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(Related to Ch. 3 of Lim.)

| Introduction to Discrete Transforms

This continues our “EECS 451 in 2D” coverage. See [1, Ch. d][&h

Overview

¢ DS orthogonal representation

e DFS, properties, circular convolution
e DFT, properties, circular convolution
e sampling the DSFT, spatial aliasing
e Matrix representation

e DCT, properties

o FFT

e two FFT’s for the price of one, etc.

The DFT is what we oftesomputebecause we can do so quickly via an FFT. But often we are rizdtlyested in something else,
like the FT, or linear convolution, and we must “make do"[\)/\gljl_elDFT.
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2D discrete-space orthogonal representation

For discrete-space signals that are either
e periodic with period N, M),
e or finite-extent (nonzero only for = 0,..., N —landm =0,..., M — 1),

the followinginner product is appropriate:

—1M-1

n=0 m=0

There are mangrthogonal baseswith respect to this inner product.
Example ¢y i[n,m] = d2[n — k,m —I]fork=0,...,N —1andl =0,...,M — 1is atrivial orthonormal basis.

This basis does not provide any new information about theasigComplex exponential signals are a desirable choicexsisb
because they are eigenfunctions of LS| systems.

The Fourier basis is as follows. We choose to scalé/y M for agreement with the DFT convention:

¢k},l[n7m] — ezQTr(lcn/N+lm/M) — Nljw e 122 kn e N’I‘lm
This is a separable 2D basis. We should verify that the mesrdfahis set of signals are orthogonal:
N—-1M-1 1
(D1, Orr) = nz% 7;) —— . 1[n, m] NM¢k/z/[” m]
—1M-1 1
= NMQZZeﬁ““ # (1= 1)m = 70k - KL= 1)) () (DFT-1)
n=0 m=0
where we have introduced the shorthand
([, m]] (v, ar £ Z Z d2[n — kN, m — IM].
k=—ocol=—0c0

The entire se{¢y;,;} for k,1 € Z is notan orthogonal basis, but the restrictedggt,; : k=0,...,N—-1,01=0,...,M —1}is
an orthogonal basis, with eagh ; having the same energy:

J— 2 — e
Ey1 = lokill” = (br1, ori) = NI

2D discrete Fourier series

Given a periodic signat|n, m] with period (N, M), we would like to find its 2Ddiscrete Fourier series(DFS) representation:

—1M-1 —1M-1
Z ZXI? 1] pp,[n, m] Z ZX]” 2 (kn/N+im/M)
k=0 1=0 M = —

That is, we want to represefifn, m| as a sum of harmonically related complex exponentials lgaveguencies
27 2w 2r
—), ey | =(N =1 M-1)). DFT-2
0.0, 0.3, ... (v 1.2 00 - ) (OFT-2)

For similarity to the DFT notation, we us€[k, /] to denote thék, [)th DFS coefficient i.e., the value that multiplies the exponen-
tial having frequency 27k, 271),

From the earlier discussion of general orthogonal reptatiens of signals, the DFS coefficients are given by

N—-1M-1

X[k, 1] = (@ [JE:;“ _NM Z Z F[n, m] —z27r(kn/N+lm/M).

n=0 m=0
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Summarizing then, for a periodic signg, m| with period(N, M), we have the following representation:

]{; l — Z Z —1271' kn/N+lm/]VI)

N—-1M-1
1 Z L27r(kn/N+lm/M)
—M .

o
Il
=]

k
These are thanalysis and synthesisformulas, which as mentioned before, represént m] as a linear combination a¥ M
harmonically related complex exponential signals.

Exact equalities hold in both the analysis and synthesiaditas (as long as all signal values are finite). There are estopns of
convergence here.

Due to the periodicity oft[n, m] and the complex exponentials, we could equally well evaltia¢ analysis formula by summing
overany N x M rectangular region. That is for any integers m,,

Nnoe+N—-1me,+M-—1

Z Z Z[n, m] e—12m(kn/N+im/M)

n=n, m=mg

Although the synthesis formula above represéits m] in terms of coefficientX [k, 1], k =0,...,N —1,1=0,...,M — 1, and

corresponding complex exponentials having frequenci€sT{®), one could equally well represefiin, m] in terms of complex
coefficients and complex exponentials in avyx M “box” in frequency space. That s, for any integérs(,, one could compute
#[n, m] by summing the products of the coefficiet§k, 1], k = kos. . skot N=1,1=1,,...,l,+M~—1and their corresponding
exponentials. For this reason, we consider the DFS coefts:jlé[lf, ] to be defined foall k; 1 € Z. Note, however, that they

form a periodic image with perio@dV, M), becauseX [k + N, 1] = X[k, ] andX[k,l + M] = X[k, []. In contrast, the DFT, to be
defined later, produces only a finite number of coefficients.

Because equalities hold in both the analysis and synthesisulas, we can say there is a one-to-one correspondencedret
periodic signals with periodN, M) and periodic sequences of Fourier coefficients with peffgd) ).

Example Consider the following signal

Z[ln,m| = 4cos(mn/3)cos(mrm/4) = [eﬁ“"/ﬁ + e*ﬁ’m/ﬁ} [e’%m/g + eﬂz”m/s}

ev,27r(n/6+m/8) + e1,27r(n/6—m/8) + ezQTr(—n/ﬁ—&-m/8) + ez27r(—n/6—m/8) )

What is the period?
In this case, we need not apply the formula ﬁjfk, [] above, since we have directly represenigd, ,n] as a sum of complex
exponentials. The coefficients in this sum are ¥, I|'s

0, otherwise
= 48 (8a[[k — 1,1 —1]](6,8) + O2[[k + 1,1 — 1]](6,8) + 02[[k — 1,1+ 1]](6,8) + d2[[k + 1,1 + 1]} 6.5)) -

(Because of the one-to-one correspondence mentionecbpstyi there can be one and only one representation of thelsig
terms of complex exponentials signals having the giveneaidarmonic frequencies. Therefore, the abaVé, /|'s are the one
and only possibleX [k, I]'s for this representation.

