . . . , 23]. Note that this is an improvement in comparison to the original

models of Curtis and Eagleson (1982) and Ivanov et al. (2007).

dT (t) = dT h + ρdT
(
dT (t− 1)− dT h

)
+ ε(t)σdT,h

√
(1− ρ2dT ) , (20)

where ε(t) are the standard normal deviate, ρdT is the lag-1 autocorrelation of the

process. The average, dT h, and the standard deviation, σdT,h, of dT (t) depend on

the hour of the day.

The coefficients and the parameters used to estimate the deterministic and stochas-

tic components are evaluated at the monthly scale. Ivanov et al. (2007) describe the

procedure for the estimation of the coefficients (see Appendix E). Once the regres-

sion coefficients are determined, the parameter: dT h, σdT,h, and ρdT are estimated

from dT (t) using conventional techniques. A constrain on ρdT < 0.96 is required to

avoid numerical instability. Otherwise, it has been observed that combinations of

random numbers might lead to unrealistic values of temperature.
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5.2 Results and validation

The assessment of the performance of an hourly weather generator should not

be limited to the daily means, especially for the air temperature process. The

reproduction of the daily cycle and minimum and maximum temperatures is indeed

fundamental for evaluating its capability.

Figure 11 shows the seasonal variation of mean air temperature and its standard

deviation at the two aggregation periods of 1 hour and 24 hours. The observed values

are reproduced almost perfectly. Note that the mean does not change with aggrega-

tion period. The seasonal variability of daily maximum and minimum air tempera-

tures including standard deviations are illustrated in Figure 12. These quantities are

well captured by the weather generator, although the variances can be slightly over-

estimated or underestimated. The daily cycle and the probability density function

of air temperature are also well reproduced, as shown in Figure 13.

2 4 6 8 10 12
−10

−5

0

5

10

15

20

25

Month

[°
C

]

a) Monthly average air temperature, agg. period 1 hour

 

 
OBS.
SIM.

2 4 6 8 10 12

−5

0

5

10

15

20

25

Month

[°
C

]

b) Monthly average air temperature, agg. period 24 hour

 

 

Figure 11: A comparison between the observed (red) and simulated (green) average air
temperature for every month, aggregation periods of 1 [h] (a) and 24 [h] (b). The vertical
bars denote the standard deviations.

Air temperature extremes at different return periods are reproduced satisfactorily,

though overestimation or underestimation are often present both for minimum and

maximum temperature. As seen in Figure 14 extremes of daily temperature (24 hour

aggregation period) are generally reproduced better than hourly values. Nonetheless

errors around 2-4 [◦C] for return periods of more than 10 years are not unusual. This

shortcoming can be considered fairly insignificant for most hydrological applications.
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Figure 12: A comparison between the observed (red) and simulated (green) daily max-
imum (a) and minimum (b) air temperature for every month. The vertical bars denote
the standard deviations.
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Figure 13: A comparison between the observed (red) and simulated (green) air tempera-
ture distribution (a) and average daily cycle (b). The triangles are the standard deviations
for every day hour, Eobs and σobs are the observed mean and standard deviation and Esim

and σsim are the simulated ones.
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Some problems might arise only when the introduction of temperature thresholds

for plant mortality or other natural processes is required.

The occurrence of heat and cold waves, i.e. the number of consecutive days with

air temperature higher than the 90th percentile (heat wave) or lower than the 10th

percentile (cold wave) are poorly represented (Figure 15). There are differences in

the accuracy of the results among the tested stations but generally, the temperature

wave occurrence is underestimated. In order to simulate these climatic character-

istics correctly, information about larger patterns of the atmospheric circulation is

required. Obviously, a point scale weather generator cannot capture such features.

Fortunately, the simulation of extreme heat and cold waves can be assumed to have

a minor influence for numerous hydrological applications. Therefore, this shortcom-

ing of AWE-GEN is acceptable in such applications. The estimation of heat and

cold waves might be significant when climate change impacts on human health are

required (Rebetez et al., 2006), in this case other approaches are required.

An analysis has been also performed for four indices of air temperature as de-

fined in the “Expert Team on Climate Change Detection, Monitoring and Indices”

(ETCCDMI ) (http://cccma.seos.uvic.ca/ETCCDMI/list 27 indices.shtml). These

four indices allow an evaluation of the weather generator from a climatologist per-

spective. Specifically, results are compared between observation and simulations for

icing days (days with Tmax < 0 [◦C]), summer days (days with Tmax > 25 [◦C]),

frost days (days with Tmin < 0 [◦C]) and tropical nights (days with Tmin > 20 [◦C]).

As shown in Table 2, AWE-GEN is able to reproduce such indices confirming its

overall skill.

Table 2: Comparison between observed and simulated climatological indices of air tem-
perature

Observed fraction Simulated fraction

Icing days 0.080 0.091

Summer days 0.198 0.207

Frost days 0.254 0.272

Tropical nights 0.078 0.070

The inter-annual variability of air temperature is neglected in this version of AWE-

GEN. This is related to the difficulties in finding a proper external conditioning to

reproduce low-frequency of the air temperature process. Nonetheless, the simulated

annual temperature presents a certain variance, larger than 0, due to random num-

ber generation and to the influence of precipitation in the deterministic component

of air temperature. The simulated variance is somewhat lower than the observed

one because of the “overdispersion” issue already discussed in the description of an-

nual precipitation (Section 1). Nevertheless, for several tested locations, the annual

variance is only slightly underestimated and for typical applications the mismatch

between the simulated and natural process can be neglected.
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Figure 14: A comparison between the observed (red) and simulated (green) extremes of
air temperature. a) Maxima of hourly temperature. b) Minima of hourly temperature.
c) Maxima of daily temperature. d) Minima of daily temperature.

0 10 20 30 40 50 60 70 80 90
5

10

15

20
a) Extreme heat waves. Consecutive days with air temp. larger than 90 percentile

D
ay

s

 

 

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40
b) Extreme cold waves. Consecutive days with air temp. lower than 10 percentile

Return period

D
ay

s

 

 

OBS.
SIM.

Figure 15: A comparison between the observed (red) and simulated (green) occurrence
of heat (a) and cold (b) waves, i.e. consecutive days with temperature higher than the
90 percentile or lower than 10 percentile.
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6 Shortwave incoming radiation

A correct estimation of the shortwave radiation is important because it represents

the main source of incoming energy in the land-surface systems, directly affect-

ing several ecological and hydrological processes. In weather generators, radiation

is commonly estimated through regression with other variables (Richardson and

Wright , 1984; Parlange and Katz , 2000). The likely reason for such an approach

is a conventional lack of methodology for direct estimation of cloudiness. However,

once the site geographic location and cloudiness are known, several deterministic

models with different degrees of complexity can be used to calculate the incoming

shortwave radiation for clear-sky and overcast conditions (Gueymard , 1989; Freiden-

reich and Ramaswamy , 1999; Muneer et al., 2000; Gueymard , 2001, 2008; Ineichen,

2006). These methods recur to a large use of empirical coefficients to determine

the atmospheric transmittances and the scattering fractions for direct and diffuse

shortwave radiation. In this study, the incoming shortwave radiation is estimated

with the model REST2 developed by Gueymard (2008) for clear sky conditions.

The parameterizations of Stephens (1978) and Slingo (1989) are used to compute

transmittances for arbitrary cloudy conditions. This approach follows mainly the

one proposed by Ivanov et al. (2007), improving the clear sky component where the

model of Gueymard (1989) is substituted with the more recent model of Gueymard

(2008). In hydrological applications only the global shortwave radiation component

is typically considered, yet recent solar radiation models offer the convenience of

shortwave flux computation in multiple-bands (Freidenreich and Ramaswamy , 1999;

Gueymard , 2001). The partition of the incoming energy into different spectral bands

could be useful for several purposes such as ecological or eco-hydrological simulations

that require the photosynthetically active radiation, PAR, as input. Moreover using

a multi-band approach allows one to minimize the overlapping effect between water

vapor and gas, making the transmittance modeling more reliable (Freidenreich and

Ramaswamy , 1999). The clear sky radiation component in AWE-GEN, considers two

bands Λ: the ultraviolet/visible, UV/VIS, band with wavelengths [0.29 − 0.70 µm]

and the near infrared, NIR, band with wavelengths [0.70 − 4.0 µm] (Gueymard ,

2008). In the first band, ozone, nitrogen dioxide absorption, and Rayleigh scatter-

ing are concentrated; the absorption by water vapor and uniformly mixed gases is

mainly concentrated in the second band.

The two-band model is a compromise between more complex formulations adopted

in General Circulation Models and simple broadband approaches. This compromise

allows one to compute explicitly the PAR without requiring a computationally in-

tensive multiple-bands parametrization rather unadapt for applications of weather

generators.

According to Gueymard (2008) the extraterrestrial radiation, R′
0, is partitioned

in the fractions of 0.4651 in the UV/VIS band, and 0.5195 in the NIR band. The

extraterrestrial radiation, R′
0, can be obtained starting with the value of the solar

constant R0 = 1366.1 [W m−2], as suggested by Darula et al. (2005). This value is
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corrected to take into account the ratio between the actual Earth-Sun distance and

the mean Earth-Sun distance R′
0 = E0 R0 [W m−2]. The correction factor E0 [−]

was derived by Iqbal (1983) as a function of the daily angle γ = 2π(JDay − 1)/365:

E0 = 1.00011 + 0.034221 cos γ + 0.00128 sin γ

+0.000719 cos 2γ + 0.000077 sin 2γ , (21)

where JDay is the Julian Day. The equations to calculate the instantaneous values

of other variables used in the radiation computation, such as the solar altitude, hS

[rad], solar azimuth, ζS [rad], solar declination, δ [rad], sunrise local time, TH rise

[local hour], sunset local time, TH set [local hour], and daily length, DLH [h], are

defined in the Appendix C. The equations are mainly drawn from Iqbal (1983) and

Eagleson (2002).

6.1 Direct and diffuse radiation for clear sky conditions

When extraterrestrial radiation enters the atmosphere, it is attenuated by Rayleigh

scattering TR,Λ [−], uniformly mixed gas absorption Tg,Λ [−], ozone absorption To,Λ

[−], nitrogen dioxide absorption Tn,Λ [−], water vapor absorption Tw,Λ [−], and

aerosol extinction Ta,Λ [−] (Gueymard , 1989, 2008). The equations to compute the

transmittance terms TX,Λ for both bands are given in Gueymard (2003, 2008) and

in Appendix F.

The direct beam radiation at normal incidence, RBn,Λ [W m−2], is computed for

the first band UV/VIS Λ1, and for the second band NIR Λ2:

RBn,Λ1 = 0.4651R′
0

∏
X

TX,Λ1 , (22)

RBn,Λ2 = 0.5195R′
0

∏
X

TX,Λ2 . (23)

Following the model of Gueymard (2008) the incedent diffuse irradiance, RDp,Λ

[W m−2], on a perfectly absorbing ground (zero albedo) is defined in equation (24)

where the prime indicate that the transmittances are calculated with a reference air

mass m′ = 1.66 [−].

