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(Related to Ch. 3 of Lim.)

Introduction to Discrete Transforms

This continues our “EECS 451 in 2D” coverage. See [1, Ch. 3] and [2].

Overview
• DS orthogonal representation
• DFS, properties, circular convolution
• DFT, properties, circular convolution
• sampling the DSFT, spatial aliasing
• matrix representation
• DCT, properties
• FFT
• two FFT’s for the price of one, etc.

The DFT is what we oftencomputebecause we can do so quickly via an FFT. But often we are reallyinterested in something else,
like the FT, or linear convolution, and we must “make do” withthe DFT.

DFT.1
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2D discrete-space orthogonal representation

For discrete-space signals that are either
• periodic with period(N,M),
• or finite-extent (nonzero only forn = 0, . . . , N − 1 andm = 0, . . . ,M − 1),

the following inner product is appropriate:

〈f, g〉 =

N−1
∑

n=0

M−1
∑

m=0

f [n,m] g∗[n,m] .

There are manyorthogonal baseswith respect to this inner product.

Example. φk,l[n,m] = δ2[n− k,m− l] for k = 0, . . . , N − 1 andl = 0, . . . ,M − 1 is a trivial orthonormal basis.

This basis does not provide any new information about the signal. Complex exponential signals are a desirable choice of basis
because they are eigenfunctions of LSI systems.

The Fourier basis is as follows. We choose to scale by1/NM for agreement with the DFT convention:

φk,l[n,m] =
1

NM
eı2π(kn/N+lm/M) =

1

NM
eı 2π

N
kn eı 2π

M
lm .

This is a separable 2D basis. We should verify that the members of this set of signals are orthogonal:

〈φk,l, φk′l′〉 =

N−1
∑

n=0

M−1
∑

m=0

1

NM
φk,l[n,m]

1

NM
φ∗

k′l′ [n,m]

=
1

(NM)2

N−1
∑

n=0

M−1
∑

m=0

eı 2π

N
(k−k′)n eı 2π

M
(l−l′)m =

1

NM
δ[[k − k′, l − l′]](N,M) (DFT-1)

where we have introduced the shorthand

δ[[n,m]](N,M) ,

∞
∑

k=−∞

∞
∑

l=−∞

δ2[n− kN,m− lM ] .

The entire set{φk,l} for k, l ∈ Z is not an orthogonal basis, but the restricted set{φk,l : k = 0, . . . , N − 1, l = 0, . . . ,M − 1} is
an orthogonal basis, with eachφk,l having the same energy:

Ek,l = ‖φk,l‖
2

= 〈φk,l, φk,l〉 =
1

NM
.

2D discrete Fourier series

Given a periodic signal̃x[n,m] with period(N,M), we would like to find its 2Ddiscrete Fourier series(DFS) representation:

x̃[n,m] =

N−1
∑

k=0

M−1
∑

l=0

X̃[k, l] φk,l[n,m] =
1

NM

N−1
∑

k=0

M−1
∑

l=0

X̃[k, l] eı2π(kn/N+lm/M) .

That is, we want to representx̃[n,m] as a sum of harmonically related complex exponentials having frequencies

(0, 0), (0,
2π

N
), . . . ,

(

2π

N
(N − 1),

2π

M
(M − 1)

)

. (DFT-2)

For similarity to the DFT notation, we usẽX[k, l] to denote the(k, l)th DFS coefficient, i.e., the value that multiplies the exponen-
tial having frequency( 2π

N k, 2π
M l),

From the earlier discussion of general orthogonal representations of signals, the DFS coefficients are given by

X̃[k, l] =
〈x̃[·], φk,l〉

Ek,l
= NM

N−1
∑

n=0

M−1
∑

m=0

x̃[n,m]
1

NM
e−ı2π(kn/N+lm/M) .



c© J. Fessler, January 17, 2005, 15:35 (student version) DFT.3

Summarizing then, for a periodic signalx̃[n,m] with period(N,M), we have the following representation:

X̃[k, l] =
N−1
∑

n=0

M−1
∑

m=0

x̃[n,m] e−ı2π(kn/N+lm/M) ,

x̃[n,m] =
1

NM

N−1
∑

k=0

M−1
∑

l=0

X̃[k, l] eı2π(kn/N+lm/M) .

These are theanalysisandsynthesisformulas, which as mentioned before, representx̃[n,m] as a linear combination ofNM
harmonically related complex exponential signals.

Exact equalities hold in both the analysis and synthesis formulas (as long as all signal values are finite). There are no questions of
convergence here.

Due to the periodicity of̃x[n,m] and the complex exponentials, we could equally well evaluate the analysis formula by summing
overanyN ×M rectangular region. That is for any integersno,mo,

X̃[k, l] =

no+N−1
∑

n=no

mo+M−1
∑

m=mo

x̃[n,m] e−ı2π(kn/N+lm/M) .