Example What signal has constant coefficients? i.e., X[k,1] = 1. Presumably some sort of impulse-like signal. But we are
working with periodic signals, so it must be a periodic ingailike signal. In fact it is a 2D “impulse train:”

N—-1M-1 0 e
e 2n(kn/N+m/M) 51 m]] y.ar) = Z Z §a[n — kN, m — IM].
0 I=0 k=—oc0l=—0c0

1

Z[n,m] = NI
k=

(Picture)

This signal is useful for deriving properties of DFS.
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Properties of the DFS

Most properties are analogous to those of the 2D CS FS, etoeptaling property is absent, since scaling changes the period.
(Presumably there is some such property, but it probabfgrdisignificantly from the usual scaling properties.)

e linearity if Z[n, m| andg[n, m| have the same period:

ain,m]+B8jn,m| 2 o X[k, 1] +8Y[k, 1]

e separability

[n,m] = #1[n] Z2[m] 22 X1 [k] Xall],

where X [k] denotes the usual 1D DFS.

e shift

Z[n — ng,m — my| DF8 g—12m(kno/N+imo/M) X[k, ]

e Average value(caution!)
! X[0,0] = LY 1le i
—_ —— X TL m
NM NM

n=

o

m=0

e Parseval’s theorem
In general, iff = > 72 ckdr andg = Y oo didr Where thep,'s are orthogonal, thenf, g) = > o Ercrds.
Thus, for the DFS:

—1M-1 1 N—-1M-—
ZZ &[n, m] _—MZZ [k, 1) Y* [k, 1]
n=0 m=0 k=0 1=0

e Symmetry properties

DFS ¢ =k, 1]

If Z[n,m] is real, thenX [k, [] is Hermitian symmetric. And vice-versa.

Z*[n,m| —

e Duality (Homework)

If &[n,m] <D—FS>X[k 1], then X[n,m] &— DFS & X*[n,m] 28 DFS

e Change of period
If a signalz[n, m]| is periodic with period IV, M), then it is also periodic with perioghg N, mo M) for any positive integers
no, mg. Therefore, it can also be represented with a DFS in termg &f x moM complex exponentials with frequencies
(0,0), (0,27 /(noN)), ..., (noN(nON 1), -2 oy (moM — )) . With X[k, 1] representing the usual DFS coefficients, the
“new” DFS coefficients are

X[k = X[k/noa I/mo], if k/ng and [/mg are integers
Lo, otherwise.

Thus, the “new” DFS coefficients are just the original onethweros in between.

e Pairs of Hermitian DFS terms form sinusoids

X[k, 1] e 2 thn/N+m/M) o X[ _f ] e~ 2 (kn/N+Im/M) ’X [k, 1] ’cos <27r (lj\’; + z;;) + £ X[k, l]>
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“Convolution” property

For the DSFT, we know that[n, m| s h[n, m] pality X (wx,wy) H(wx,wy), which is very useful for filtering without performing

convolution.What is the corresponding result for the DFS?

(The corresponding resut@nnotbe “Z[n, m] h[n m]” because linear convolution of two nonzero periodic signakults in
infinite or undefined values.)

Suppose we have two periodic signa(s, m| andﬁ[n, m] with the same periodN, M). If we multiply their DFS coefficients to
formY'[k,] = H[k,1] X[k, ] and then compute the inverse DFS to get a sigihalm], what is the relationship betwegiv, m]
and the originali[rn, m| andh[n, m]? The following derivation shows that the result is periaghavolution, just as in the 1D case:

1 N—-1M-1
g[n7 m] — Z Y[k, l] e1,27r(kn/N+lm/JV[)
NM k=0 1=0
1 N—-1M-1
_ I:[[k', l] X[k},l} ezQﬂ'(kn/N+lm/M)
NM k=0 =0
1 N—-1M-1 [N 1 M-1 ‘|
_ Z Z —7,27r(kn /N+Im' /M)
= SL’TL m
NM k=0 1=0 0Om’'=
N—-1 M-1
. [ Z B[nll7mll} eiQﬂ'(kn”/N+lm”/M)] ez27r(kn/N+lm/M)
n"=0m"=0
N—-1M-1 N-1 M-1 ~ 1 N—-1M-1
— Z i[n/, m ] h[n//7 ml/} [ e—zQw(k(n’—&-n”—n)/N+l(m’+7n”—m)/]V[)]
n/=0m’=0n"=0m"=0 NM k=0 1=0
N—-1 M-1 N-1 M*l~
= En',m'] [Z Z hin" m" 8[[n" +n" —n,m' +m m“(NM)]
n'=0m’=0 n"=0m"=
N—-1 M-1

where the last equality follows from the fact that the sumravem” has onlyN M terms, butd[[-]] x,ar) IS zero for only one of
every N M terms, and the periodicity df[n, m].

Thus we have theonvolution property of the DFS:

jln, m] = i, m/ hin —n',m —m'] 222 Vk, 1] = X[k, [ H[k,1].

This is calledcircular convolution, since the summations are finite. In ordinéinear convolution, the summations are infinite.
In these notes, circular convolution is denofgd, m| &) h[n, m].

&ln,m] Q) hln,m] &= X[k, 1) H[k,1).

Although it was stated earlier that one could use the DFSifoeeperiodic or finite-support signals, the above propkdids only
for periodic signals.

Multiplication property

Using duality, one can show

in, m] gn, m]LFS—sz(ngl
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Example Here is a 1D illustration of linear vs circular convolution

x(n) Z(n)

4 -2 0 2 4 6 8 =4 -2 0 4 6 8

h(n) h(n)
1 00 1‘. 00 00
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2

y(n) = x(n) * h(n) #(n) @ h(n)
15 15
® ® ®
10 P P 10 ® ® ® ® ®
[

5 5

!

n n

The linear convolution of a 5-point sequence with a 3-podnfuence yields a 7-point sequence.