RDp,Λ = To,ΛTg,ΛT
′
n,ΛT

′
w,Λ

[
BR,Λ

(
1− TR,Λ

)
T 0.25
a,Λ

+BaFΛTR,Λ

(
1− T 0.25

as,Λ

)]
R′

0,Λ sin(hS) , (24)

where hS [rad] is the solar altitude, BR,Λ [−] are the forward scattering fractions

for Rayleigh extinction, Ba [−] is the aerosol forward scattering factor, and FΛ [−]

is a correction factor to compensate for multiple scattering effects and shortcomings

of the simplified approach (Gueymard , 2008). The term Tas,Λ [−] is the aerosol

scattering transmittance function of the single scattering albedos, ωΛ1 [−] and ωΛ2

[−], and of the spectral aerosol optical depth, τaΛ [−] (Gueymard , 1989, 2008). For

the parameterizations of the above quantities, see Gueymard (2008) and Appendix
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F.

Backscattered radiation, RDd,Λ [W m−2], must be added to the diffuse fluxes

because of the interaction between the reflecting Earth surface and the scattering

layer of the atmosphere. This component is computed as follows (Gueymard , 2008):

RDd,Λ = ρgρs,Λ
(
RBn,Λ sin(hS) +RDp,Λ

)
/
(
1− ρg,Λρs,Λ

)
, (25)

where ρg [−] is the ground albedo referring to a large area of 5-50 [km] radius

surrounding the point of interest and ρs,Λ [−] is the sky albedo, which is described

in Gueymard (2008) (Appendix: F). Finally, the total diffuse radiation for clear sky

conditions in each band is RD,Λ = RDp,Λ + RDd,Λ and the normal global radiation

is RGn,Λ = RBn,Λ +RD,Λ.

The parameters required for the clear sky radiation model of Gueymard (2008)

are the ozone, uo [cm], and nitrogen dioxide, un [cm], amounts in the atmospheric

column, the single scattering albedos, ωΛ1 [−] and ωΛ2 [−], the surrounding ground

albedo, ρg [−], and the Ångström turbidity parameters, αΛ [−] and βΛ [−], from

which the spectral aerosol optical depth, τaΛ, can be obtained trough the Ångström

equation:

τaΛ = βΛΛ
−αΛ . (26)

In the two band model, the wavelength Λ is substituted by an effective wave-

length Λe for each of the two bands. Further αΛ and βΛ are taken equal for the

two band (Gueymard , 1989, 2008). These parameters are not commonly available

for typical applications of the weather generator. Nonetheless, the ranges of vari-

ation of several of these parameters are limited. In most cases typical values can

be assumed. The value of the single scattering albedo ωΛ is typically constrained

between 0.75-0.98 for most applications (Russell et al., 2002); Gueymard (2008) sug-

gests to adopt a value of ωΛ1 = 0.92 and a value ωΛ2 = 0.84 when no-information

is available. The ozone, uo, and the nitrogen dioxide, un, amounts have a min-

imal influence in the overall process and constant values of 0.35 [cm] and 0.0002

[cm], respectively, are assumed in the weather generator. The surrounding ground

albedo, ρg [−], depends on the location but for snow-free region its value is typ-

ically between 0.1 and 0.25. The contribution of backscattered radiation is very

small (Gueymard , 2008) and may become important only in snow-covered region,

where ρg can reach the values of 0.7-0.85. The Ångström turbidity parameters α

and β require a more detailed discussion. These parameters, especially β, have a

strong effect in determining the clear sky irradiance. Suitable values of α and β

can be derived from the spectral irradiance measurement, typically Aerosol Optical

Depth (AOD) from n discrete bands using a linearization of Ångström equation (26)

(Gueymard , 2008). The development of various sun-photometric ground networks,

especially AERONET (http://aeronet.gsfc.nasa.gov/) (Holben et al., 1998) has pro-

vided a large data archive of measured AOD and other atmospheric states with a
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world-wide coverage. The possible values that the Ångström turbidity, α, can as-

sume are 1.3±0.5. The parameter β, on the other hand, can vary several orders of

magnitude reflecting sky conditions, from nearly zero (0.001 or less) for clear sky to

0.5 for very hazy conditions (Chaiwiwatworakul and Chirarattananon, 2004). The

globally and annually averaged value of AOD (at [0.55 µm]) is about 0.12, that

implies average values of β around 0.05 (Ramanathan et al., 2001; Robertson et al.,

2001). When site-specific values of α and β are not available, the weather generator

uses reference values: 1.3 for α (Gueymard , 1989) and β is calibrated to fit the

average monthly clear sky radiation.

An example of the performance obtained with the model of Gueymard (2008) for

clear sky condition is shown in Figure 6.1, where global, direct and diffuse broadband

shortwave radiation are compared with the observations. The daily cycles of the clear

sky shortwave radiation are reproduced satisfactorily for the different components,

although midday differences typically in the order of [10−20] [W m−2] are detectable.

Generally, the results tend to underestimate the peaks of direct and diffuse radiation.

Differences in the average monthly values are somewhat smaller.
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Figure 16: A comparison between the observed (red) and simulated (blue) daily cycle of
global (a), direct (b) and diffuse (c) shortwave radiation for clear sky condition.

6.2 Direct and diffuse radiation for overcast conditions

Relative fluxes for cloudy conditions need to be addressed, after clear sky radiation

fluxes are reproduced satisfactorily. Typically, in hydrological applications empirical

equations relating the cloud cover, N [−], to the ratio between clear sky and total

or partially overcast radiations were used to account for clouds effects (Kasten and

Czeplak , 1980; Becker , 2001). Radiative properties of clouds are related to their type

and structure. The latter should be taken into account through some parametriza-

tion. The approach described in Ivanov et al. (2007) is also employed in AWE-GEN
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and uses the models developed by Stephens (1978) and Slingo (1989). These ap-

proaches argue that radiative properties of clouds are mainly related to the total

vertical liquid water path, LWP [g m−2], which remains almost constant for clouds

with the same broadband optical thickness (Stephens, 1978). Specifically Slingo

(1989) simplified a multi-band cloud transmittance model to include only four wave-

length bands, making the application suitable for weather generator purposes. This

model parameterizes cloud transmittances for diffuse, RD,Λ, and normal direct beam,

RBn,Λ, clear sky fluxes, considering the latter normally incident on top of the clouds.

Slingo (1989) accounted for four spectral bands λ, one in UV/VIS and three in NIR

wavelength intervals: [0.25−0.69µm], [0.69−1.19µm], [1.19−2.38µm], [2.38−4.0µm].

The four band approach of Slingo (1989) can be transferred into the two band of

Gueymard (2008) considering that the first bands of the two model UV/VIS almost

coincide Λ1 ≃ λ1 and the second band Λ2 is the sum of the other three bands

Λ2 = λ2 + λ3 + λ4. The direct normal irradiance in each band λ ,= 1 , 2 , 3 , 4 for

cloudy conditions, R̃Bn,Λ [W m−2], is estimated as a linear combination of the fluxes

from clear and cloudy fractions of the sky (Slingo, 1989):

R̃Bn,Λ = RBn,Λ

[
(1−N) + TB,λN

] k(λ)

K(Λ)
, (27)

where TB,λ [−] is the cloud transmissivity for direct beam flux in band λ, k(λ) are

the respective fractions of solar irradiance at the top of atmosphere in each band

for Slingo (1989), [0.460 0.326 0.181 0.033]; and K(Λ) are the fractions of solar

radiation in the model of Gueymard (2008) [0.4651 0.5195]. Further details of the

parametrization can be found in the auxiliary material of Ivanov et al. (2007) and

in Appendix G of this work.

The diffuse radiative fluxes for cloudy conditions can result from the diffuse clear

sky fraction and from the direct radiation incident on the clouds. The incident

component of diffuse radiation in each band λ ,= 1 , 2 , 3 , 4 for cloudy conditions,

R̃Dp,Λ [W m−2], is estimated as a linear combination of the fluxes from clear and

cloudy fractions of the sky (Slingo, 1989):

R̃Dp,Λ = (1−N)RDp,Λ +N
[
TDB,λRBn,Λ + TDD,λRDp,Λ

] k(λ)

K(Λ)
, (28)

where TDB,λ [−] and TDD,λ [−] are the diffuse transmissivity for direct and incident

diffuse radiation, respectively.

The backscattered contribution under a cloudy sky R̃Dd,Λ [W m−2] is computed

accounting for the effects of cloud transmittance:

R̃Dd,Λ =
[
ρgρcsB,Λ/

(
1− ρg,ΛρcsB,Λ

)]
R̃Bn,Λ sin(hS)

+
[
ρgρcsD,Λ/

(
1− ρg,ΛρcsD,Λ

)]
R̃Dp,Λ . (29)

The equation 29 has the same expression as 25, with the difference that the sky

albedo for overcast or partially overcast conditions depends on the cloud albedo,

33



which is different for direct beam, ρcsB,Λ [−], and diffuse radiation, ρcsD,Λ [−]. The

albedos, ρcsB,Λ and ρcsD,Λ, are estimated as a linear combination of clear sky albedo,

ρs [−], and diffuse reflectivity for direct and diffuse incident radiation, AB,λ [−], AD,λ

[−]:

ρcsB,Λ = (1−N)ρs,Λ +NAB,λ
k(λ)

K(Λ)
, (30)

ρcsD,Λ = (1−N)ρs,Λ +NAD,λ
k(λ)

K(Λ)
, (31)

where the diffuse reflectivity for direct beam and diffuse incident radiation, AB,λ,

AD,λ, are defined in Slingo (1989) (Appendix G) and are considered to be an ap-

proximation of cloud albedo.

The total diffuse radiation for cloudy sky is therefore: R̃D,Λ = R̃Dp,Λ + R̃Dd,Λ.

The final value of the global radiation in each band Λ is R̃Gn,Λ = R̃Bn,Λ + R̃D,Λ.

For arbitrary sky conditions global normal shortwave radiation is indicated as Rsw,n

[W m−2], where Rsw,n =
∑

Λ R̃Gn,Λ, if N > 0, and Rsw,n =
∑

ΛRGn,Λ, if N = 0.

The described model requires cloud cover fractions and the cloud optical thickness,

τN [−], which is essential for the description of the radiative properties of clouds

(Stephens, 1978). The thickness τN can be approximately parameterized in terms of

the liquid water path, LWP (Stephens, 1978). The cloudy sky condition is assumed

to be characterized by a certain amount of LWP (N) [g m−2], which is estimated

from a reference value of LWP for overcast conditions LWPR [g m−2] (Ivanov et al.,

2007):

LWP (N) = LWPR N . (32)

From equation (32), it follows that LWP varies from 0, when N = 0, to LWPR

(N = 1). Note that the exponential dependence of LWP on cloudiness N in

Ivanov et al. (2007) has been replaced with a linear one, which leads to a ratio

Rsw,n(N)/Rsw,n(0) that better matches observations (Kasten and Czeplak , 1980).

By evaluating different LWPR for different months, this parametrization allows one

to take into account the seasonal differences in cloud properties. In some circum-

stances LWP measurements or estimations could be also available and can be used

directly.

The output of the radiation component of the weather generator contains the

direct and diffuse radiation fluxes for the ultraviolet/visible UV/VIS band [0.29 −
0.70µm] and the near infrared NIR band [0.70 − 4.0µm]. As stated previously, the

photosynthetically active radiation (PAR) can be important in several applications.

The PAR radiation is the spectral range of solar light between 0.40 [µm] and 0.70

[µm]. This range does not coincide perfectly with the first radiation band UV/VIS.

Reduction factors between the first radiation band and PAR are adopted (equations

33 and 34), as proposed byGueymard (2008). The reduction factors,MB [−] andMG

[−], are considered valid also for cloudy conditions, although the original formulation
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of Gueymard (2008) was proposed only for clear sky conditions. This assumption

should not introduce significant errors since the reduction factors depend only on

Ångström turbidities, and on the air mass of aerosol extinction and of Rayleigh

scattering. These factors are not expected to be modified under cloudy conditions.