Although the synthesis formula above representsx̃[n,m] in terms of coefficients̃X[k, l], k = 0, . . . , N −1, l = 0, . . . ,M −1, and
corresponding complex exponentials having frequencies (DFT-2), one could equally well representx̃[n,m] in terms of complex
coefficients and complex exponentials in anyN ×M “box” in frequency space. That is, for any integersko, lo, one could compute
x̃[n,m] by summing the products of the coefficientsX̃[k, l], k = ko, . . . , ko+N−1, l = lo, . . . , lo+M−1 and their corresponding
exponentials. For this reason, we consider the DFS coefficients X̃[k, l] to be defined forall k, l ∈ Z. Note, however, that they
form a periodic image with period(N,M), becausẽX[k + N, l] = X̃[k, l] andX̃[k, l + M ] = X̃[k, l]. In contrast, the DFT, to be
defined later, produces only a finite number of coefficients.

Because equalities hold in both the analysis and synthesis formulas, we can say there is a one-to-one correspondence between
periodic signals with period(N,M) and periodic sequences of Fourier coefficients with period(N,M).

Example. Consider the following signal

x̃[n,m] = 4 cos(πn/3) cos(πm/4) =
[

eı2πn/6 + e−ı2πn/6
] [

eı2πm/8 + e−ı2πm/8
]

= eı2π(n/6+m/8) + eı2π(n/6−m/8) + eı2π(−n/6+m/8) + eı2π(−n/6−m/8) .

What is the period? ??
In this case, we need not apply the formula forX̃[k, l] above, since we have directly representedx̃[n,m] as a sum of complex
exponentials. The coefficients in this sum are theX̃[k, l]’s:

X̃[k, l] =

{

48, k mod 6 = ±1, l mod 8 = ±1
0, otherwise

= 48
(

δ2[[k − 1, l − 1]](6,8) + δ2[[k + 1, l − 1]](6,8) + δ2[[k − 1, l + 1]](6,8) + δ2[[k + 1, l + 1]](6,8)

)

.

(Because of the one-to-one correspondence mentioned previously, there can be one and only one representation of the signal in
terms of complex exponentials signals having the given range of harmonic frequencies. Therefore, the aboveX̃[k, l]’s are the one
and only possiblẽX[k, l]’s for this representation.

Example. What signal has constant coefficients? i.e., X̃[k, l] = 1. Presumably some sort of impulse-like signal. But we are
working with periodic signals, so it must be a periodic impulse-like signal. In fact it is a 2D “impulse train:”

x̃[n,m] =
1

NM

N−1
∑

k=0

M−1
∑

l=0

eı2π(kn/N+lm/M) = δ[[n,m]](N,M) =

∞
∑

k=−∞

∞
∑

l=−∞

δ2[n− kN,m− lM ] .

(Picture)

This signal is useful for deriving properties of DFS.



DFT.4 c© J. Fessler, January 17, 2005, 15:35 (student version)

Properties of the DFS

Most properties are analogous to those of the 2D CS FS, exceptthescaling property is absent, since scaling changes the period.
(Presumably there is some such property, but it probably differs significantly from the usual scaling properties.)

• linearity if x̃[n,m] andỹ[n,m] have the same period:

α x̃[n,m] +β ỹ[n,m]
DFS
←→ α X̃[k, l] +β Ỹ [k, l]

• separability

x̃[n,m] = x̃1[n] x̃2[m]
DFS
←→ X̃1[k] X̃2[l],

whereX̃[k] denotes the usual 1D DFS.

• shift
x̃[n− n0,m−m0]

DFS
←→ e−ı2π(kn0/N+lm0/M) X̃[k, l]

• Average value(caution!)

1

NM
X̃[0, 0] =

1

NM

N−1
∑

n=0

M−1
∑

m=0

x̃[n,m]

• Parseval’s theorem
In general, iff =

∑∞
k=−∞ ckφk andg =

∑∞
k=−∞ dkφk where theφk’s are orthogonal, then〈f, g〉 =

∑∞
k=−∞ Ekckd∗k.

Thus, for the DFS:
N−1
∑

n=0

M−1
∑

m=0

x̃[n,m] ỹ∗[n,m] =
1

NM

N−1
∑

k=0

M−1
∑

l=0

X̃[k, l] Ỹ ∗[k, l]

• Symmetry properties

x̃∗[n,m]
DFS
←→ X̃∗[−k,−l]

If x̃[n,m] is real, thenX̃[k, l] is Hermitian symmetric. And vice-versa.

• Duality (Homework)

If x̃[n,m]
DFS
←→ X̃[k, l], then X̃[n,m]

DFS
←→ ?? & X̃∗[n,m]

DFS
←→ ??