Periodic convolution of two 5-periodic sequences is stifisgiodic.
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hln,m] z[n, m]
1 00 1 0O010O0 4 5 6 4 5 6 4 5
212 1 0 2 1 0 2 1 211 2 31 2 3 1 2
1 00 1 00 1O0 4 5 6 4 5 6 4 5
of2 1 0[211 0 2 1 of1 2 3[1 2 3 1 2
1 00 1 0010 4 5 6 4 5 6 4 5
22 1 0 2 1 0 2 1 -2t1 2 3 1 2 3 1 2
-2 0 2 4 -2 0 2 4
h[n,m)] afterr ot 90 hin, m] Q &[n, m]
21 2 01 2 0 1 2 15 16 20 15 16 20 15 16
01 001001 219 1014 9 1014 9 10
01201012 = 15 16 20 15 16 20 15 16
01001001 0} 9 10 14 [9) 10 14 9 10
21 2 01 2 0 1 2 15 16 20 15 16 20 15 16
01 001001 -219 10 14 9 10 14 9 10
-4 -2 0 2 -2 0 2 4
n
hln,m] x[n, m|
2 2
1 11 0 0 1 4 5 6!
0 2 1 o 0 [ 2 3,
T E]
-2 0 2 4 -2 0 2 4
h[n,m] afterr ot 90 h[n, m] s« x[n, m]
2 2 14 5 6 0 0
1 1 '9 16 20 6 O
- of o 1 [ 0 [2 5 8 3 0
-110 0 1, N
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Discrete Fourier transform (DFT) |

Now we switch from the “extreme” of periodic sequences todtier extreme ofinite-support (also called finite-extent) signals.
The connection between the two is that one can form a peri&dital from a finite-support signal by replication, and oae c
“extract” a finite-support signal from a periodic signal byeatangular window.

Given a 2D DS signat[n, m], we can form periodic signals fronin, m] in two distinct ways.
e One way is called theN, M )-point circular extension of z[n, m|:

#[n,m] £ z[n mod N, m mod M]. (DFT-3)

Notice that thiscircular extension depends only on the values ofn,m| forn = 0,...,N — 1 andm = 0,..., M — 1,
regardless of what the supportcfr, m] is.
e Another way is called théN, M )-point periodic superposition of z[n, m|:

Tps[n, m] = z[[n,m]](n ) = Z Z x[n — kN,m — IM]. (DFT-4)

k=—o0l=—0c0

This periodic signal depends atfl of the values of the original signaln, m].

Many books do not distinguish between the above two waysestirg a periodic signal from|n, m|, and refer to one or the
other (or both) as simply thepériodic extensiori of z[n, m]. In general the two methods are distinct. However, therevisra
important “special case” where the two methods yield idetsignals. Ifz[n,m] is a N x M finite-support signal, meaning
(unless otherwise specified)n, m] nonzero only fom = 0,...,N —1andm = 0,..., M — 1, thenZ[n, m] andz,s[n, m] are
identical. So in this case the generic term “periodic ext@riss unambiguous.

Furthermore, in this finite-support case, we can “extrawt’driginal finite-support signai[n, m| from the periodic signat|n, m]
(or from zps[n, m]) by applying a rectangular window in the space domain:

1, n=0,....N—-1,m=0,....M -1

0, otherwise. (DFT-5)

x[n,m] = &[n, m] Ry [n, m] where Ryas[n, m] = {

Focusing for now on the finite-support case, what is the DFSefperiodic extension signaln, m|? Applying the analysis
formula:

N—-1M-1 -1 M-1
]f l — Z Z i[n,m] e—sz(sz/N+l77L/AI) Z Z zn, m —L27r(kn/N+l7n/J\/I)
n=0 m=0 n=0 m=0

(The equality follows from the limits on the sum.) The DFSficents aredefined and generally nonzéefar all k,1 € Z.

We can truncate this periodic set of coefficients to form adhextent set, called thiiscrete Fourier transform (DFT) of z[n, m]:

X[k7l] £ X a ]RNM[k l]
X[k =0,...,N—-1,1=0,...,M—1
0, otherwme
N-1 M—1 —127w(kn/N+lm/M) — _ = —
= Don=0 2m=—o Ll mle ; k=0,...,N=11=0,...,.M—1
0, otherwise.

e For our purposes, it will be safest to considéjk, /] to be defined only fok =0,...,N —1landl=0,...,M — 1.

e Alternatively, one can consideX [k, (] to be definedfor all k,! € Z, but to benonzeroonly for k¥ = 0,...,N — 1 and
1=0,...,M—1.

o Alternatively, some texts choose to defiliék, /] to be a periodic function o and!, just like X [k, [] is.
The disadvantage of these latter two conventions is thds foo computing DFTs only work with finite arrays. Trying to
evaluateX [—k, [] will cause a program fault usually. To avoid such problemis, safest to have the theory match practice as
closely as possible, so we usually chodsg;, (] to beundefinedexcept wherk =0,...,N —1landl =0,..., M — 1.
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Note the similarity in notation betweeX [k, /] and X (wx, wy ). Which transform is meant should always be obvious from cante

Of course we can always “recover” the entire periodic seqeéfik, /] from the DFT by applying &V, M )-point circular exten-
sion as follows:

X[k, = X[k mod N, mod M].

Since the inverse DFS formula dependsXfk, ] only forn = 0,...,N — 1 andm = 0,...,M — 1, clearly we can recover
z[n, m] from X[k, []:

z[n,m] = Z[n,m] Rya[n,m]
| No1M
- NM 0> X[k, 1] et EnNFHM) Ry [0, m)
k=0 1=0
g S S M X [k, 1] @2 (/N /M) oy =0 N~ 1,m=0,...,M—1
0, otherwise.

This is theinverse DFT (iDFT) formula in 2D.

In summary then, the DFT/iDFT pair are given as follows.

N-1 M-1 —2mw(kn/N+lm /M) _ _ _ _
X[k, = Ym0 2om—o Tln,mle , kJ—O,._..,N 1,l=0,....M -1 (DFT-6)
?, otherwise
N-1 M—-1 127 (kn m _ —
dfnm] = 7 Shso Sito X[k, 1] er?r(kn/Nim/M) n=0,... . N-1m=0,... M-1 (DFT-7)
?, otherwise
where the “?” depends on interpretation. (It may be undefinedero, or the circular extension.)
Relationship between DFT and DSFT.
For a finite-support signal[n, m], we can relate the DFT to the DSFT as follows:
N—-1M-1
X[k, l] _ Z (ﬂ[?’L, WL] efz2ﬂ(kn/N+lm/M)
n=0 m=0
_ Z Z x[mm] e—zZTr(kn/N—i—lm/M)
n=—0o00 Mm=—00
27 2w
= X(wx, Wy )|oyxm2mk/N, wym2mm =X Nk’ Ml , k=0,....N—-1,1=0,...,.M — 1.
Providedz[n, m] has finite support, we can also write:
- 2T 2w
X[k, = X (wx, =X =k, =—=1). DFT-8
[ } (WX wY) wx=2nk/N, wy=2nl/M (N M ) ( )

Caution: recall that ifj[n, m] = go(nAx, mAy), then

1 2 S Wi /2T — k wy /21 —
G(wx,wy) = AA, Z Z Ga( Ay A, )

k=—o0l=—00

This holds for any sampling rate regardless of whethét, y) is band-limited. But ifg, (z, y) were band-limited, then the central
replicate ofG(wx,wy) would tell us everything about the original analog signactpum. And if (DFT-8) also held, we could
relate the analog spectrum to the DFT coefficients. But (B)-fequires a finite-support signal, which is (in generatpimpatible
with the analog signal being band-limited.