P̃ARBn = R̃Bn,Λ1 MB , (33)

P̃ARD = R̃Gn,Λ1 MG − P̃ARBn , (34)

where P̃ARBn [W m−2] and P̃ARD [W m−2] are the direct beam PAR at normal

irradiance and the diffuse PAR, respectively. The parametrization for the two re-

duction factors, MB and MG, can be found in Gueymard (2008) and in Appendix

F.

The spatial distribution of solar radiation over a surface is function of the surface

geometry, i.e. of the local topography. Site slope, βT [rad], and aspect, ζT [rad],

can alter the daily distribution of incoming energy at the ground. Furthermore, the

reflection and shadow effects of the surrounding terrain can strongly influence radia-

tion fluxes. Obviously, the terrain effects are site-specific and are not accounted for in

the weather generator. For a flat unobscured surface the only applicable adjustment

is to multiply the R̃Bn,Λ by the sine of the solar altitude hS : R̃B,Λ = R̃Bn,Λ sin(hS)

in order to obtain the flux density for unit surface area. The same holds for clear sky

conditions. When local topographic effects are non-negligible, sin(hS) is substituted

by a function of βT and ζT (Appendix H). When the remote shading effect becomes

important, the sky view factor, Svf (x⃗), and the shadow effect, Sh(x⃗, t), function at

the position, x⃗, and the local time, t, should be introduced (Olseth et al., 1995; Ku-

mar et al., 1997; Dubayah and Loechel , 1997; Rigon et al., 2006; Ivanov et al., 2007).

Although topography effects cannot be accounted for directly by the weather gener-

ator, insights on the topographic effects on solar radiation are provided in Appendix

H.

6.3 Results and validation

In all simulations, the stations are considered to be located on a flat surface, with-

out topography-induced shadow or obstruction effects. The β Ångström turbidity

parameter is calibrated monthly to fit the average value of global, direct, and diffuse

clear sky radiation. The reference value of the liquid water path, LWPR, is succes-

sively calibrated to fit the global, direct, and diffuse shortwave radiation for all sky

conditions. The results obtained are shown in Figures 17, 18, and 19. The monthly

average of shortwave radiation (Figure 17) is simulated properly, with occasional

differences of 5-15 [W m−2]. Such differences could be related to the higher fre-

quency variability of parameters such as β Ångström turbidity or LWPR. Weekly

or daily variabilities of these parameters are not captured in AWE-GEN, as the rel-

evant parameters are calibrated at the monthly scale. There is also an effect of error

propagation from the simulation of the cloud process, that can worsen the results.

Daily cycles of shortwave radiation are reproduced satisfactorily for different com-
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ponents (Figure 18), although biases are present during mid-day hours for several

stations. The weather generator tends to overestimate direct radiation and under-

estimate diffuse radiation, as shown in Figure 18 for Boston. However, it should

be noted that the opposite holds true sometimes. Annual cycles of global radiation

for different hours of local time are simulated very well, except for small deviations

at the sunrise and sunset hours (Figure 19). This mismatch can be related to the

reflection of beam radiation inducing radiative fluxes before sunrise and after sunset

or to the measurement errors that are very likely to occur at low radiation density.
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Figure 17: A comparison between the observed (red) and simulated (green) mean monthly
shortwave radiation. a) Global radiation. b) Direct beam radiation. c) Diffuse radiation.
The vertical bars denote the standard deviations of the monthly values.
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Figure 18: A comparison between the observed (red) and simulated (blue) daily cycle of
global (a), direct (b) and diffuse (c) shortwave radiation for all sky conditions.
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Figure 19: A comparison between the observed (red) and simulated (green) annual cycle
of global shortwave radiation for different local time hours. The global shortwave fluxes
are expressed in [W m−2].
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7 Vapor pressure

Given the importance of vapor pressure for several hydrological and ecological ap-

plications, it needs to be included as one of the simulated variables. Vapor pressure

is not commonly simulated by weather generators (Semenov et al., 1998). Some

weather generators include relative humidity (Sharpley and Williams, 1990; McK-

ague et al., 2003) or dew point temperature (Parlange and Katz , 2000; Ivanov et al.,

2007). Relative humidity or dew point temperature are generally estimated with a

multi-regressive analysis (Parlange and Katz , 2000). An attempt to introduce a more

physically-based approach was done by considering that dew point temperature is

almost constant during the day time and has the tendency to come into equilibrium

with nightly minimum temperatures (Kimball et al., 1997). Kimball et al. (1997)

pointed out that in arid and semiarid climate the dew point temperature could dif-

fer from nightly minimum temperature and proposed an empirical model to take

into account these adjustments. A modified version of the same model was used

to simulate dew point temperature by Ivanov et al. (2007). Typically, a daily or

longer time step is used to simulate dew point temperature. Curtis and Eagleson

(1982) proposed a multi-regressive model to simulate hourly dew point temperature

for cases when its cross-correlation with other variables is non-negligible. While

the conversion of relative humidity or dew point temperature into vapor pressure is

mathematically straightforward, it involves non-linearity. Because of that, accurate

simulations of dew point temperature or relative humidity do not necessary imply

a good fit for vapor pressure. Dew point or relative humidity outputs of weather

generators should be checked before asserting their suitability for applications that

require vapor pressure.

7.1 Model

This study approaches the simulation of air humidity via the simulation of va-

por pressure deficit, ∆e [Pa], i.e., the difference between the vapor pressure at

saturation, esat [Pa], and the air ambient vapor pressure, ea [Pa], where esat =

611 exp[17.27 Ta/(237.3+Ta)] [Pa] (with Ta [◦C]) is a well known expression (Ding-

man, 1994). Following Bovard et al. (2005), who noted a correlation between vapor

pressure deficit, ∆e, and PAR during daylight time, correlations of vapor pressure

deficit, ∆e, with shortwave radiation and temperature have been analyzed in this

study. The vapor pressure deficit, ∆e, shows a strong correlation with air tem-

perature and a weaker correlation with global shortwave radiation lagged by several

hours. Specific humidity and vapor pressure, ea, remain almost constant throughout

the day, especially in dry climates. Therefore variations of ∆e and relative humidity,

U [−], are well explained by the diurnal cycle of air temperature. Specifically, there

is a positive relation between the daily cycle of air temperature and the daily cycle

of vapor pressure deficit. The assumption is primarily valid when the atmosphere is

stable and exchanges between air masses with different characteristics are limited.

In order to simulate vapor pressure, a similar model framework as for the case of
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air temperature is used: ∆e is simulated as the sum of the deterministic component,

∆̂e [Pa], and the stochastic component, d∆e [Pa]:

∆e(t) = ∆̂e(t) + d∆e(t) . (35)

The deterministic component of vapor pressure deficit is related to air temperature

through a cubic function, which is essentially an approximation of the commonly

used exponential relation between Ta [◦C] and esat. From observational data, a

non-negligible correlation was also detected with global shortwave radiation, Rsw

[W m−2], at lag one and two hours. The influence of solar radiation is generally

minor, but it becomes important when air temperature effects are secondary. The

deterministic component ∆e is calculated with the equation:

∆̂e(t) = a0 + a1T
3
a (t) + a2Rsw(t− 1) + a3Rsw(t− 2) , (36)

where ai (i = 0, 1, . . . , 3) are the regression coefficients. The deterministic compo-

nent, ∆̂e, usually shows a minor hourly variance, when compared with ∆e(t). The

residuals d∆e(t), that constitute the stochastic component of vapor pressure deficit,

are modeled with the AR(1) approach in a similar fashion as for other variables:

d∆e(t) = d∆e+ ρd∆e

(
d∆e(t− 1)− d∆e

)
+ ε(t)σd∆e

√
(1− ρ2d∆e) , (37)

where d∆e is the average of vapor pressure deficit deviations, σd∆e is the standard

deviation and ρd∆e is the lag-1 autocorrelation of the process. The terms ε(t) are the

standard normal deviates. Finally, the atmospheric vapor pressure, ea, is calculated

as the difference between esat and ∆e(t). It is possible that ea calculated with the

proposed procedure will assume values larger than esat and smaller than 0. Because

of that, such values are simply corrected and assigned to the boundary values 0

and esat. This approximation introduces a bias in the ea values near the limits.

Nonetheless, this shortcoming is expected to slightly affect hydrological or ecological

applications and furthermore could be corrected in future versions of the model.

The parameters of the deterministic component, ai (i = 0, 1, . . . , 3), are estimated

on a monthly basis using conventional regression techniques, for example, the least

square approach. The parameters of the stochastic component: d∆e, σd∆e, and

ρd∆e are evaluated using the time series of d∆e(t) after removing the deterministic

component from the observed series of ∆e.

7.2 Results and validation

The performance of AWE-GEN in simulating metrics of air humidity is evaluated

by investigating several statistical properties of vapor pressure, ea [Pa], relative

humidity, U [−], and dew point temperature, Tdew [◦C]. The capability of the

model to reproduce the first two moments of vapor pressure at the time aggregation
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periods of 1 hour and 24 hours is shown in Figure 20. Overall the performance is

quite remarkable. The vapor pressure probability density function (Figure 21b) is

also well simulated. In hydrologic applications, the simulation of the daily cycle of

relative humidity is an important feature that affects evaporative flux estimation. In

Figure 21a, the comparison between simulations and observations highlights a good

overlap of the daily cycles, especially during day-time hours.
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Figure 20: A comparison between the observed (red) and simulated (green) mean monthly
vapor pressure for 1 [h] (a) and 24 [h] (b) aggregation time periods. The vertical bars
denote the standard deviations of the monthly values.

The fitting of the probability density functions of relative humidity, U , and dew

point temperature, Tdew, are shown in Figure 22. AWE-GEN reproduces these

quantities satisfactorily. The relative humidity probability density in the upper

and lower limits of the feasible range is overestimated. This holds true for several

locations and is due to the overshot approximation. Differences in the tails of the

Tdew distributions are rather frequent due to non-linearities in the transformation

of ea to Tdew.

The seasonality of mean relative humidity and its variance are also well captured

(Figure 23), with only a slight underestimation of the 24 hours variance, especially

in dry climates. Conversely, the dew point temperature is poorly simulated. The

monthly variances simulated by AWE-GEN are usually larger than the observed

ones (Figure 24a). This holds true for all the analyzed metrics of daily dew point

temperature, i.e., mean, maximum, and minimum. Furthermore, the mean of daily

maximum and minimum dew point temperature are typically overestimated and

underestimated, respectively (Figure 24). Shortcomings in reproducing dew point

temperature should be not an issue in many applications, since vapor pressure, ea,

and relative humidity, U , are typically required. When Tdew is the variable of inter-
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Figure 21: A comparison between the observed (red) and simulated (green) relative hu-
midity daily cycle (a) and vapor pressure probability density function (b). The triangles
in (a) represent the daily cycle of relative humidity standard deviation. Eobs and σobs are
the observed mean and standard deviation and Esim and σsim are the simulated ones.

est, the above limitations may become important and the suitability of simulated

Tdew values must be checked according to the scope of the study.
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Figure 22: A comparison between the observed (red) and simulated (green) dew point
temperature (a) and relative humidity (b) probability density functions. Eobs and σobs

are the observed mean and standard deviation and Esim and σsim are the simulated ones.