• Change of period
If a signalx̃[n,m] is periodic with period(N,M), then it is also periodic with period(n0N,m0M) for any positive integers
n0,m0. Therefore, it can also be represented with a DFS in terms ofn0N ×m0M complex exponentials with frequencies

(0, 0), (0, 2π/(n0N)), . . . ,
(

2π
n0N (n0N − 1), 2π

m0M (m0M − 1)
)

. With X̃[k, l] representing the usual DFS coefficients, the

“new” DFS coefficients are

X̂[k, l] =

{

X̃[k/n0, l/m0], if k/n0 and l/m0 are integers
0, otherwise.

Thus, the “new” DFS coefficients are just the original ones with zeros in between.

• Pairs of Hermitian DFS terms form sinusoids

X̃[k, l] e−2π(kn/N+lm/M) + X̃[−k,−l] e−ı2π(kn/N+lm/M) = 2
∣

∣

∣
X̃[k, l]

∣

∣

∣
cos

(

2π

(

kn

N
+

lm

M

)

+ ∠ X̃[k, l]

)
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“Convolution” property

For the DSFT, we know thatx[n,m] ∗∗ h[n,m]
DSFT
←→ X(ωX, ωY) H(ωX, ωY), which is very useful for filtering without performing

convolution.What is the corresponding result for the DFS?

(The corresponding resultcannotbe “x̃[n,m] ∗∗ h̃[n,m]” because linear convolution of two nonzero periodic signals results in
infinite or undefined values.)

Suppose we have two periodic signalsx̃[n,m] andh̃[n,m] with the same period(N,M). If we multiply their DFS coefficients to
form Ỹ [k, l] = H̃[k, l] X̃[k, l] and then compute the inverse DFS to get a signalỹ[n,m], what is the relationship betweeñy[n,m]
and the original̃x[n,m] andh̃[n,m]? The following derivation shows that the result is periodicconvolution, just as in the 1D case:

ỹ[n,m] =
1

NM

N−1
∑

k=0

M−1
∑

l=0

Ỹ [k, l] eı2π(kn/N+lm/M)

=
1

NM

N−1
∑

k=0

M−1
∑

l=0

H̃[k, l] X̃[k, l] eı2π(kn/N+lm/M)

=
1

NM

N−1
∑

k=0

M−1
∑

l=0

[

N−1
∑

n′=0

M−1
∑

m′=0

x̃[n′,m′] e−ı2π(kn′/N+lm′/M)

]

·

[

N−1
∑

n′′=0

M−1
∑

m′′=0

h̃[n′′,m′′] e−ı2π(kn′′/N+lm′′/M)

]

eı2π(kn/N+lm/M)

=

N−1
∑

n′=0

M−1
∑

m′=0

N−1
∑

n′′=0

M−1
∑

m′′=0

x̃[n′,m′] h̃[n′′,m′′]

[

1

NM

N−1
∑

k=0

M−1
∑

l=0

e−ı2π(k(n′+n′′−n)/N+l(m′+m′′−m)/M)

]

=

N−1
∑

n′=0

M−1
∑

m′=0

x̃[n′,m′]

[

N−1
∑

n′′=0

M−1
∑

m′′=0

h̃[n′′,m′′] δ[[n′ + n′′ − n,m′ + m′′ −m]](N,M)

]

=

N−1
∑

n′=0

M−1
∑

m′=0

x̃[n′,m′] h̃[n− n′,m−m′],

where the last equality follows from the fact that the sum over n′′,m′′ has onlyNM terms, butδ[[·]](N,M) is zero for only one of
everyNM terms, and the periodicity of̃h[n,m].

Thus we have theconvolution property of the DFS:

ỹ[n,m] =

N−1
∑

n′=0

M−1
∑

m′=0

x̃[n′,m′] h̃[n− n′,m−m′]
DFS
←→ Ỹ [k, l] = X̃[k, l] H̃[k, l] .

This is calledcircular convolution , since the summations are finite. In ordinarylinear convolution, the summations are infinite.
In these notes, circular convolution is denotedx̃[n,m]

⊗

h̃[n,m].

x̃[n,m]
⊗

h̃[n,m]
DFS
←→ X̃[k, l] H̃[k, l] .

Although it was stated earlier that one could use the DFS for either periodic or finite-support signals, the above property holds only
for periodic signals.

Multiplication property

Using duality, one can show

x̃[n,m] ỹ[n,m]
DFS
←→

1

NM
X̃[k, l]

⊗

Ỹ [k, l] .
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Example. Here is a 1D illustration of linear vs circular convolution.
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n

−4 −2 0 2 4 6 8
0

2

4

6

−4 −2 0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

−4 −2 0 2 4 6 8
0

5

10

15

n

x̃(n)

h̃(n)

x̃(n)
⊗

h̃(n)

The linear convolution of a 5-point sequence with a 3-point sequence yields a 7-point sequence.

Periodic convolution of two 5-periodic sequences is still 5-periodic.
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Discrete Fourier transform (DFT)

Now we switch from the “extreme” of periodic sequences to theother extreme offinite-support (also called finite-extent) signals.
The connection between the two is that one can form a periodicsignal from a finite-support signal by replication, and one can
“extract” a finite-support signal from a periodic signal by arectangular window.