Find a band-limited analog signal that, when critically sampled, is a finite-support signal.
What happens though if you shift that analog signal slightly?
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Properties of the DFT

The following properties are all written so that only theues ofz[n, m|forn =0,...,N—landm =0,..., M —1 are involved,
as well as only the values & [k,{] fork =0,...,N—1andl=0,...,M — 1.

Missing properties (relative to CS FS): scaling, sinceisgathanges the extent. (Presumably there is such a propoertyt
probably differs significantly from the usual scaling prdjes.)

Since the DFT is defined in terms of the DFS, it inherits manitoproperties. However, there are some differences toe tau
the finite-extent nature of bottn, m] and X [k, I].

Properties that are identical to those of the DFS

e linearity if z[n, m] andy[n, m] have the same period:
axln,m] +Byln,m] £ o X[k, (] +8Y [k, 1)

e separability
z[n,m] = z1[n] z2[m] 25 X4 [k] X, 1),

whereX[k] denotes the usual 1D DFT.

e average value(caution!)

1 N—-1M-1 1

n=0

e Parseval’s theorem
N—-1M-1 N—-1M-1

1
SN an,mly(n m) = X[k Y*[k, 1]
n=0 m=0 k=0 1=0

,_.

Properties that differ somewhat from those of the DFS

Many of these properties dependejr mod N, m mod M], the (N, M)-point circular extension of a signal, as defined in (DFT-
3), or the(V, M)-point circular extension of the DFT coefficiemyk, [].

e complex conjugate
x*[n,m] ELIEN X*[—k mod N, —l mod M]

e duality
NM z[—k mod N, —l mod M]

NM z*[k,]

xz[n,m EX]{,Z X{n,m]
) B2 Xl = )

e circular shift / complex modulation

A circular shift of a 1D signal byhg, transforms{z[0],...,z[N — 1]} into {z[no],...,z[N —1],z[0],..., z[no — 1]},
which can be writter:[(n — ng) mod N].

For a 2D signal, the circular shift by, m and its(N, M)-point DFT are
z[(n — ng) mod N, (m — mg) mod M| PEL =2 (kno/N-+imo/M) X[k,1].

e circular frequency shift

er2m(kon/Ntlom/M) 3.1y ) 250 X [(k — ko) mod N, (I — lo) mod M]
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e Circular space reversal
DFT

z[-nmod N, —m mod M| ¥ X[—k mod N, —l mod M]
For the DSFT, we know that if[n, m) patity X (wx,wy), thenxz[—n, —m) patity X (—wx, —wy).

What is the corresponding formula for the DFT?
Thecircular space reversalof a 2D signalz[n, m] is given byz[—n mod N, —m mod M].

1 2 3 4 5 8 7 6
Example If zln,m|=| 5 6 7 8 |[,thenz[-nmod4,—mmod3]=|1 4 3 2
9 10 11 12 9 12 11 10

e Symmetry properties
x*[n, m| PELIEN X*[—k mod N, —l mod M]
If 2[n, m] is circularly even, i.e. if z[—n mod N, —m mod M| = z[n,m], thenX|k,[] is alsocircularly even.
If 2:[n, m] is real, thenX [k, [] is Hermitiancircularly symmetric, i.e., X[—k mod N, —l mod M| = X*[k,I].
And vice-versa.

If 2[n, m] is real, the formulaX [—k mod N, —I mod M] = X*[k, (] may not convey visually the symmetry properties of the DFT
coefficients. If we arrange the DFT coefficients as & M array, the following diagram illustrates which coefficieare complex
conjugates of which other coefficients. The shaded areasepts a set of “sufficient” coefficients; when storage ismeaium,

for real signals it suffices to store the values in the shadgbn.

The points indicated by the dots are values that are theirammmplex conjugates, and hence must be real.

0 N/2 N-1

o R 7 0~

M/2

Y 2NN
\ .
§
\

M-1
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Proof of complex conjugate property

Here is a proof of the complex conjugate property for 1D digyta provide an example of how one performs such proofs.

By the synthesis property:

N—
Z X[k‘] ezQﬂnk/N’
k=0

—

1
zln] = N
so taking the complex conjugate of both sides yields

1 N-1

SU*[’N,] == N X*[k] e—127rnk/N
k=0
N—-1
1 1
= — [0] +—= X*[k] 67227rnk/N
N N k=1
letl =N — k:
1 1 N-1
= [0] +— X*[N _ l] e—zQTrn(N—l)/N
N N =1
1 1 N-1
= — X[0mod N]+— X*[N — []e2™l/N
N N =1
1 1 N-1
= — X[0mod N]+— X*[~1 mod N]e'2™!/N
N N =1
1 N—-1
= N X*[_l mod N] ezQ‘n'nl/N.

l

Il
<

Since this is the DFT synthesis expressiondftjn], we have shown the following property:

x*[n) PELEN X*[—k mod n].
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Convolution property

One of the main uses of the DFT is to implement fast convahutia the FFT. So the convolution property is particularlyontant.
In fact, this property is probably the primary reason why EH€T is used so much more frequently than the many alternative
orthogonal transforms.

What happens if we take two sets(d¥, M )-point DFT coefficients, multiply them, and take the invelbd€T ? Clearly the answer
cannot in general be the linear convolution, since linearcohution of two signals results in a signal with larger sogp

Derivation:
Supposéi|n, m] andx[n, m] are both finite-support signals, with corresponding DFTiadents H [k, [] and X [k, [].
DefineY[k,l] = H[k,l] X[k, (], and lety[n, m] be the inverséN, M )-point DFT of Y[k, []. Then by the above construction,

y[”? m] = g[n7 m] RNM[na m]7
whereR y pr[n, m] was defined in (DFT-5), and where

DFS o

gln,m) == Y[k,1) = H[k, ) X[k,1) = H[k,1] X[k, 1],

whereH [k, 1] and X [k, [] are the periodic extensions [k, I] and X [k, [] respectively.