41



2 4 6 8 10 12
0.2

0.4

0.6

0.8

1

[−
]

a) Monthly average relative humidity, agg. period 1 hour

2 4 6 8 10 12
0.2

0.4

0.6

0.8

1

Month

[−
]

b) Monthly average relative humidity, agg. period 24 hours

 

 

OBS.
SIM.

Figure 23: A comparison between the observed (red) and simulated (green) mean monthly
relative humidity for aggregation periods of 1 hour (a) and 24 hours (b). The vertical
bars denote the standard deviations of the monthly value.
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Figure 24: A comparison between the observed (red) and simulated (green) monthly dew
point temperature for aggregation periods of 24 hours. a) Mean dew point temperature.
b) Maximum dew point temperature. c) Minimum dew point temperature. The vertical
bars denote the standard deviations of the monthly value.
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8 Wind speed

Several studies highlight that cross-correlation between wind speed and other vari-

ables is typically very weak (Curtis and Eagleson, 1982; Parlange and Katz , 2000;

Ivanov et al., 2007) and thus wind speed is usually modeled as an independent vari-

able. Nevertheless, in some locations wind speed exhibits a marked daily cycle and

therefore the assumption of independence may need to be questioned. The inclusions

of correlations among wind speed and other variables can be important because it

allows the generator to capture wind speed intra-daily variations. The daily cycle

of wind speed may affect the estimation of quantities such as the sensible and latent

heat and is often required in hydrological and eco-hydrological modeling. The wind

speed daily cycle at the ground surface is mainly related to the turbulent fluxes oc-

curring in the surface boundary layer that are enhanced during the day-time by the

the dissipation of sensible heat. The wind daily cycle is thus more pronounced in dry

climates where the Bowen ratio is higher. Starting with this physical concept, the

relation between the global solar radiation and wind speed has been investigated. It

was found that the maximum correlation between the two cycles is usually shifted

by several hours, possibly because of the different thermal properties of the ground

surface and air. Correlation between different lags of global solar radiation and

wind speed have been checked. The assumption of correlation between radiation

and wind speed may become invalid for sites with strongly advective regime, e.g.,

when a site is located in a sea proximity, where the differential heating of surface

affects the average daily cycle through sea breeze. Therefore, the weather generator

is not expected to yield robust results for such locations with very complex wind

speed daily cycles.

8.1 Model

The correlation coefficients found between wind speed, Ws [m s−1], and time

shifted global solar radiation, Rsw [W m−2], are usually very small, however they are

significant enough to induce a daily cycle in the wind speed component. Similarly

to previously discussed approaches, the method to simulate the wind speed, Ws

[m s−1], is based on representing the process as a sum of the deterministic, Ŵs, and

the stochastic component, dWs:

Ws(t) = Ŵs(t) + dWs(t) . (38)

The deterministic component, Ŵs(t), relates the wind speed to the incident global

shortwave radiation, Rsw. The correlation is shifted by several hours and the shift

strongly depends on the site location. Lags up to three hours of Rsw are used to

calculate the deterministic component of wind speed:

Ŵs(t) = c0 + c1Rsw(t) + c2Rsw(t− 1) + c3Rsw(t− 2) + c4Rsw(t− 3) , (39)
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where ci (i = 0, 1, . . . , 4) are the regression coefficients. The stochastic component,

dWs(t) = Ws(t)− Ŵs(t), is modeled with the autoregressive AR(1) model including

the Wilson-Hilferty transformation (Wilson and Hilferty , 1931; Fiering and Jackson,

1971). This transformation is necessary to represent the generally positive skewness

exhibited by hourly wind speed data. A Weibull distribution is indeed very often

assumed to model mean wind speed (Takle and Brown, 1978; Deaves and Lines,

1997). The stochastic component dWs becomes:

dWs(t) = dWs + ρdWs

(
dWs(t− 1)− dWs

)
+ η(t)σdWs

√
(1− ρ2dWs

) , (40)

where dWs is the average wind speed deviation, σdWs is the standard deviation,

and ρdWs is the lag-1 autocorrelation of the process. The term η(t) represents

the random deviate of the process that is skewed according to the Wilson-Hilferty

transformation:

η(t) =
2

γn

(
1 +

γnε(t)

6
− γ2n

36

)3
− 2

γn
, (41)

where the skewness of η(t) is γn = (1−ρ3dWs
)γdWS

/(1−ρ2dWs
)1.5; γdWs is the skewness

of the observed wind speed, and ε(t) are the standard normal deviates.

The proposed approach also remains valid when the wind speed is an independent

process; in this case the simulation will be dominated by the stochastic component,

still producing consistent results.

The parameters ci (i = 0, 1, . . . , 4) of the deterministic component are estimated

with conventional regression techniques. The parameters of the stochastic compo-

nent: dWs, σdWs , ρdWs , and γdWS
are evaluated from the time series of dWs(t) after

removing the deterministic component from the observed series of Ws. Wind speed

generally does not present marked differences throughout the year, therefore the

parameters are derived and assumed to be valid for all months.

8.2 Results and validation

The probability density function of wind speed is well captured in AWE-GEN as

well as are the first two statistical moments of the process (Figure 25a). The wind

speed daily cycle is reproduced correctly (Figure 25b) for almost all of the analyzed

stations, and surprisingly also for stations located near sea. Nonetheless, it would

not be surprising if the weather generator would perform poorly in some cases.

The weather generator is unable to reproduce extremes, as seen in Figure 26. The

hourly and daily extremes of wind speed are strongly underestimated, even for return

periods lower than one year. This is not a problem for ecological or hydrological

purposes but it implies that AWE-GEN cannot be used to generate meteorological

forcing for structural design purposes where wind extremes are required.
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Figure 25: A comparison between the observed (red) and simulated (green) wind speed
probability density function (a) and daily cycle of wind speed (b). Eobs and σobs are the
observed mean and standard deviation and Esim and σsim are the simulated ones.
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Figure 26: A comparison between the observed (red) and simulated (green) extremes of
wind speed at aggregation periods of 1 hour (a) and 24 hours (b).
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9 Atmospheric pressure

The atmospheric pressure, Patm [mbar], is generally neglected in weather genera-

tors given its relatively low impact on hydrological and ecological processes. How-

ever, Patm is useful in many non-linear equations describing physical phenomena,

such as evaporation. This observation implies that using a constant value of atmo-

spheric pressure is theoretically incorrect. In AWE-GEN, a simple autoregressive

model AR(1) is employed with parameters estimated to be valid for the entire year,

thus neglecting the seasonal distribution of this variable.

Patm(t) = Patm + ρPatm

(
Patm(t− 1)− Patm

)
+ ε(t)σPatm

√
(1− ρ2Patm

) , (42)

where Patm is the average atmospheric pressure, σPatm is the standard deviation,

ρPatm is the lag-1 autocorrelation of the process, and ε(t) are the standard normal

deviates. The shape of the atmospheric pressure distribution is perfectly reproduced

as well as are the principal statistics (Figure 27).
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Figure 27: A comparison between the observed (red) and simulated (green) atmospheric
pressure probability density function. Eobs and σobs are the observed mean and standard
deviation and Esim and σsim are the simulated ones.

The parameters of the model Patm, σPatm , and ρPatm are evaluated from the time

series of Patm(t) with conventional procedures.
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10 Covariance between variables

The use of an intermediate physically-stochastic weather generator allows one to

take into account mechanistic dependence between the meteorological variables, e.g

precipitation vs cloudiness and, at the same time, directly introduces statistical cor-

relations, e.g., vapor pressure vs temperature. Figure 28 illustrates a qualitative

comparison of the interdependence between different variables. Precipitation oc-

currence affects cloud cover realizations, the latter process controls solar radiation

and daily temperature range. Consequently, solar radiation and air temperature

influence vapor pressure and wind speed calculation, generating a cascade of causal

feedbacks that, starting from precipitation, affect all of the other variables.
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Figure 28: Simulated hourly values of hydro-meteorological variables with AWE-GEN:
a.) precipitation; b.) cloud cover, c.) air temperature, d.) global shortwave radiation, e.)
relative humidity, f.) vapor pressure, g.) wind speed, and h.) atmospheric pressure.

An explicit analysis of cross-correlation between climate variables is provided here.

In Figure 29 a comparison between the observed and simulated mean monthly cloudi-

ness and the number of wet days is shown. The interdependence between these two

variables is generally captured in AWE-GEN but it cannot be appreciated for the

discussed location. The performance in reproducing such a feature is well discernable

for climates with a strong cloud cover seasonality, such as the climate correspond-

ing to the location of San Francisco. Table 3 shows a synthesis of the mean values

47



Table 3: A comparison between the observed and simulated means of daily temperature
amplitude, ∆Tday, daily global shortwave radiation, Rsw, and daily relative humidity, U ,
during rainy and rainless days.

Variable Rain days Rainless days

Measured Simulated Measured Simulated

∆Tday[
◦C] 6.8 8.0 8.4 9.0

Rsw[W m−2] 111 143 181 186

U [−] 0.80 0.65 0.61 0.64

of daily temperature amplitude, ∆Tday, daily global shortwave radiation, Rsw, and

daily relative humidity, U , during rainy and rainless days. AWE-GEN tends to

overestimate daily temperature amplitude and to underestimate the relative humid-

ity during rainy days. These shortcoming are a consequence of the structure of

the weather generator that only implicity accounts for the influence of rain in air

temperature simulation. A cloud attenuation coefficient, K(t), and incoming long-

wave radiation, Latm, are the only variables connecting Ta to N . Moreover, this

linkage is explicitly accounted for at the hourly and not at the daily scale. These

dependencies in a humid temperate climate such as the one that characterizes the

Boston area cannot fully explain the marked difference in ∆Tday between rainy and

rainless days. The underestimation of daily relative humidity, U , in rainy days can

be also explained by the same reasons and it is further affected by errors of daily

temperature amplitude.
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Figure 29: A comparison between the observed (cyan) and simulated (black) monthly
number of wet days (a) and cloud cover (b).

Figure 30 shows an overview of cross-correlations at the daily scale between some

of the variables. The principal cross-correlations are captured at lag-0. The hourly

weather generator, unlike the empirical statistical weather generator, reproduces the

cross correlations only implicity, especially at the daily time scale. Although overall

some differences can be noticed, the results are considered quite satisfactory.
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Figure 30: A comparison between the observed (red) and simulated (green) cross-
correlation between: daily temperature amplitude and cloudiness (a), global solar ra-
diation and cloudiness (b), global solar radiation and wind speed (c), and global solar
radiation and relative humidity (d).
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11 Application of AWE-GEN in climate change studies

The developed weather generator can be also used for climate change studies.

There is the possibility to parameterize AWE-GEN on the basis of climate statistics

that are not calculated from observations but are derived from a stochastic down-

scaling methodology. A detailed discussion about the use of the weather generator

for the simulation of future climate scenarios, as inferred from climate models, can

be found in Fatichi et al. (2011). Briefly, the stochastic downscaling procedure

derives distributions of factors of change for several climate statistics from a multi-

model ensemble of outputs of General Circulation Models (GCM) using a Bayesian

approach. The methodology infers factors of change for precipitation and air tem-

perature statistics, comparing realizations of climate models for two intervals of

time. The two investigated periods are usually representing 20-40 years of simulated

present climate conditions and 20-40 years of simulated future climate conditions.

The factors of change are subsequently applied to the statistics derived from the

observations to calculate statistics representative of the future climate conditions.