Given a 2D DS signalx[n,m], we can form periodic signals fromx[n,m] in two distinct ways.
• One way is called the(N,M)-point circular extension of x[n,m]:

x̃[n,m] , x[n mod N, m mod M ] . (DFT-3)

Notice that thiscircular extension depends only on the values ofx[n,m] for n = 0, . . . , N − 1 andm = 0, . . . ,M − 1,
regardless of what the support ofx[n,m] is.
• Another way is called the(N,M)-point periodic superposition of x[n,m]:

xps[n,m] = x[[n,m]](N,M) =
∞
∑

k=−∞

∞
∑

l=−∞

x[n− kN,m− lM ] . (DFT-4)

This periodic signal depends onall of the values of the original signalx[n,m].

Many books do not distinguish between the above two ways of creating a periodic signal fromx[n,m], and refer to one or the
other (or both) as simply the “periodic extension” of x[n,m]. In general the two methods are distinct. However, there is avery
important “special case” where the two methods yield identical signals. Ifx[n,m] is a N ×M finite-support signal, meaning
(unless otherwise specified)x[n,m] nonzero only forn = 0, . . . , N − 1 andm = 0, . . . ,M − 1, thenx̃[n,m] andxps[n,m] are
identical. So in this case the generic term “periodic extension” is unambiguous.

Furthermore, in this finite-support case, we can “extract” the original finite-support signalx[n,m] from the periodic signal̃x[n,m]
(or fromxps[n,m]) by applying a rectangular window in the space domain:

x[n,m] = x̃[n,m] RNM [n,m] whereRNM [n,m] ,

{

1, n = 0, . . . , N − 1,m = 0, . . . ,M − 1
0, otherwise.

(DFT-5)

Focusing for now on the finite-support case, what is the DFS ofthe periodic extension signal̃x[n,m]? Applying the analysis
formula:

X̃[k, l] =

N−1
∑

n=0

M−1
∑

m=0

x̃[n,m] e−ı2π(kn/N+lm/M) =

N−1
∑

n=0

M−1
∑

m=0

x[n,m] e−ı2π(kn/N+lm/M) .

(The equality follows from the limits on the sum.) The DFS coefficients aredefined and generally nonzerofor all k, l ∈ Z.

We can truncate this periodic set of coefficients to form a finite-extent set, called thediscrete Fourier transform (DFT) of x[n,m]:

X[k, l] , X̃[k, l] RNM [k, l]

=

{

X̃[k, l], k = 0, . . . , N − 1, l = 0, . . . ,M − 1
0, otherwise.

=

{

∑N−1
n=0

∑M−1
m=0 x[n,m] e−ı2π(kn/N+lm/M) , k = 0, . . . , N − 1, l = 0, . . . ,M − 1

0, otherwise.

• For our purposes, it will be safest to considerX[k, l] to be defined only fork = 0, . . . , N − 1 andl = 0, . . . ,M − 1.
• Alternatively, one can considerX[k, l] to be definedfor all k, l ∈ Z, but to benonzeroonly for k = 0, . . . , N − 1 and

l = 0, . . . ,M − 1.
• Alternatively, some texts choose to defineX[k, l] to be a periodic function ofk andl, just likeX̃[k, l] is.

The disadvantage of these latter two conventions is that tools for computing DFTs only work with finite arrays. Trying to
evaluateX[−k, l] will cause a program fault usually. To avoid such problems, it is safest to have the theory match practice as
closely as possible, so we usually chooseX[k, l] to beundefinedexcept whenk = 0, . . . , N − 1 andl = 0, . . . ,M − 1.
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Note the similarity in notation betweenX[k, l] andX(ωX, ωY). Which transform is meant should always be obvious from context.

Of course we can always “recover” the entire periodic sequenceX̃[k, l] from the DFT by applying a(N,M)-point circular exten-
sion as follows:

X̃[k, l] = X[k mod N, l mod M ] .

Since the inverse DFS formula depends onX̃[k, l] only for n = 0, . . . , N − 1 andm = 0, . . . ,M − 1, clearly we can recover
x[n,m] from X[k, l]:

x[n,m] = x̃[n,m] RNM [n,m]

=
1

NM

N−1
∑

k=0

M−1
∑

l=0

X̃[k, l] eı2π(kn/N+lm/M) RNM [n,m]

=

{

1
NM

∑N−1
k=0

∑M−1
l=0 X[k, l] eı2π(kn/N+lm/M) , n = 0, . . . , N − 1,m = 0, . . . ,M − 1

0, otherwise.

This is theinverse DFT (iDFT ) formula in 2D.

In summary then, the DFT/iDFT pair are given as follows.