It follows thatj[n, m] = h[n, m] ® &[n, m], and so

ylnm] = (hln,m) Q) &[n, m]) Ryarln, m]
_ { S M Ak, ) En —k,m =1, n=0,...,N—1,m=0,...,M—1
0,

otherwise.

This is a correct but incomplete answer since we want a diedationship between[n, m] and the original signal[n, m] and
x[n, m]. Considering that the summation limits extend only fromo N — 1 and0 to M — 1, we can write

ylml = otherwise

{ S bk, ) 2[(n — k) mod N, (m — ) mod M}, n=0,...,N—-1,m=0,...,M—1
0,

(1>

x[n, m] ® hin,m] .

Note that for finite-support signals we havslightly different definition of circular convolution than for pedie signals. In words,
if we start with two finite-support signals, multiplying th®FT coefficients is equivalent to: first forming their padic extension,
then performing circular convolution, then truncating tasult.

In summary, one usually expresses toavolution property of the DFT as follows:

hin,m] @) ln,m] 2 H{k, 1] X[k,1],

where one must remember the truncation and the slightly freddineaning otircular convolution.

Multiplication property

Using duality, one can show
zln,m)yln,m] &5 NM X[k, 1] Q) Y[k, 1]
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lllustration of wrap around effect

X[n,m] h[n,m] -3

)élO

64

1 64
X[n,m] ** h[n,m] linear X[n,m] O h[n,m] circ.

1

HS 1 5 5

64 0 64 0
1 64

The effect of circular convolution isarap around effect, where signal values from one border of an image can “wraprattoto

affect values on the other side after filtering via a DFT. ®ifect is generally undesirable.

1 n 64

Emulating linear convolution

How can we eliminate this wrap around effect of the DFT? Usingzero padding

Convolving anN; x Ny imagex|[n, m] with a M, x M filter h[n, m] yields aL, x Lo resulty[n, m], whereL, = Ny + M, — 1.
Thus, if wezero padboth x[n, m] andh[n, m] to a sizeL; x Lo before taking the DFT, then the final resultidFT( DFT( x)
.* DFT(h)) will be exactly equivalent to the result bhear convolution of x[n, m] with h[n, m]. (Of course this only works
for finite-support images, but that is always adequate intfp@for finite-support filters!)

There is a practical inconvenience with zero padding howeSappose we wish to convolve2a6 x 256 image with al7 x 17
filter. The result will be272 x 272. The prime factors of 272 are 2 and 17. The FFT works fastestfiall prime factors (especially
2), so a prime factor of 17 is computationally undesirablee ©@ould pad to &12 x 512 image, but then only 28% of the final
image would be the part we care about (the rest would be zesxeiat arithmetic). There are a few choices.

e Abandon the zero padding, accept the wrap around, and ighemdges of the image.

Zero pad to a value smaller than 5&2g, 288 has factors 2 and 3 and is only slightly bigger N time
than 272. MaTLAB's f f t 2 routine is clever enough to exploit this. Consider the fwollay 256 0.32
eresultsoftic, fft2(rand(N)); toc onaPentium Il (200MHz). 272 0.45
This approaclstill uses circular convolutiorbut the zero padding has the effect of yielding 288 0.37
the sameesultsas linear convolutiorfor finite-support signals 512 1.25

Clearly intelligent zero padding can reduce computatiamsaterably over the popular “next higher power of 2” apptoac
e Use theoverlap-add methodor overlap-save methoddescribed below.
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hnm xnm
1.5 15
1 1 0 1 4 5 6
0.5 0.5
0 2 1 0 1 2 3
-0.5 -0.5
-05 0 0.5 1 15 25 -0.5 0 0.5 1 15 2 25
hnm circ rev g = ifft2(fft2(h) .* fft2(f)
15 15
1 1 0 it 15 16 20
0.5 £ 05
0 2 0 0 9 10 14
-05 -0.5
-05 0 0.5 1 15 25 -0.5 0 0.5 1 15 2 25
n
hnm padded xnm
25 25
2t 0 0 0 2t 0 0 0 0
15 15
1 1 0 0 iy 4 5 6 0
0.5 0.5
of| 2 1 0 of] 1 2 3 0
-0.5 -0.5
0 1 2 0 1 2 3
hnm circ rev g = ifft2(fft2(h,4,3) .* fft2(f,4,3)
25 25
2 1 0 0 2t 4 5 6 0
15 15
11 0 0 0 E 1 9 16 20 6
0.5 0.5
of| 2 0 0 ofl 2 5 8 3
-0.5 -0.5
0 1 2 0 1 2 3
n
hnm xnm
2 2
jm————— - jm————— -
1 11 0 O : 1 14 5 6 :
1 1
1 1
(I oz s
-1 -1
-2 0 2 -2 0 2 4
hnm rot90 g=h*f
2 2 : 4 5 6 0 O
1 1 : 9 16 20 6 O
E Im-=" 1= 1
po 13 o @5 830
140 0 1) -1
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The overlap-add method

Since convolution is linear, we can decompose convolutfcalarge image with a small filter into the sum of the convaatof
the filter with each of several modest-sized blocks of thegena

Let
xz[n,m] = ka[n,m] (Picture) ,
k
then
yln,m|] = hln,m]xkx[n,m] = hln, m| Zxk[n,m]
= Zhnm sk T [12, M) Zyk m)], where yi[n, m] £ h[n, m] s zx[n,m].

If block is M, x M, and the filter isL; x Lo, then the result of each block convolution will b&/; 4+ Ly — 1) x (M2 + Ly — 1).
So the output blocksy [n, m] will overlap. Nevertheless, superposition still appl&eswe will get the correct final result provided
we

e implement linear convolution for each block,

¢ and properlyaddthe resulting overlapping blocks.

The MaTLAB command ftfi |t does thisin 1D.
Is there a 2D overlap-add method inM ATLAB ? (Theconv2 routine is a MEX file.)

Theoverlap-save methods fairly similar. See text.