Once all of the statistical properties are calculated for the future climate, these are

used to re-evaluate the parameters of the weather generator. A new set of modi-

fied parameters of AWE-GEN is estimated. AWE-GEN is then used to simulate a

scenario corresponding to future climate conditions (see Fatichi et al. (2011)).

For several reasons explained in Fatichi et al. (2011) the methodology is able to

modify only a limited number of AWE-GEN parameters. Specifically, a new set of

precipitation parameters: λFUT , βFUT , ηFUT , µFUT
c , αFUT , θFUT can be calculated

as the final result of the stochastic downscaling procedure. Corrections are also

provided for the inter-annual variability of precipitation, i.e., re-estimating P
FUT
yr ,

σFUT
Pyr

, and γFUT
Pyr

. Finally, new parameters ∆T = TFUT
mon − TOBS

mon are introduced to

account for changes in the air temperature. The new parameters ∆Ti i = 1, ..., 12

represent the variation of mean monthly temperature, Tmon, between the present and

projected future climate conditions and can be used by AWE-GEN in the simulation

of the the air temperature component (Fatichi et al., 2011). Note that precipitation

and air temperature affects directly or indirectly all of the other variables due to

the imposed linkages within the weather generator. In such a way the information

about the climate change can be also transferred to variables not directly accounted

for in the downscaling.
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APPENDIX

A Statistical properties of the NSRP model

Referring to Section 3.1 the coefficient A(h, l) and B(h, l) necessary to calculate

the second moment of the Neymann-Scott rectangular pulse model are defined in

Cowpertwait (1998) as:

A(h, l) = hη + e−ηh − 1 , if l = 0 ,

A(h, l) = 0.5
(
1− e−ηh

)2
e−ηh(l−1) , if l > 0 , (43)

B(h, l) = hβ + e−βh − 1 , if l = 0 ,

B(h, l) = 0.5
(
1− e−βh

)2
e−βh(l−1) , if l > 0 , (44)

where h is the time aggregation and l ≥ 0 is a integer lag of the autocorrelation.

The third moment, ξh = E{[Yh − E{Yh}]3}, is also defined in Cowpertwait (1998):

ξh = E{[Yh − E{Yh}]3} = 6λµc E{X3}(ηh− 2 + ηhe−ηh + 2e−ηh)/η4

+3 λE{X}E{X2}E{C(C − 1)}f(η, β, h)/[2η4β(β2 − η2)2]

+λE{X}3E{(C2 − C)(C − 2)}g(η, β, h)
/[2η4β(η2 − β2)(η − β)(2β + η)(β + 2η)] , (45)

where the function f(η, β, h) and g(η, β, h) are listed below:

f(η, β, h) = −2η3β2e−ηh − 2η3β2e−βh + η2β3e−2ηh + 2η4βe−ηh

+2η4βe−βh + 2η3β2e−(η+β)h − 2η4βe−(η+β)h − 8η3β3h+ 11η2β3 − 2η4β

+2η3β2 + 4ηβ5h+ 4η5βh− 7β5 − 4η5 + 8β5e−ηh − β5e−2ηh

−2hη3β3e−ηh − 12η2β3e−ηh + 2hηβ5e−ηh + 4η5e−βh , (46)

g(η, β, h) = 12η5βe−βh + 9η4β2 + 12ηβ5e−ηh + 9η2β4 + 12η3β3e−(η+β)h

−η2β4e−2ηh − 12η3β3e−βh − 9η5β − 9ηβ5 − 3ηβ5e−2ηh

−η4β2e−2βh − 12η3β3e−ηh + 6η5β2h− 10η3β4h+ 6η2β5h

−10η4β3h+ 4ηβ6h− 8β2η4e−βh + 4βη6h+ 12β3η3

−8β4η2e−ηh − 6η6 − 6β6 − 2η6e−2βh − 2β6e−2ηh

+8η6e−βh + 8β6e−ηh − 3βη5e−2βh . (47)

The probability that an arbitrary interval of length h is dry, Φ(h) = P (Yh = 0),

was derived from Cowpertwait (1991); Cowpertwait et al. (1996). It is here modified

to take into account the use of the Geometrical distribution instead of the Poisson
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distribution for the generation of the random number of cells:

Φ(h) = exp
(
−λ h+ λ β−1µ−1

c [1− e(−µc+µce−βh)]

−λ

∫ ∞

0

[
1− ph(t)

]
dt
)
, (48)

where ph(t) is function of h, β, η and µc:

ph(t) =
[
e−β(t+h) + 1− (ηe−βt − βe−ηt)/(η − β)

]
·

exp
[
−µcβ(e

−βt − e−ηt)/(η − β)− µce
−β t + µce

−β(t+h)
]
. (49)

B Cloud cover parameter estimation

This description of cloud cover parameter estimation follows Ivanov et al. (2007).

The parameters used by the cloud cover model are M0, σ
2
m, ρm(1), γ = ς, J1, a, and

b.

The existence of a stationary interstorm fairweather cloud cover process is the

central assumption of the model. The identification of sequences of the fairweather

periods in series of meteorological data therefore becomes essential. The method-

ology proposed by Curtis and Eagleson (1982) employs an iterative approach that

uses records of the total cloud cover during periods between successive precipitation

events. The essence of the method is in estimating the mean value of cloud cover

for some sub-region ∆t within an interstorm period (Figure 31).

Each interstorm period of length Tis = ∆t0 [h] (Figure 31) is considered to be

constrained by the last hour of the first rainfall event and by the first hour of the

following rainfall event. By successively eliminating one hour from both ends of

any given interstorm period (∆τ1 = 1 hour, ∆τ2 = 2 hours, . . . ), a number of

sub-regions, not exceeding in total (Tis/2 − 1), can be defined for each interstorm

period. For any given sub-region, ∆tk, corresponding to k number of eliminated

hours from each end (Figure 31), a mean value of the cloud cover is estimated over

all interstorm periods in the considered precipitation record whose duration exceeds

2k hours. Since k ∈ [0, Tismax/2 − 1], where Tismax is the maximum duration of

an interstorm period in the considered record, a vector of the mean values of cloud

cover of length (Tismax/2− 1) is obtained.

Curtis and Eagleson (1982) argue that with the increasingly larger number of

eliminated hours, the estimated mean value stabilizes, reaching some constant, or

the fairweather mean value, M0. The number of hours, Tr, eliminated from both

ends of all interstorm periods (whose duration exceeds 2Tr) after which there is no

significant change in the mean cloudiness value, is considered to be the length of the

transition period. Consequently, a necessary condition for an interstorm period to

contain a fairweather cloud cover sequence is to be of duration Tis > 2Tr [h].

A note has to be made regarding a particular case of sub-regions within certain

interstorm periods for which the described approach fails. Sometimes, passing atmo-
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Figure 31: An illustration of the procedure used to identify the fairweather cloud cover
period.

spheric precipitation systems do not necessarily result in rainfall at a given location.

However, the cloud cover process is obviously non-stationary during such periods

and the estimated mean value can be significantly affected. The discussed approach

cannot identify such periods, which would, perhaps, require auxiliary information

about cloud vertical structure and spatial information about the precipitation pro-

cess. Nonetheless, the procedure is efficient for most of interstorm periods and

results in reasonable estimates of the transition period as long as the above situa-

tion does not occur often. Caution has to be taken when interpreting the results of

this method. Figure 32 illustrate the outlined procedure.

For the selected values of Tr, both the empirical and observed transition function,

J(t), are plotted in Figure 33. Some differences in comparison to the work of Ivanov

et al. (2007) are discernible. The exponential form of J(t) fits the observed cloud

cover transition quite well in many months. The determination of the critical length,

TR, of the transition period in Ivanov et al. (2007) was left to the subjectivity of

the user. TR, indeed, is the length after which the fair weather region could be

identified. In AWE-GEN, TR is identified with an objective criterion. A threshold

on the derivative of the smoothed mean cloud cover, ˜E{N(t)}, defines the begin of

the fair weather region (Figure 32).

Once Tr is established, the fairweather sequences contained in the interstorm peri-

ods of length Tis > 2Tr are combined in a new time series containing only fairweather

cloud cover values. For these series, created for each month or the entire period of

analysis, the parameters M0, σ2
m, ρm(1) and J1 are determined by conventional

methods. The parameter γ = ς, is estimated according to the equation proposed by

Curtis and Eagleson (1982) (see also Section 4):

γ =
4.61

Tr
. (50)

The parameters a and b are estimated by analyzing random deviates, ε(t), which are

computed from the observed cloud cover series by inverting equation (11) and (14).

The estimation of ε(t) is conditioned by the cloud cover at time (t− 1). Therefore,

11 vectors of deviates are composed from the cloud cover records in the different
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Figure 32: Estimated mean cloud cover value E{N(t)} (continuous line) and the

smoothed function ˜E{N(t)} (dashed line) as a function of the length of transition period.
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Figure 33: Analytical (continuous line) and observed (circles) transition functions J(t)
corresponding to the estimated transition period lengths.
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months. Each vector corresponds to one of the values of N(t− 1): 0.0, 0.1, . . . , 1.0.

For each N(t−1), the corresponding distribution of deviates is approximated by the

Beta distribution with parameters a and b estimated from these deviates. The mean

and standard deviation of the PDFs are essentially constant throughout the entire

range of N(t− 1) values, the skewness of the deviates varies significantly, changing

its sign from positive to negative. As can also be seen in Figure 34, the probability

density functions of the Beta distribution, corresponding to the 11 N(t − 1) have

significant different shapes. Moreover, since the variability is quite substantial for

most months (for all stations), the values of a and b are estimated on a monthly

basis.
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Figure 34: An histogram of deviates ε(t) in the cloud cover model and the corresponding
probability density function (solid line) approximated with the Beta distribution. The
cloud cover N(t− 1) for the month of November is given on a [0, 10] basis.
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C Definition of sun variables

Equations to define solar variables are taken from the auxiliary material of Ivanov

et al. (2007), with some adjustment concerning the limits of integration of solar hour

angle, altitude and azimuth.

Several variables are introduced that define the Sun’s position with respect to a

location on Earth. The declination of the Sun, δ [rad], i.e., the angular distance

between the celestial equator plane and the Sun, measured from the former (and

positive when the Sun lies north of the equator) and along the hour circle (Eagleson,

2002) is defined as:

δ =
23.45π

180
cos

[
2π

365
(172− JDay)

]
. (51)

The angular distance between the planes of the meridian and the Sun’s hour circle

(Eagleson, 2002) is known as the hour angle of the Sun, τS(t) [rad]:

τS(t) =
15π

180
(t+ 12−∆tSL) , if t < 12 + ∆tSL , (52)

τS(t) =
15π

180
(t− 12−∆tSL) , if t > 12 + ∆tSL , (53)

where t [h] is the standard time in the time zone of the observer counted from mid-

night and ∆tSL [h] is the time difference between the standard and local meridian:

∆tSL =
ξ

15

[
15|∆GMT | − |Φ′|

]
, (54)

where ∆GMT [h] is the time difference between the local time zone and Greenwich

Mean Time, Φ′ [angular degree] is the local longitude, and ξ is equal to -1 for west

longitude and +1 for east longitude. The solar altitude, i.e., an angle of radiation

with respect to an observer’s horizon plane, hS [rad], is defined as

sinhS = sinΦ sin δ + cosΦ cos δ cos τS , (55)

where Φ [rad] is the local latitude. The mean value of solar altitude hS, ∆t over a time

interval ∆t [h] is often needed in practical applications. It is obtained integrating

equation (55) in the interval ∆t = [t− tbef ] , [t+ taft]:

hS, ∆t =

∫ t+taft

t−tbef

arcsin[sinhS ] dt , (56)

where tbef [h] and taft [h] are the backward and forward difference between the

standard time in the time zone t [h] and the limits of integration of the sun variables.