X[k, l] =

{

∑N−1
n=0

∑M−1
m=0 x[n,m] e−ı2π(kn/N+lm/M) , k = 0, . . . , N − 1, l = 0, . . . ,M − 1

?, otherwise,
(DFT-6)

x[n,m] =

{

1
NM

∑N−1
k=0

∑M−1
l=0 X[k, l] eı2π(kn/N+lm/M) , n = 0, . . . , N − 1,m = 0, . . . ,M − 1

?, otherwise,
. (DFT-7)

where the “?” depends on interpretation. (It may be undefined, or zero, or the circular extension.)

Relationship between DFT and DSFT

For a finite-support signalx[n,m], we can relate the DFT to the DSFT as follows:

X[k, l] =
N−1
∑

n=0

M−1
∑

m=0

x[n,m] e−ı2π(kn/N+lm/M)

=
∞
∑

n=−∞

∞
∑

m=−∞

x[n,m] e−ı2π(kn/N+lm/M)

= X(ωX, ωY)|ωX=2πk/N, ωY=2πl/M = X

(

2π

N
k,

2π

M
l

)

, k = 0, . . . , N − 1, l = 0, . . . ,M − 1.

Providedx[n,m] has finite support, we can also write:

X̃[k, l] = X(ωX, ωY)
∣

∣

∣

ωX=2πk/N, ωY=2πl/M
= X

(

2π

N
k,

2π

M
l

)

. (DFT-8)

Caution: recall that ifg[n,m] = ga(n∆X,m∆Y), then

G(ωX, ωY) =
1

∆X∆Y

∞
∑

k=−∞

∞
∑

l=−∞

Ga

(

ωX/2π − k

∆X

ωY/2π − l

∆Y

)

.

This holds for any sampling rate regardless of whetherga(x, y) is band-limited. But ifga(x, y) were band-limited, then the central
replicate ofG(ωX, ωY) would tell us everything about the original analog signal spectrum. And if (DFT-8) also held, we could
relate the analog spectrum to the DFT coefficients. But (DFT-8) requires a finite-support signal, which is (in general) incompatible
with the analog signal being band-limited.

Find a band-limited analog signal that, when critically sampled, is a finite-support signal. ??
What happens though if you shift that analog signal slightly? ??
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Properties of the DFT

The following properties are all written so that only the values ofx[n,m] for n = 0, . . . , N−1 andm = 0, . . . ,M−1 are involved,
as well as only the values ofX[k, l] for k = 0, . . . , N − 1 andl = 0, . . . ,M − 1.

Missing properties (relative to CS FS): scaling, since scaling changes the extent. (Presumably there is such a property, but it
probably differs significantly from the usual scaling properties.)

Since the DFT is defined in terms of the DFS, it inherits many ofits properties. However, there are some differences too, due to
the finite-extent nature of bothx[n,m] andX[k, l].

Properties that are identical to those of the DFS

• linearity if x[n,m] andy[n,m] have the same period:

α x[n,m] +β y[n,m]
DFT
←→ α X[k, l] +β Y [k, l]

• separability

x[n,m] = x1[n] x2[m]
DFT
←→ X1[k] X2[l],

whereX[k] denotes the usual 1D DFT.

• average value(caution!)

1

NM

N−1
∑

n=0

M−1
∑

m=0

x[n,m] =
1

NM
X[0, 0]

• Parseval’s theorem
N−1
∑

n=0

M−1
∑

m=0

x[n,m] y∗[n,m] =
1

NM

N−1
∑

k=0

M−1
∑

l=0

X[k, l] Y ∗[k, l]

Properties that differ somewhat from those of the DFS

Many of these properties depend onx[n mod N, m mod M ], the(N,M)-point circular extension of a signal, as defined in (DFT-
3), or the(N,M)-point circular extension of the DFT coefficientsX[k, l].

• complex conjugate

x∗[n,m]
DFT
←→ X∗[−k mod N, −l mod M ]

• duality

x[n,m]
DFT
←→ X[k, l] =⇒

X[n,m]
DFT
←→ NM x[−k mod N, −l mod M ]

X∗[n,m]
DFT
←→ NM x∗[k, l]

• circular shift / complex modulation

A circular shift of a 1D signal byn0, transforms{x[0], . . . , x[N − 1]} into {x[n0], . . . , x[N − 1], x[0], . . . , x[n0 − 1]},
which can be writtenx[(n− n0) mod N ].

For a 2D signal, the circular shift byn0,m0 and its(N,M)-point DFT are

x[(n− n0) mod N, (m−m0) mod M ]
DFT
←→ e−ı2π(kn0/N+lm0/M) X[k, l] .

• circular frequency shift

eı2π(k0n/N+l0m/M) x[n,m]
DFT
←→ X[(k − k0) mod N, (l − l0) mod M ]
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• Circular space reversal

x[−n mod N, −m mod M ]
DFT
←→ X[−k mod N, −l mod M ]

For the DSFT, we know that ifx[n,m]
DSFT
←→ X(ωX, ωY), thenx[−n,−m]

DSFT
←→ X(−ωX,−ωY).