To implement linear convolution for each block, we can githge space-domain convolution (which would be reasonatle f
small filters, especially if separable), or use zero-padedolution via the FFT. One should choose the block sizé shat the
zero-padded FFT size factors into small primes.
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Sampling the DSFT

We have seen that if[n, m] is a finite-support signal, then its DFT consists of samplés®SFT:

X[k 1] = X (wx,wy) . (DFT-9)
wx=27k/N, wy=2nl/M

Often, however, we “take samples” of an analytical expmsfir the DSFT of some unknown signal, and then compute th& iD
to examine the signal. What happens if the underlying sigoeschot have finite extent?

In other words, supposén, m] patity X (wx,wy) for anyDS signalz[n, m], and define

Yk, 1] = X (wx,wy) k=0,...,N—1,1=0,...,M—1

wx=2nk/N, wy=2nl/M ’

for some user-selected valu@s, M).
If we then compute the iDFT df [k, [] to get some signaj[n, m], how does thay[n, m| relate to the originak[n, m|?

#[n,m] — [DSFT| — X (wy, wy) — sampleftruncatp— ¥ [k, 1] — [iDFT | — y[n, m]

To aid in the analysis, define

N—-1M-1
Y (wx,wy) = > Yk, 1] 62((wx — 27k/N,wy — 271/ M)) 0 5
k=0 1=0
N—-1M-1
= X (w, s — 27k /N, wy — 2l /M
k=0 1=0 oy v) wx=2mk/N, wy=2rl/M 2((wx = 2mk/N, wy = 2ml/ ))(2“’2”)
N—-1M-1
= X(wx,wy) d2((wx — 27k /N,wy = 27l /M)) 30 97 -
k=0 [=0
Then the output signal is as follows:
1 —1M-1
- = 7,271' (nk/N+ml/M)
yln,m] = MZZY]{:Z
k=0 [=0
1 S . .
= i Y (wy, wy) e @xneym) qg, de, (substituteY (wy, wy ) to verify)
1 x o N—-1M-1
= NI / X (wx,wy) Z Z o2((wx — 21k /N, wy = 21l /M) 5 o) eUlwxnteym) qo, dwy
TS k=0 1=0
= x[n,m]*t hin,m],
where we see
% (27_[_)2 N—-1M-1
hln,m) < S kz_o 3 82 ((wx — 2k /N, wy = 27L/M)) 3 5y

so by recalling the DSFT of complex exponential signals:

N—-1M-1

_ 1 —27(kn/N+Im/M) _
h[n,m) = < ;0 l; e = d[[n, m] (1)

So

y[n, m] = x[n, m] s hin,m] = xn, m]w 0[[n, m]](n,ar) = Z Z z[n — kN,m — IM] = zp5[n, m],
k=—ocol=—0c0

i.e, sampling in the Fourier domain causes superimposed esjlicthe space domain, which means spatiakingif z[n, m] is
not a finite-extent signal.
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Example Earlier, in the discussion of filter design 2 at the end of@@eaDS, we wanted to find the impulse response of the filter
having spectrum

H(wx,wy) =4(1 + cosw) rect(%),w = w2 +w2.
7r

| did this numerically by sampling the DSFT, and then compwthe iDFT. Since thé[n, m] in this example has infinite extent,
this sampling results in a spatially aliased reconstraatih[n, m]. In the example | used = M = 128. Let us see if that was a
reasonable value by computing iDFT for various valued/aind seeing how[0, 0] varies withN.

iDSFT via iDFT vs N

2p
LOBE
S
=) F
= N : : :
oo ¢ o o
1.86 N N N N N
2 32 64 128 256 512
N

In this caseh[n, m] decays rapidly, so eveN = 32 appears to suffice.

As a more challenging example, consider the ideal lowpéass §ipectrum:

H(wx,wy) = rect(i) .
2m

Here ish[0,0] versusN. Ideally h[n,m] = o5z [7, [T H(wx, wy) dwx dwy = Grzan® = 1/4 2 0.785

iDSFT via iDFT vs N

0.9 :
o)
)
< .
0.2 N N N N N
2 3264 128 256 512
N

In this casei[n, m] is a jinc function, which decays more slowly, so largéiis needed to achieve negligible effects of the spatial
aliasing.
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Matrix representation of DFT

1D DFT using matrices

The DFT is a linear transformation of the sequen{d, ..., =[NV — 1] to the coefficientsX[0],. ..
represent any such linear transformation in matrix-vefcon.
Define
(0] X{[o]
(1] X[
T = . andX =
[N — 1] X[N -1]

Then we can write the 1D DFT expressiaf. (DFT-6)):

N-1
X[k} _ Z (B[TL] ef’L27TTL]C/N
n=0
in matrix-vector form as follows [3, Section 5.1.3]:
X =We,

whereW is aN x N matrix with elements

Wi, = WE whereWy £ =27/

,X[N —1]. We can always

(DFT-10)

Since harmonic complex exponential signals are orthogeeal (DFT-1)), the columns (and rows) of the matitkare orthogonal.

Hence the matriW is an orthogonal matrix, meaniidd’ W is a diagonal matrix. Specifically,
W'W =NI=WW'

wherel is theN x N identity matrix.
Thus, by definition of matrix inverse:
1

wl=_w'.
N

Thus, from (DFT-10),
1
_ —1 _ /
r=W"X = i W'X,
which is the matrix-vector form of (DFT-7).

We can also viewParseval'’s relationfor the DFT in matrix vector form:

= (Lwx) (Lwy) = Lxwwy = Ly _ Ly
wy_<NWX WY )= SXWW'Y = X (NDY = < XY,

and as a special case:
2 1 1 2
2 = 2’z = S X'X = - | X|*.

The MATLAB commanddf t nt x constructs the matri¥¥ above.
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2D DFT using matrices (See [2, Section 5.2].)
What about the 2D DFT? The 2D DFT is also a linear transformaifdche NV M values
zn,ml, n=0,....N—1, m=0,....M —1

to the N M coefficients
X[k, k=0,....N—1,1=0,...,M — 1.

We can also represent this linear transformation By x N M matrix. Yet apparently MTLAB does not have a single built-in
command for constructing this matrix. How can we constrikt i

The first thing we must do is arrange the 2D set of image vahiesa 1D vector. The standard method for this is caléedco-
graphic ordering, defined as follows:

x = [x[0,0] z[1,0] ... [N —1,0] z[0,1] ... [N —1,1] ... 2[0,M —1] ... [N —1,M —1]]*
In MATLAB, if the image array is represented by
z[0,0] ... 2[0,M —1]
xarray = : : ,
oN=1,0] ... 2[N—1,M—1]
then formingz from xar r ay is as simple as typing:
X = xarray(:),

which is sometimes written in papers as
x = vec(xarray).