Note the implicit dependence of hS from the standard time within τS .

The Sun’s azimuth ζS [rad] is obtained from the “hour angle method” as the

clockwise angle from north:

ζS = arctan

(
− sin τS

tan δ cosΦ− sinΦ cos τS

)
. (57)
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Note that also ζS should be integrated in the interval ∆t = [t − tbef ] , [t + taft] to

obtain the average value.

The sunrise time, TH rise [local hour], the sunset time, TH set [local hour], and the

total day length DLH [h] are also required in applications:

TH rise =
180

15π
[2π − arccos(− tan δ tanΦ)]− 12 , (58)

TH set =
180

15π
arccos(− tan δ tanΦ) + 12 , (59)

DLH =
360

15π
arccos(− tan δ tanΦ) . (60)

D Solution of the ODE for deterministic air tempera-

ture

Equation (17) in Section 5.1 is a first order differential equation, the solution to

which can be found if the initial condition, i.e., the initial temperature, T̃ (t∗), is

given. Curtis and Eagleson (1982) provide the following equation:

T̃ (t) = T̃ (t∗)e−b1(t−t∗) + e−b1tG(t, t∗) , (61)

where:

G(t, t∗) = b0

t∫
t∗

eb1τdτ + b2

t∫
t∗

eb1τK(τ)s(τ)dτ +

b3

t∫
t∗

eb1τK(τ)r(τ)dτ + b4q(t− 1)

t∫
t∗

eb1τdτ

= I1(t) + I2(t) + I3(t) + I4(t) . (62)

By using the full, non-zero expressions for s(t) and r(t) (the system of equations

19) Curtis and Eagleson (1982) derived the following expressions for the terms of

G(t, t∗):

I1(t) = b0

t∫
t∗

eb1τdτ =
b0
b1

[
eb1t − eb1t

∗
]
, (63)

I2(t) = b2

t∫
t∗

eb1τK(τ)s(τ)dτ

= K(t) [K2 (e
b1t − eb1(t−1))−K3 e

b1t cos
πt

12
−K4 e

b1t sin
πt

12
+

K3 e
b1(t−1) cos

π(t− 1)

12
+K4 e

b1(t−1) sin
π(t− 1)

12
] + I2(t− 1) ,

(64)
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I3(t) = b3

t∫
t∗

eb1τK(τ)r(τ)dτ

= K(t) [K6 e
b1t sin

πt

12
−K5 e

b1t cos
πt

12
−

K6 e
b1(t−1) sin

π(t− 1)

12
+K5 e

b1(t−1) cos
π(t− 1)

12
] + I3(t− 1) , (65)

I4(t) = b4

t∫
t∗

eb1τq(τ)dτ =
b4
b1
q(t− 1)(1− eb1)eb1t + I4(t− 1) ,

(66)

where

p =
π

12
, K1 =

b0
b1

, K2 =
b2
b1

sin δ sinΦ ,

K3 =
b1b2

b21 + p2
cos δ cosΦ , K4 =

pb2
b21 + p2

cos δ cosΦ ,

K5 =
p2b3

b21 + p2
cos δ cosΦ , K6 =

pb1b3
b21 + p2

cos δ cosΦ . (67)

Equation (66) linearizes the integral I4(t) that contains q(t), which is a non-linear

function of the temperature, by using the value from the previous hour q(t−1). Be-

sides, the one-hour integration interval is considered short enough to allow variables

K(t) and q(t− 1) to be brought outside their respective integrals (equations 64-66).

The full, non-zero expressions for s(t) and r(t) (the system of equations 19) were

used to obtain the above general equations (64) - (65). Since s(t) and r(t) can be

equal to zero during certain periods of the day, it can be seen that the integrals I2(t)

and I3(t) may have different forms depending on time of the day. The ranges over

which each form is valid are delimited by several critical times. Curtis and Eagleson

(1982) identify five critical times: 1) t0 is the value of t in local time corresponding to

midnight in standard time; 2) tR is the earliest standard hour that does not precede

local sunrise TH rise, (tR ≥ TH rise); 3) t12 is the value of t at the earliest standard

hour that does not precede local noon (t12 ≥ 12); 4) tS is the value of t at the earliest

standard hour that does not precede local sunset, TH set (tS ≥ TH set); 5) t23 is the

value corresponding to 23.00 local standard time. The integrals I2(t) and I3(t) are

evaluated according to the above time ranges using the system of equations (19),

which leads to different forms for G(t, t∗).

E Air temperature parameter estimation

The parameters of the air temperature component are: the regression coefficients

bi (i = 0, 1, . . . , 4), dT h, σdT,h, and ρdT . The procedure of parameter estimation

follows Curtis and Eagleson (1982). The same is described also in the auxiliary

material of Ivanov et al. (2007).

According to Curtis and Eagleson (1982), equation (61) can be re-written to ob-
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tain:

T̃ (t) = e−b1 T̃ (t− 1) + e−b1tG(t, t− 1) . (68)

The hourly temperature change, Y (t) = T (t)− T (t− 1), is obtained if temperature

T (t− 1) is subtracted from both sides of equation (68). Curtis and Eagleson (1982)

show that an equation for Y (t) can be represented in the regression form:

Y (t) = a0 + a1X1(t) + . . .+ a4X4(t) , (69)

where the coefficients ai-s (i = 0, 1, . . . , 4) are:

a1 = e−b1 − 1 ,

ai = −a1
b1

bi , i = 0, 2, . . . , 4 , (70)

and the predictors Xi(t) are:

X1(t) = T̃ (t− 1) ,

X2(t) =

t∫
t−1

K(τ)s(τ)dτ ,

X3(t) =

t∫
t−1

K(τ)r(τ)dτ ,

X4(t) = q(t− 1) . (71)

As above, the one-hour integration interval is considered to be short enough to

allow variable q(t − 1) to be brought outside its integral. Similarly to the previous

discussion, the terms X2(t) and X3(t) containing s(t) and r(t) have different form

depending on time of the day. From a set of linear equations (69), the regression

coefficients ai-s (i = 0, 1, . . . , 4) can be found with conventional methods. Once ai-s

(i = 0, 1, . . . , 4) have been estimated, the regression parameters, bi, can be easily

obtained from (70). The bi-s are estimated on a monthly basis.

Once the regression parameters have been estimated, equation (17) can be used

to simulate the deterministic component of the hourly temperature model. Equa-

tion (17) is applied each day to compute temperatures for each hour starting from

midnight (t = 0). The initial temperature, T̃ (t∗), is taken as the deterministic tem-

perature component estimated at 23 h of the previous day. According to (16), the

difference between the observed and estimated deterministic temperature compo-

nents defines the temperature random deviates. Consequently, series of deviates can

be estimated for each period of interest, e.g., for each month, season, and also hour

of the day. The parameters dT h, σdT,h, and ρdT , are obtained using conventional

estimation techniques.
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F Clear sky radiation parameterizations

The transmittances in band Λ1 and band Λ2 required to estimate direct beam

radiation at normal incidence, RBn,Λ, and the incedent diffuse irradiance, RDp,Λ,

are calculated as in Gueymard (2008).

F.1 Direct beam irradiance

The ozone absorption transmittances, To,Λ, are:

To,Λ1 = (1 + f1mO + f2mO
2)/(1 + f3mO) ,

To,Λ2 = 1.0 , (72)

where mO is the ozone absorption air mass and the other parameter are function of

the ozone amount in atmospheric column, uo [cm]:

f1 = uo(10.979− 8.5421uo)/(1 + 2.0115uo + 40.189u2o) ,

f2 = uo(−0.027589− 0.005138uo)/(1− 2.4857uo + 13.942u2o) ,

f3 = uo(10.995− 5.5001uo)/(1 + 1.6784uo + 42.406u2o) . (73)

The nitrogen dioxide absorption transmittances, Tn,Λ, are:

Tn,Λ1 = min [1, (1 + g1mW + g2m
2
W )/(1 + g3mW )] ,

Tn,Λ2 = 1.0 , (74)

where mW is water vapor air mass and the other parameters are function of the

nitrogen dioxide amount in atmospheric column, un [cm]:

g1 = (0.17499 + 41.654un − 2146.4u2n)/(1 + 22295.0u2n) ,

g2 = un(−1.2134 + 59.324un)/(1 + 8847.8u2n) ,

g3 = (0.17499 + 61.658un + 9196.4u2n)/(1 + 74109.0u2n) . (75)

The Rayleigh scattering transmittances, TR,Λ, are:

TR,Λ1 = 1 + 1.8169m′
R − 0.033454m′2

R)/(1 + 2.063m′
R + 0.31978m′2

R) ,

TR,Λ2 = (1− 0.010394m′
R)/(1− 0.00011042m′2

R) , (76)

where m′
R = (Patm/Patm, 0)mR is calculated from the Rayleigh scattering and uni-

formly mixed gas air mass, mR, after correcting atmospheric pressure for the dif-

ference in pressures between the reference point, Patm [mbar], and sea level, Patm, 0 =

1013.25 [mbar]. The equation to scale atmospheric pressure with elevation is Patm/Patm, 0 =

exp [−gZref/(Rd Tm)], with g = 9.81 [m s−2] acceleration of gravity, Rd = 287.05

[J kg−1;K−1], air gas constant, Tm average value of air temperature between sea

level and Zref , where Zref [m] is the elevation of the reference point. Assuming on

average Tm = 288.15 [K] we have Patm/Patm,0 = exp [−gZref/8434.5].
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The uniformly mixed gas absorption transmittances, Tg,Λ, are:

Tg,Λ1 = (1 + 0.95885m′
R − 0.012871m′2

R)/(1 + 0.96321m′
R + 0.015455m′2

R) ,

Tg,Λ2 = (1 + 0.27284m′
R − 0.00063699m′2

R)/(1 + 0.30306m′
R) . (77)

The water vapor absorption transmittances, Tw,Λ, are:

Tw,Λ1 = (1 + h1 mW )/(1 + h2 mW ) ,

Tw,Λ2 = (1 + c1 mW + c2 m
2
W )/(1 + c3 mW + c4 m

2
W ) , (78)

where mW is again the water vapor air mass and the other parameters are function

of precipitable water in atmospheric column, w [cm]:

c1 = w(19.566− 1.6506w + 1.0672w2)/(1 + 5.4248w + 1.6005w2) ,

c2 = w(0.50158− 0.14732w + 0.047584w2)/(1 + 1.1811w + 1.0699w2) ,

c3 = w(21.286− 0.39232w + 1.2692w2)/(1 + 4.8318w + 1.412w2) ,

c4 = w(0.70992− 0.23155w + 0.096514w2)/(1 + 0.44907w + 0.75425w2) ,

h1 = w(0.065445 + 0.00029901w)/(1 + 1.2728w) ,

h2 = w(0.065687 + 0.0013218w)/(1 + 1.2008w) . (79)

Since the precipitable water in atmospheric column, w, is a variable not routinely

measured, it is estimated from the dew point temperature, Tdew [◦C], according to

an empirical model of Iqbal (1983): w = exp (0.07 Tdew − 0.075) [cm].