What is the corresponding formula for the DFT?
Thecircular space reversalof a 2D signalx[n,m] is given byx[−n mod N, −m mod M ].

Example. If x[n,m] =





1 2 3 4
5 6 7 8
9 10 11 12



, thenx[−n mod 4,−m mod 3] =





5 8 7 6
1 4 3 2
9 12 11 10



 .

• Symmetry properties

x∗[n,m]
DFT
←→ X∗[−k mod N, −l mod M ]

If x[n,m] is circularly even, i.e., if x[−n mod N, −m mod M ] = x[n,m], thenX[k, l] is alsocircularly even.
If x[n,m] is real, thenX[k, l] is Hermitiancircularly symmetric , i.e., X[−k mod N, −l mod M ] = X∗[k, l].
And vice-versa.

If x[n,m] is real, the formulaX[−k mod N, −l mod M ] = X∗[k, l] may not convey visually the symmetry properties of the DFT
coefficients. If we arrange the DFT coefficients as aN ×M array, the following diagram illustrates which coefficients are complex
conjugates of which other coefficients. The shaded area represents a set of “sufficient” coefficients; when storage is at apremium,
for real signals it suffices to store the values in the shaded region.

The points indicated by the dots are values that are their owncomplex conjugates, and hence must be real.
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Proof of complex conjugate property

Here is a proof of the complex conjugate property for 1D signals, to provide an example of how one performs such proofs.

By the synthesis property:

x[n] =
1

N

N−1
∑

k=0

X[k] eı2πnk/N ,

so taking the complex conjugate of both sides yields

x∗[n] =
1

N

N−1
∑

k=0

X∗[k] e−ı2πnk/N

=
1

N
X[0] +

1

N

N−1
∑

k=1

X∗[k] e−ı2πnk/N

let l = N − k:

=
1

N
X[0] +

1

N

N−1
∑

l=1

X∗[N − l] e−ı2πn(N−l)/N

=
1

N
X[0 mod N ] +

1

N

N−1
∑

l=1

X∗[N − l] eı2πnl/N

=
1

N
X[0 mod N ] +

1

N

N−1
∑

l=1

X∗[−l mod N ] eı2πnl/N

=
1

N

N−1
∑

l=0

X∗[−l mod N ] eı2πnl/N .

Since this is the DFT synthesis expression forx∗[n], we have shown the following property:

x∗[n]
DFT
←→ X∗[−k mod n] .



c© J. Fessler, January 17, 2005, 15:35 (student version) DFT.13

Convolution property

One of the main uses of the DFT is to implement fast convolution via the FFT. So the convolution property is particularly important.
In fact, this property is probably the primary reason why theDFT is used so much more frequently than the many alternative
orthogonal transforms.

What happens if we take two sets of(N,M)-point DFT coefficients, multiply them, and take the inverseDFT? Clearly the answer
cannot in general be the linear convolution, since linear convolution of two signals results in a signal with larger support.

Derivation:

Supposeh[n,m] andx[n,m] are both finite-support signals, with corresponding DFT coefficientsH[k, l] andX[k, l].

DefineY [k, l] = H[k, l] X[k, l], and lety[n,m] be the inverse(N,M)-point DFT ofY [k, l]. Then by the above construction,

y[n,m] = ỹ[n,m] RNM [n,m],

whereRNM [n,m] was defined in (DFT-5), and where

ỹ[n,m]
DFS
←→ Ỹ [k, l] = ˜H[k, l] X[k, l] = H̃[k, l] X̃[k, l],

whereH̃[k, l] andX̃[k, l] are the periodic extensions ofH[k, l] andX[k, l] respectively.

It follows that ỹ[n,m] = h̃[n,m]
⊗

x̃[n,m], and so

y[n,m] = (h̃[n,m]
⊗

x̃[n,m])RNM [n,m]

=

{

∑N−1
k=0

∑M−1
l=0 h̃[k, l] x̃[n− k,m− l], n = 0, . . . , N − 1,m = 0, . . . ,M − 1

0, otherwise.

This is a correct but incomplete answer since we want a directrelationship betweeny[n,m] and the original signalsh[n,m] and
x[n,m]. Considering that the summation limits extend only from0 to N − 1 and0 to M − 1, we can write

y[n,m] =

{

∑N−1
k=0

∑M−1
l=0 h[k, l] x[(n− k) mod N, (m− l) mod M ], n = 0, . . . , N − 1,m = 0, . . . ,M − 1

0, otherwise

, x[n,m]
⊗

h[n,m] .

Note that for finite-support signals we have aslightlydifferent definition of circular convolution than for periodic signals. In words,
if we start with two finite-support signals, multiplying their DFT coefficients is equivalent to: first forming their periodic extension,
then performing circular convolution, then truncating theresult.