We can similarly arrange the DFT coefficiedt$k, (] in lexicographic ordering as a vect&f. The relationship betweeX andx
is given as follows:

X = (Wy @ W)z, (DFT-11)
whereA ® B denotes th&ronecker product of two matrices, defined by
anB ... a1,B
AeB=| .
amiB ... am.B

MATLAB’s kr on command computes the Kronecker product. kBon(df t m x(M , df t mt x(N) ) constructs the 2D DFT
matrix. For al28 x 128 image, this matrix would bé&282 x 1282, which would require 4Gbyte to store in the usual double
precision format. And even if we could store it, the expresgDFT-11) is very inefficient computationally comparedhe 2D
FFT. However, for analysis purposes, the representatiéii{Il) can be quite useful.

The above formulation is useful for certain types of anayse

Example If Y = AX, whereX is a random vector with covariance matfigv{ X }, then the covariance matrix &f is given by

Cov{Y} = Cov{AX} = ACov{X} A"

Supposex[n] includes both a deterministic signal component and an i@ddéndom noise componeng.,
[n] = p[n] + e[nl,

whereu[n] is deterministic and[n] is an uncorrelated sequence of random variables all hati@game variance®. Then of
courseCov{z} = o%I. Suppose we take the N-point DFT 0ff»]; what is the covariance of the DFT coefficients?

Cov{X} = Cov{Wz} = W Cov{z} W' = WoIW' = 6i*WW’ = 0*N1.

So if the signal values are uncorrelated (and have the sariamea) then the DFT coefficients are also uncorrelated lfand the
same variance).

This general conclusion applies to any orthogonal transtion, and is the foundation for modern image processirthoas like
“denoising using wavelets” [4].
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Discrete cosine transforms (DCT)‘

The DFT/FFT are excellent for convolution, and useful faginency-domain analysis of sampled analog signals. So vy d
someone invent a new transform, the DCT?

For good image compression, we would lieergy compaction a good transform will result in “Fourier coefficients” thate
mostly near zero; we can discard or coarsely quantize thdl smetficients, and use most of the bits to represent theelarg
coefficients. Note that for any orthogonal transfof, ; } total energy is always preserved by Parseval’s theorem:

S Y = Y el el

n=—oo0 m=—oo k=—oc0l=—oc0
For image compression, what matters is how the energy ishiittd among the various components.

Image compression is often done in blocks. Suppose we seseoall block from some natural image. The DFT of the blockegiv
us the values of the discrete Fourier series of the periogiémesion of that signal. Suppose the periodic extensiom ldgscontinuity
at the block boundaries. Then the DFT coefficients will deslayly, just like the FT of a square wave (discontinuous)ayeas
1/k, whereas those of a triangle wave decay As’. Soanydiscontinuities in an image, including at the boundary ofcek, lead
to poor energy compaction of the DFT coefficients.

As an additional drawback of the DFT, if the image is realnthie coefficients are complex. All other things being equdien
developing image compression methods one would usualfgmpreal valued quantities over complex values if the oagimage
is real.

To overcome these drawbacks of the D#iEcrete cosine transform(DCT) uses the trick of taking the image (block) and forming
a symmetrized version of it before computing a DFT. This sytripation has the effect of

¢ eliminating discontinuities at the block edges, and

e yielding real coefficients.

Interestingly though, the DCT is derived via the DFT. So kenenalysis is still the fundamental tool, even for this rimmsform.

1D DCT

Consider the signal of exte? = 4: z[n] = {2,4, 6,8}. Its 4-point circular extension ig[n] = {...,2,4,6,8,2,4,6,8,2,...}.
Note the discontinuity.

Now consider the new signal of leng2iv:

x[n], 0<n<N-1
yln] =< z2N—-1-n], N<n<2N-1
0, otherwise,

which isy[n] = {2,4, 6,8, 8, 6,4, 2} in the example.
This signal has no jumps at the boundaries. We now derive @iE Wa the DFT. Fob < k < 2N — 1:

2N-—-1 2N-—-1
27 kn n
Y[R = Y ylnle 2R = Y yln] Wi
n=0 n=0
N-1 2N—-1

= ] Wi + Y z[2N — 1 —n] Wi
n=N

n=0
N-1 N-1 N—1
n kE(2N—1—n n —
- el W%+ 3" aln] Wi =N aln] WERL+ Woyl]
n=0 n=0 n=0

I
=

e e 2mk(2n + 1)
oD ] (Won D e W) = Wi S el 2cos(74N ) ,

n=0 n=0

27

whereWy £ e * % .
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Suppose we started with a lengthsignalz[n]. Now we have2 N complexDFT coefficientsY'[0], ..., Y[2N — 1]. This hardly
seems like progress towards compaction! But obviouslyethaust be some redundancies in hg]’s.
e Note thatY'[N] = 0, which is a consequence of the symmetry in the construcfigird.

. W2k]<,2 Y [k] isrealif z[n] is real, since it is a sum af[n]’s times a cosine.
e One can verify that we really need only saadf of theY [k]'s due to the following form of odd symmetry:

—WENRR YN <k = WERYIH, k=1,...,2N -1,
In light of these properties, the 1D DCT is defined as follows:

k/2
0, otherwise.

N-1
Cylk] = Z 2x[n]005<%) , k=0,...,N—1
n=0

A few properties of the DCT:
e Maps an/N-point sequence to anothaf-point sequence.
o If z[n] is real, then so is its DCT.
e C,[0] = 2Y0], so the Oth component of the DCT is twice that of the DFT.

e We can express it using basis functiofg:[k] = (z, ¢), whereg,[n] = 2cos(%) .
e s the set of signals {¢x} an orthogonal setovern =0,...,N —1?

Why does it matter? Simplicity in reconstructionz[n] = > ' if(;jf} oi[n].

For the inverse DCT, one can recover #1é-point DFT coefficientd [k] from the DCT coefficients’, -] as follows:

Wan'? Culk], k=0, . N—1
W2 Cy2N — k], k=N+1,...,2N — 1.