Aerosol extinction transmittances, Ta,Λ, are modeled as in Gueymard (2008). The

band-average spectral aerosol optical depth, τaΛ, is expressed with the same formal-

ism of the original Ångström law, linearized for discrete aerosol channels (see also

Section 6.1), but considering an effective wavelength for the entire bands Λ1e and

Λ2e:

τaΛ1 = βΛ1Λ1
−αΛ1
e ,

τaΛ2 = βΛ2Λ2
−αΛ2
e , (80)

where αΛ1, αΛ2, βΛ1, and βΛ2, are the Ångström turbidity parameters for the two

bands Λ1 and Λ2:

βΛ1 = βA0.7
αΛ1−αΛ2 ,

βΛ2 = βA . (81)

As in Gueymard (2008) no distinction is made between the two αΛ, that are taken

equal to the reference Ångström turbidity αA: αΛ1 = αΛ2 = αA, consequently also

βΛ1 = βΛ2 = βA. The effective wavelength for the entire bands, Λ1e, and Λ2e, are

essentially function of a parameter uA = ln [1 +mA βΛ] (Gueymard , 1989), where

mA is the air mass for aerosol extinction. The aerosol extinction transmittances Ta,Λ
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for each band are thus:

Ta,Λ1 = e−mAτa,Λ1 ,

Ta,Λ2 = e−mAτa,Λ2 . (82)

The revised functions used here to obtain uA are as in Gueymard (2008):

Λ1e = (d0 + d1 uA + d2 u
2
A)/(1 + d3 u

2
A) ,

Λ2e = (e0 + e1 uA + e2 u
2
A)/(1 + e3 uA) , (83)

where:

d0 = 0.57664− 0.024743αΛ1 ,

d1 = (0.093942− 0.2269αΛ1 + 0.12848α2
Λ1)/(1 + 0.6418αΛ1) ,

d2 = (−0.093819 + 0.36668αΛ1 − 0.12775α2
Λ1)/(1− 0.11651αΛ1) ,

d3 = αΛ1(0.15232− 0.087214αΛ1 + 0.012664α2
Λ1)/(1− 0.90454αΛ1 + 0.26167α2

Λ1) ,

e0 = (1.183− 0.022989αΛ2 + 0.020829α2
Λ2)/(1 + 0.11133αΛ2) ,

e1 = (−0.50003− 0.18329αΛ2 + 0.23835α2
Λ2)/(1 + 1.6756αΛ2) ,

e2 = (−0.50001 + 1.1414αΛ2 + 0.0083589α2
Λ2)/(1 + 11.168αΛ2) ,

e3 = (−0.70003− 0.73587αΛ2 + 0.51509α2
Λ2)/(1 + 4.7665αΛ2) . (84)

In the above equations individual optical masses, mR, mO, mW , and mA, are used

for Rayleigh (molecular) scattering and uniformly mixed gases absorption, ozone

absorption, water vapor absorption, and aerosol extinction, respectively (Gueymard ,

2008). Individual optical masses rather than a single air mass are considered to

better characterize the solar rays’ pathlength through the atmosphere. The values

of the optical masses are obtained from the sun’s solar altitude, h′S [angular degree],

with the same functions of the REST model (Gueymard , 2003). Note that molecular

optical mass, mR, sometimes is called “relative air mass”, or simply “air mass”:

mR =
[
sin(h′S) + (0.48353 Z0.09584)/(96.741− Z1.1754)

]−1
,

mO =
[
sin(h′S) + (1.0651 Z0.6379)/((101.8− Z)2.2694)

]−1
,

mW =
[
sin(h′S) + (0.10648 Z0.11423)/((93.781− Z)1.9203)

]−1
,

mA =
[
sin(h′S) + (0.16851 Z0.18198)/((95.318− Z)1.9542)

]−1
, (85)

where Z = 90− h′S [angular degree] is the sun’s zenith angle.
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F.2 Diffuse irradiance

Aerosol extinction is mostly caused by scattering, and by absorption for the re-

maining part. The aerosol scattering transmittances are:

Tas,Λ1 = e−mAωΛ1τaΛ1 ,

Tas,Λ2 = e−mAωΛ2τaΛ2 . (86)

where ωΛ1 and ωΛ2 are the single scattering albedos. The forward scattering fractions

for Rayleigh extinction are indicated with BR,Λ. In the absence of multiple scatter-

ing, they would be exactly 0.5 because molecules scatter equally in the forward and

backward directions. Multiple scattering is negligible in Λ2 (so that BR,Λ2 = 0.5),

but not in Λ1. Using a simple spectral model to describe this effect BR,Λ1 is obtained

after spectral integration and parametrization as in Gueymard (2008):

BR,Λ1 = 0.5 (0.89013− 0.0049558 mR + 0.000045721 m2
R) . (87)

The aerosol forward scatterance factor, Ba, is the same as Gueymard (2008):

Ba = 1− exp
[
−0.6931− 1.8326 sin(hS)

]
. (88)

The correction factors, FΛ, to compensate for multiple scattering effects and short-

comings for the simple approach are (Gueymard , 2008):

FΛ1 = (g0 + g1τaΛ1)/(1 + g2τaΛ1) ,

FΛ2 = (h0 + h1τaΛ2)/(1 + h2τaΛ2) ,

g0 = (3.715 + 0.368 mA + 0.036294 m2
A)/(1 + 0.0009391 m2

A) ,

g1 = (−0.164− 0.72567 mA + 0.20701 m2
A)/(1 + 0.0019012 m2

A) ,

g2 = (−0.052288 + 0.31902 mA + 0.17871 m2
A)/(1 + 0.0069592 m2

A) ,

h0 = (3.4352 + 0.65267 mA + 0.00034328 m2
A)/(1 + 0.034388 m1.5

A ) ,

h1 = (1.231− 1.63853 mA + 0.20667 m2
A)/(1 + 0.1451 m1.5

A ) ,

h2 = (0.8889− 0.55063 mA + 0.50152 m2
A)/(1 + 0.14865 m1.5

A ) . (89)

The sky albedo, ρs,Λ, parameterizations are again from Gueymard (2008):

ρs,Λ1 =
0.13363 + 0.00077358αΛ1 + βΛ1(0.37567 + 0.22946αΛ1)/(1− 0.10832αΛ1)

1 + βΛ1(0.84057 + 0.68683αΛ1)/(1− 0.08158αΛ1)
,

ρs,Λ2 =
0.010191 + 0.00085547αΛ2 + βΛ2(0.14618 + 0.062758αΛ2)/(1− 0.19402αΛ2)

1 + βΛ2(0.58101 + 0.17426αΛ2)/(1− 0.17586αΛ2)
.

(90)

The reduction factor for direct beam, MB, and global, MG, radiation between the

first band radiation and PAR adopted in equation (33) and (34) are (Gueymard ,
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2008):

MB = (t0 + t1βe + t2β
2
e )/(1 + t3β

2
e ) ,

MG = (v0 + v1βe + v2β
2
e )/(1 + v3β

2
e ) , (91)

where the effective turbidity coefficient, βe, is obtained from the previously defined

αΛ1, βΛ1, and Λ1e as: βe = βΛ1(Λ1
1.3−αΛ1
e ) and the other parameters are function

of m15 = min (mR, 15):

t0 =
0.90227 + 0.29 m15 + 0.22928 m2

15 − 0.0046842 m3
15

1 + 0.35474 m15 + 0.19721 m2
15

,

t1 =
−0.10591 + 0.15416 m15 − 0.048486 m2

15 + 0.0045932 m3
15

1− 0.29044 m15 + 0.026267 m2
15

,

t2 =
0.47291− 0.44639 m15 + 0.1414 m2

15 − 0.014978 m3
15

1− 0.37798 m15 + 0.052154 m152
,

t3 =
0.077407 + 0.18897 m15 − 0.072869 m2

15 + 0.0068684 m3
15

1− 0.25237 m15 + 0.020566 m2
15

,

v0 =
0.82725 + 0.86015 m15 + 0.00713 m2

15 + 0.00020289 m3
15

1 + 0.90358 m15 + 0.015481 m2
15

,

v1 =
−0.089088 + 0.089226 m15 − 0.021442 m2

15 + 0.0017054 m3
15

1− 0.28573 m15 + 0.024153 m2
15

,

v2 =
−0.05342− 0.0034387 m15 + 0.0050661 m2

15 − 0.00062569 m3
15

1− 0.32663 m15 + 0.029382 m2
15

,

v3 =
−0.17797 + 0.13134 m15 − 0.030129 m2

15 + 0.0023343 m3
15

1− 0.28211 m15 + 0.023712 m2
15

. (92)

Note that this parametrization to estimate PAR was originally developed only for

clear sky condition. In the weather generator is applied indifferently for clear and

cloudy sky conditions.

G Overcast sky radiation parameterizations

According to Stephens (1978), the cloud optical thickness, τN , is one of the most

important parameters needed to describe the radiative properties of clouds. Ap-

proximate range for τN is 5 < τN < 500. By considering a set of “standard” cloud

types, Stephens (1978) derives that τN can be approximately parameterized in terms

of the effective radius of cloud-droplet size distribution, re [µm], and liquid water

path, LWP [g m−2]:

τN ≈ 1.5 LWP

re
. (93)

Liquid water path can be formally defined as the integral of the liquid water

content from the cloud base to the cloud top. By considering two spectral intervals

[0.29 ÷ 0.75µm] and [0.75 ÷ 4.0µm] for the set of “standard” cloud types, Stephens
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(1978) also derives the following relationships:

log10(τN1) = 0.2633 + 1.7095 ln
[
log10(LWP )

]
, (94)

log10(τN2) = 0.3492 + 1.6518 ln
[
log10(LWP )

]
, (95)

where expression (94) refers to the first considered spectral band, where absorption

by cloud droplets is extremely small, and expression (95) refers to the second band,

where absorption is significant. It follows from equations (93), (94), and (95) that

the knowledge of LWP allows one to obtain an approximate estimate of re. Slingo

(1989) introduced a parametrization that provided an accurate estimate of cloud

radiative properties based on re. This parametrization is used in the following.

Slingo (1989) considered four spectral bands, one in UV/VIS, [0.25÷ 0.69µm], and

three in NIR wavelength intervals: [0.69÷ 1.19µm], [1.19÷ 2.38µm], [2.38÷ 4.0µm]

with the following respective fractions, λi, i = 1, . . . , 4, of solar irradiance at the top

of the atmosphere: 0.460, 0.326, 0.181, 0.033. Note the slight differences with Ivanov

et al. (2007). Following the parametrization of Slingo (1989), cloud transmittances

and reflectances are estimated separately for each of these spectral intervals. The

radiative fluxes computed for these four bands are then scaled to the two principal

bands Λ1 [0.29 ÷ 0.7µm] and Λ2 [0.70 ÷ 4.0µm], considered in the model (Section

6.2).

G.1 Direct beam irradiance

For a given spectral interval, the single scattering properties of typical water clouds

can be parameterized in terms of the liquid water path (provided re is known):

τλ = LWP (aλ +
bλ
re

) , (96)

ω̃λ = 1− (cλ + dλre) , (97)

gλ = eλ + fλre , (98)

where τλ is the cloud optical depth, ω̃λ is the single scatter albedo, gλ is the asymme-

try parameter, and aλ, bλ, cλ, dλ, eλ, fλ are the coefficients of the parametrization

(provided in Table 4).