In summary, one usually expresses theconvolution property of the DFT as follows:

h[n,m]
⊗

x[n,m]
DFT
←→ H[k, l] X[k, l],

where one must remember the truncation and the slightly modified meaning ofcircular convolution .

Multiplication property

Using duality, one can show

x[n,m] y[n,m]
DFS
←→ NM X[k, l]

⊗

Y [k, l] .
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Illustration of wrap around effect

1 64

x[n,m]
1

64 0

5

1 64

h[n,m]
1

64 0

6
x 10

−3

1 64n

m

x[n,m] ** h[n,m] linear
1

64 0

5

1 64

x[n,m] ⊗  h[n,m] circ.
1

64 0

5

Emulating linear convolution

The effect of circular convolution is awrap around effect, where signal values from one border of an image can “wrap around” to
affect values on the other side after filtering via a DFT. Thiseffect is generally undesirable.

How can we eliminate this wrap around effect of the DFT? Usingzero padding.

Convolving anN1×N2 imagex[n,m] with aM1×M2 filter h[n,m] yields aL1×L2 resulty[n,m], whereLk = Nk + Mk − 1.
Thus, if wezero padbothx[n,m] andh[n,m] to a sizeL1 × L2 before taking the DFT, then the final result ofiDFT(DFT(x)
.* DFT(h)) will be exactly equivalent to the result oflinear convolution of x[n,m] with h[n,m]. (Of course this only works
for finite-support images, but that is always adequate in practice for finite-support filters!)

There is a practical inconvenience with zero padding however. Suppose we wish to convolve a256 × 256 image with a17 × 17
filter. The result will be272×272. The prime factors of 272 are 2 and 17. The FFT works fastest for small prime factors (especially
2), so a prime factor of 17 is computationally undesirable. One could pad to a512 × 512 image, but then only 28% of the final
image would be the part we care about (the rest would be zero inexact arithmetic). There are a few choices.
• Abandon the zero padding, accept the wrap around, and ignorethe edges of the image.

•

Zero pad to a value smaller than 512;e.g., 288 has factors 2 and 3 and is only slightly bigger
than 272. MATLAB ’s fft2 routine is clever enough to exploit this. Consider the following
results oftic, fft2(rand(N)); toc on a Pentium II (200MHz).
This approachstill uses circular convolution, but the zero padding has the effect of yielding
the sameresultsas linear convolution,for finite-support signals.

N time
256 0.32
272 0.45
288 0.37
512 1.25

Clearly intelligent zero padding can reduce computation considerably over the popular “next higher power of 2” approach.
• Use theoverlap-add methodor overlap-save methoddescribed below.
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The overlap-add method

Since convolution is linear, we can decompose convolution of a large image with a small filter into the sum of the convolution of
the filter with each of several modest-sized blocks of the image.

Let
x[n,m] =

∑

k

xk[n,m] (Picture) ,

then

y[n,m] = h[n,m] ∗∗ x[n,m] = h[n,m] ∗∗
∑

k

xk[n,m]

=
∑

k

h[n,m] ∗∗ xk[n,m] ,
∑

k

yk[n,m], whereyk[n,m] , h[n,m] ∗∗ xk[n,m] .

If block is M1 ×M2 and the filter isL1 × L2, then the result of each block convolution will be(M1 + L1 − 1)× (M2 + L2 − 1).
So the output blocksyk[n,m] will overlap. Nevertheless, superposition still applies,so we will get the correct final result provided
we
• implement linear convolution for each block,
• and properlyadd the resulting overlapping blocks.

The MATLAB commandfftfilt does this in 1D.
Is there a 2D overlap-add method inM ATLAB ? (Theconv2 routine is a MEX file.)

Theoverlap-save methodis fairly similar. See text.

To implement linear convolution for each block, we can either use space-domain convolution (which would be reasonable for
small filters, especially if separable), or use zero-paddedconvolution via the FFT. One should choose the block size such that the
zero-padded FFT size factors into small primes.
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Sampling the DSFT

We have seen that ifx[n,m] is a finite-support signal, then its DFT consists of samples of its DSFT:

X[k, l] = X(ωX, ωY)
∣

∣

∣

ωX=2πk/N, ωY=2πl/M
. (DFT-9)

Often, however, we “take samples” of an analytical expression for the DSFT of some unknown signal, and then compute the iDFT
to examine the signal. What happens if the underlying signal does not have finite extent?