Substituting into the iDFT formula and simplifying (or aglg the orthogonality of the DCT basis) yields:

N-—1
1 k(2 1
ol = vin) = 3y 3wl Culi cos(TERED) . n—onv -,
where, becausg 0] = 23" " z[n], we have
N 1/2, k - 0 -
wik] = { 1, otherwise (DFT-12)

Rarely does onamplementhe DCT using the two boxed formulae above, since that waddireO(N?) operations. Instead one
uses an FFT-based algorithm.

Basic algorithm for 1D DCT

e extendz[n] to formy[n]. (Use MaTLAB’sfli plr orfli pud command.)

e compute2N-point DFTY [£] from y[n]. (Use MATLAB’s f f t command.)

o C.lk] = Wz’%z Y[k], k=0,...,N —1(Use MATLAB's r eal command after scaling by ttWijéz’s since there will be some
residual complex part due to finite precision.)

Similar for inverse DCT. In fact it can be done usiigpoint DFTs too. (A problem in Lim.)

Caution! MATLAB’'s dct command uses a slightly different definition of the DCT tlsatdrmalized so that it is asrthonormal
transformation, following [2, p. 150-3].
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Example z[n] = {2,4,6,8} has DFT{20, —4 + 4, —4,—4 —14}. The DCT is{40, —12.6,0, —0.897}, which has nominally
better compaction since one of the entries is zero.

Since the DCT input sequeng@:| has no extraneous sharp discontinuities, it will lead ttebetnergy compaction in the frequency
domain than the DFT input sequencle], i.e., more energy is concentrated in low frequency components.

What is the catch? What signals are better compacted by the DFT?

DCT Basis, N=6

T 1T 1T 1T 1T
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2D DCT
The 2D DCT is defined similarly to the 1D DCT, except that thesyetrizing extension is a 2D operation:

xz[n,m|+ 2N — 1 —n,m]
yln,ml =< + zn,2M —-1—-m|+z2N-1-n2M -1-m], n=0,...,.N—-1,m=0,...,.M -1
0, otherwise,

assuminge[n, m] is a finite-extent signal that is nonzero only ower=0,...,.N —1,m =0,...,M — 1.

Example
xnm ynm
15
31 2 3 3 2 1
1 4 5 6
2k 4 5 6 6 5 4
£ 05 S
i1 4 5 6 6 5 4
0 1 2 3
of[1] 2 3 3 2 1
_0;5(’)5 0 0.5 1 15 2 25 0 1 2 3 4 5
n n

By a similar derivation as the 1D case (see text):

Colk 1] = Nlezlzxx [, m] co5<%> COS(%) ,

n=0 m=0

and

H

N—-1M-1
1 k(2 1 1(2 1
= sy 3 S o (P (221,

n=0 m=0

wherew[k] was defined in (DFT-12).

Is the 2D DCT based on a separable basis?
Again, rather than using the boxed equations above, onedijpuses an FFT-based algorithm.

Basic algorithm for 2D DCT
e Extendxz[n, m] to formy[n, m].
Use MaTLAB'sfliplr,flipud,androt 90 routines.
e compute2N, 2M-point DFTY [k, [] from y[n, m]. Use MATLAB s f f t 2 routine.
o Colk, 1] = WEPW2 Y[k, k=0,...,.N—=1,1=0,...,M —1.
Use MaTLAB’s ndgr i d ormeshgr i d routine to create the weights, and then takertbal part to eliminate residual complex
component caused by finite numerical precision.

Similar algorithm flow for inverse DCT.

There is ongoing research on even faster algorithms forEhB@T, e.g, [5].

Properties of the 2D DCT

linearity , separability
symmetry: z*[n, m] RS Cx[k, 1]

If 2[n, m]is real, therC, (k,1) is real.
Parsevat 2\ ST 1|x[n m]|* = i Sons Sy wlk] wll] |Cy [k, 1))
3.3.4The discrete-space cosine transform (for causal sequencesn].) skip
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3.4

| Fast Fourier transforms (FFT) |

Brute-force evaluation of the 2D DFT would requivg (N M)?) flops. By recognizing that the DFT isseparableoperation, we
can reduce greatly the computation.

Ignoring the braces, we can rewrite the DFT expression &safsi

2
.

1—1

X[k,l] _ ] efz2fr(kn/N+lm/M)

z[n,m

m=0

(=)

n=
N— M—1

_ E eszWk:n/N E x[n,m] eszWIm/M
n=0

m=0

=

This is called theow-column decomposition Apply the 1D DFT to each column of the image, and then appdylth DFT to
each row of the result. Naturally we will want to use tast Fourier transform (FFT) for these 1D DFTs, which thus reduces the
computation taVO (M log M) for the inner set of 1D FFTs, and thédO(N log N) for the outer set of 1D FFTs, for a total of
O(MN log M N) flops. For a5122 image, the savings in using the row-column with 1D FFTs isualacfactor of 15000 relative
to the brute-force 2D DFT!

In MATLAB, thef f t routine applies the 1D FFT to each column of the suppliedima®o the most basic version of tlié t 2
routine could be written in one line as follows:
fft(fft(x).’).’
Why the .’ in this?
There are also “vector FFT” approaches that can improvetbngrow-column approach [6].

3.4.2Minicomputer implementation

skip (The book was written in the late 80's...)
3.4.3Vector radix FFT

skip “ ... do not offer any significant advantages...”
3.4.4Fast algorithms for DFT
skip (Hard to program. See EECS 658 if interested...)

Nonuniform FFTs

When would one not use the FFT? In some applications, such dsahtRcertain versions of tomography, one needs frequency
samples that are nonuniformly spaced. Recently severarpdiave addressed fast algorithms for this problem beginmith [7]

and including [8-15]. Such methods are often called the niboum FFT, or NUFFT. Many of these algorithms have been
presented only for the case of 1D signals. We have recendiseaded the multidimensional case [16].

Tricks

There are many useful FFT tricks to further accelerate DHJuéations.

Example One can compute the DFT of2aV-pointreal signal by just oneV-point FFT call [3, p. 476].
Example One can compute the DFT of tweal signals by just one FFT call [3, p. 475].

This trick, when extended to 2D, is quite useful for convotytwo real images.
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Summary

Major topics presented.

e DS orthogonal representation

e DFS, properties, circular convolution
e DFT, properties, circular convolution
e sampling the DSFT, spatial aliasing
e matrix representation

e DCT, properties

e FFT
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