Thus the transmissivity for the direct beam radiation, TB,λ, is:

TB,λ = e

[
−(1−ω̃λΥλ)

τλ
sinhS

]
. (99)

where hS [rad] is the solar height and Υλ = g2λ.
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G.2 Diffuse irradiance

Using the same notation as in G.1 and omitting the subscripts λ that denote a

particular spectral band it is possible to introduce:

β0 =
3

7
(1− g) , (100)

β(hS) = 0.5− 3 sinhS g

4(1 + g)
, (101)

Υ = g2 , (102)

U1 =
7

4
, (103)

U2 =
7

4

[
1− (1− ω̃)

7ω̃β0

]
, (104)

α1 = U1[1− ω̃(1− β0)] , (105)

α2 = U2ω̃β0 , (106)

α3 = (1−Υ)ω̃β(hS) , (107)

α4 = (1−Υ)ω̃(1− β(hS)) , (108)

ϵ =
√

α2
1 − α2

2 , (109)

M =
α2

α1 + ϵ
, (110)

E = e−ϵτ , (111)

γ1 =
(1− ω̃Υ)α3 − sinhS (α1α3 + α2α4)

(1− ω̃Υ)2 − ϵ2 sin2 hS
, (112)

γ2 =
−(1− ω̃Υ)α4 − sinhS (α1α4 + α2α3)

(1− ω̃Υ)2 − ϵ2 sin2 hS
, (113)

where the U1 and U2 are the reciprocals of the effective cosines for the diffuse upward

and downward fluxes respectively, β0 is the fraction of the scattered diffuse radiation,

which is scattered into the backward hemisphere, and β(hS) is the same for the direct

radiation.

The diffuse transmissivity for direct beam and incident diffuse radiation are TDB,λ

and TDD,λ respectively. The diffuse reflectivity for direct beam and diffuse incident

radiation are AB,λ and AD,λ respectively, as defined in Slingo (1989). The diffuse

reflectivity for diffuse incident radiation is:

AD,λ =
Mλ(1− E2

λ)

1−E2
λM

2
λ

. (114)

The diffuse transmissivity for diffuse incident radiation is:

TDD,λ =
Eλ(1−M2

λ)

1− E2
λM

2
λ

. (115)
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Table 4: The values of coefficients in equations (96) - (98) (from Slingo (1989)).

Band aλ [10−2 m2 g−1] bλ [µmm2 g−1] cλ dλ [µm−1] eλ fλ [10−3 µm−1]

[0.25 ÷ 0.69 µm] 2.817 1.305 -5.62×10−8 1.63×10−7 0.829 2.482

[0.69 ÷ 1.19 µm] 2.682 1.346 -6.94×10−6 2.35×10−5 0.794 4.226

[1.19 ÷ 2.38 µm] 2.264 1.454 4.64×10−4 1.24×10−3 0.754 6.560

[2.38 ÷ 4.00 µm] 1.281 1.641 2.01×10−1 7.56×10−3 0.826 4.353

The diffuse transmissivity for direct beam incident radiation is:

TDB,λ = −γ2,λTDD,λ − γ1,λTB,λAD,λ + γ2,λTB,λ . (116)

Finally, the diffuse reflectivity for direct beam radiation is:

AB,λ = −γ2,λAD,λ − γ1,λTB,λTDD,λ + γ1,λ . (117)

H Terrain effects

Solar radiation originating from the sun travels through the atmosphere, and is

modified by topography and other surface features. Solar radiation at the ground

surface can be intercepted as direct beam, RT
B,Λ, diffuse, R

T
D,Λ, and reflected radi-

ation, RT
R,Λ. As anticipated in Section 6.2, incoming solar radiation is function of

the local topography through site aspect and slope, and of the surrounding terrain

through sky view factor, Svf (x⃗), and shadow effect, Sh(x⃗, t), where x⃗ is the position

and t is the local time. A brief description of incoming solar radiation components

and topographic effects is provided in Figure 35. In this section all the symbols will

refer to clear sky conditions, nevertheless results are valid also in cloudy conditions.

The importance of topographic variability in hydrological and biophysical pro-

cesses is well known (Bertoldi et al., 2006; Ivanov et al., 2008b). For such a reason

the quantities useful to take into account topographic influences on solar radiation

are delineated in the following.

The principal variable controlling incident radiation on a slope, in mountainous

terrain, is the local solar illumination angle, φS,T [rad], that is defined as the angle

between the sun beam and the normal to the slope surface (Dozier and Frew , 1990),

given by :

cosφS,T = cosβT sinhS + sinβT coshS cos(ζS − ζT ) , (118)

where βT [rad] is the slope of the site, ζT [rad] is the local aspect (clockwise direc-

tion from north), and hS [rad], ζS [rad] are the solar altitude and azimuth angles

respectively.

Another important parameter is the sky view factor, Svf for which two definitions

67



Figure 35: Components of incoming solar radiation on a slope: direct beam radiation at
normal incidence, RBn, diffuse radiation, RD, and diffuse and direct radiations reflected
off by nearby terrain, RR. The reflected contribution from a generic A location is shown
as example. Sky view factor, Svf , from A and shadow effects, Sh, in the represented
landscape are also shown. The figure is adapted from Dubayah and Loechel (1997).

have been proposed (Chen et al., 2006). The first one assumes a surface with a

unique slope receiving diffuse radiation isotropically, and posits that total diffuse

radiation should be proportional to the fraction of sky dome viewed by the inclined

surface. If βT is the surface slope angle, then this sky view factor is given by the

following equation: S′
vf = (1+cosβT )/2 [−] (Bonan, 2002). However, the sky dome

viewed by the slope surface in mountainous terrain can be obstructed by neighboring

surfaces. Dozier and Frew (1990) provide a method to take this effect into account,

defining the sky-view factor, Svf , as:

Svf ≈ 1

2π

∫ 2π

0

[
cosβT sin2Hζ +

sinβT cos(ζ − ζT )(Hζ − sinHζ cosHζ)

]
dζ , (119)

where Hζ is the horizon angle (Figure 36), measured from the zenith downward

to the local horizon, for direction ζ. Further details on the calculation of (119)

are provided in Dozier and Frew (1990). Equation (119) includes the possibility to

account for a variable horizon angle surrounding the point of interest, and not only

for a constant horizon as assumed in the other sky-view factor derivation. Therefore,

(119) is used to calculate Svf .

Dozier and Frew (1990) derived also a terrain configuration factor, Ct [−], which

approximates the total area between the point and the surrounding terrain for which

the points are mutually visible:

Ct ≈ 1 + cosβT
2

− Svf . (120)
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Figure 36: Horizon angle, Hζ , for a direction ζ, adapted from Dozier and Frew (1990).

As counterpart of sky view factor, the terrain configuration factor, Ct, estimates

the fraction of the surrounding terrain visible to the point and varies from 0 (only

sky visible) to 1 (only terrain visible). Further details on the calculation of (120) are

provided from Dozier and Frew (1990). The shadow effect, Sh [0/1], is finally calcu-

lated as a binary coefficient which value is zero when the sloping surface is shadowed

by neighboring terrain, while equal to one otherwise (Dubayah and Loechel , 1997;

Chen et al., 2006).

The direct beam, Rdir,Λ = RT
B,Λ, flux on a general slope is thus given by:

RT
B,Λ = Sh cosφS,T RBn,Λ . (121)

Wherever cosφS,T is negative, the point is “self-shadowed”, i.e. the sun is below

the local horizon caused by the slope itself. When instead Sh = 0 is cast shadowed,

i.e. the shadow is caused by nearby terrain blocking the sun (Dubayah and Loechel ,

1997). Note that when there is no shadow effect and the surface is flat βT = 0,

equation 121 reduces to RT
B,Λ = sinhS RBn,Λ. The latter is what the weather

generator calculates by default.

The diffuse sky irradiance, RT
D,Λ, on a surface oriented in space is composed of three

components: the circumsolar, the circumzenith, and isotropic irradiation (Olseth

et al., 1995; Olseth and Skartveit , 1997), and for each of these components a spe-

cific topographic correction should be applied, see for example Olseth and Skartveit

(1997) or a simplified version in the auxiliary material of Ivanov et al. (2007). Fre-

quently, for simplicity the entire incident diffuse radiation RD,Λ is considered as

isotropic (Dozier and Frew , 1990; Dubayah and Loechel , 1997; Chen et al., 2006)

and is given by:

RT
D,Λ = Svf RD,Λ . (122)

Another contribution to diffuse irradiance is given by reflected radiation, RT
R,Λ, on

surrounding topography. Incoming energy, in fact, may be reflected from nearby ter-

rain toward the point of interest and can rarely be expected to be isotropic. In order

to account for this effect, an approximate terrain configuration factor, Ct, is usually
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employed (equation 120) (Dozier and Frew , 1990; Dubayah and Loechel , 1997). This

is motivated by the complexity in determining the geometric relationships between a

particular location and all the surrounding terrain elements. Therefore, the reflected

radiation, RT
R,Λ, from surrounding terrain is simply estimated as:

Ct R
T
R,Λ = Ct ρg

(
RBn,Λ cos(φS,T ) + (1− Svf )RD,Λ

)
, (123)

where ρg is the average ground albedo refereing to a large area of 5-50 [km] radius

around the point (Gueymard , 2008). Note that when an unobscured flat surface

is considered Ct = 0, since βT = 0 and Svf = 1, i.e. all the sky dome is visible.

Consequently the reflected radiation component is RT
R,Λ = 0.

The sum of the diffuse shortwave radiation on a slope is the contribute of two

components: Rdif,Λ = RT
D,Λ + Ct RT

R,Λ. Finally, the global shortwave radiation,

Rsw,Λ, is:

Rsw,Λ = Rdir,Λ +Rdif,Λ = RT
B,Λ +RT

D,Λ + Ct R
T
T,Λ . (124)

The parameters required to evaluate the previous equations, such as local site

slope, βT (x⃗) [rad], local site aspect, ζT (x⃗) [rad], and horizon angle, Hζ(x⃗, ζ) [rad],

can be obtained from the analysis of Digital Elevation Models (DEM). Specifically,

in order to calculate the horizon angle, Hζ(x⃗, ζ), the viewsheds for each cell x⃗ of

an input DEM should be calculated. A viewshed is the angular distribution of

sky visibility versus obstruction. This is similar to the view provided by upward-

looking hemispherical (fisheye) photographs. A viewshed is calculated by searching

in a specified set of directions around a location of interest. The resolution of

the viewshed array must be sufficient to adequately represent all sky directions

but small enough to enable rapid calculations, for the following examples an eight

directions algorithm is used. Horizon angles for other directions are calculated using

interpolation. The penumbral effects are neglected in the code, penumbral refers to

decreased direct beam radiation at the edge of shadow due to partial obscuration of

the solar disc, considering that the solar disc radius is 0.00466 [rad].

An example of the values assumed by the above mentioned variables is provided in

Figure 37 and in Figure 38 for the Versilia watershed in Tuscany (Italy). Sky-view

factor, Svf , terrain configuration factor, Ct, and shadow effect, Sh, in each cell and

for a particular date and hour are calculated using the DEM.
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Figure 37: Digital Elevation Model (a), and sky-view factor, Svf , (b) for the the Versilia
watershed in Tuscany (Italy).

Figure 38: Shadow effect, Sh, (a) and terrain configuration factor, Ct, (b) for the the
Versilia watershed in Tuscany (Italy). The shadow effect is calculated with sun height in
the barycenter of the watershed, the 26 April 1982 at 8 am, local time.
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