In other words, supposex[n,m]
DSFT
←→ X(ωX, ωY) for anyDS signalx[n,m], and define

Y [k, l] = X(ωX, ωY)
∣

∣

∣

ωX=2πk/N, ωY=2πl/M
, k = 0, . . . , N − 1, l = 0, . . . ,M − 1

for some user-selected values(N,M).
If we then compute the iDFT ofY [k, l] to get some signaly[n,m], how does thaty[n,m] relate to the originalx[n,m]?

x[n,m]→ DSFT → X(ωX, ωY)→ sample/truncate→ Y [k, l]→ iDFT → y[n,m]

To aid in the analysis, define

Y (ωX, ωY) =

N−1
∑

k=0

M−1
∑

l=0

Y [k, l] δ2((ωX − 2πk/N, ωY − 2πl/M))(2π,2π)

=
N−1
∑

k=0

M−1
∑

l=0

X(ωX, ωY)
∣

∣

∣

ωX=2πk/N, ωY=2πl/M
δ2((ωX − 2πk/N, ωY − 2πl/M))(2π,2π)

= X(ωX, ωY)
N−1
∑

k=0

M−1
∑

l=0

δ2((ωX − 2πk/N, ωY − 2πl/M))(2π,2π) .

Then the output signal is as follows:

y[n,m] =
1

NM

N−1
∑

k=0

M−1
∑

l=0

Y [k, l] eı2π(nk/N+ml/M)

=
1

NM

∫ π

−π

∫ π

−π

Y (ωX, ωY) eı(ωXn+ωYm) dωX dωY (substituteY (ωX, ωY) to verify)

=
1

NM

∫ π

−π

∫ π

−π

[

X(ωX, ωY)
N−1
∑

k=0

M−1
∑

l=0

δ2((ωX − 2πk/N, ωY − 2πl/M))(2π,2π)

]

eı(ωXn+ωYm) dωX dωY

= x[n,m] ∗∗ h[n,m],

where we see

h[n,m]
F2←→

(2π)2

NM

N−1
∑

k=0

M−1
∑

l=0

δ2((ωX − 2πk/N, ωY − 2πl/M))(2π,2π),

so by recalling the DSFT of complex exponential signals:

h[n,m] =
1

NM

N−1
∑

k=0

M−1
∑

l=0

e−ı2π(kn/N+lm/M) = δ[[n,m]](N,M).

So

y[n,m] = x[n,m] ∗∗ h[n,m] = x[n,m] ∗∗ δ[[n,m]](N,M) =
∞
∑

k=−∞

∞
∑

l=−∞

x[n− kN,m− lM ] = xps[n,m],

i.e., sampling in the Fourier domain causes superimposed replicas in the space domain, which means spatialaliasing if x[n,m] is
not a finite-extent signal.
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Example. Earlier, in the discussion of filter design 2 at the end of Chapter DS, we wanted to find the impulse response of the filter
having spectrum

H(ωX, ωY) = 4(1 + cos ω) rect
( ω

2π

)

, ω =
√

ω2
X

+ ω2
Y
.

I did this numerically by sampling the DSFT, and then computing the iDFT. Since theh[n,m] in this example has infinite extent,
this sampling results in a spatially aliased reconstruction of h[n,m]. In the example I usedN = M = 128. Let us see if that was a
reasonable value by computing iDFT for various values ofN and seeing howh[0, 0] varies withN .

2 32 64 128 256 512
1.86

1.88

1.9

1.92

1.94

1.96

1.98

2

N

h(
0,

0)

iDSFT via iDFT vs N

In this case,h[n,m] decays rapidly, so evenN = 32 appears to suffice.

As a more challenging example, consider the ideal lowpass filter spectrum:

H(ωX, ωY) = rect
( ω

2π

)

.

Here ish[0, 0] versusN . Ideallyh[n,m] = 1
(2π)2

∫ π

−π

∫ π

−π
H(ωX, ωY) dωX dωY = 1

(2π)2 ππ2 = π/4 ≈ 0.785

2 32 64 128 256 512
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

N

h(
0,

0)

iDSFT via iDFT vs N

In this caseh[n,m] is a jinc function, which decays more slowly, so largerN is needed to achieve negligible effects of the spatial
aliasing.
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Matrix representation of DFT

1D DFT using matrices

The DFT is a linear transformation of the sequencex[0], . . . , x[N − 1] to the coefficientsX[0], . . . ,X[N − 1]. We can always
represent any such linear transformation in matrix-vectorform.

Define

x =











x[0]
x[1]

...
x[N − 1]











andX =











X[0]
X[1]

...
X[N − 1]











.

Then we can write the 1D DFT expression (cf. (DFT-6)):

X[k] =

N−1
∑

n=0

x[n] e−ı2πnk/N

in matrix-vector form as follows [3, Section 5.1.3]:
X = Wx, (DFT-10)

whereW is aN ×N matrix with elements

Wkn = W kn
N whereWN , e−ı2π/N .

Since harmonic complex exponential signals are orthogonal(see (DFT-1)), the columns (and rows) of the matrixW are orthogonal.
Hence the matrixW is an orthogonal matrix, meaningW ′W is a diagonal matrix. Specifically,

W ′W = NI = WW ′

whereI is theN ×N identity matrix.

Thus, by definition of matrix inverse:

W−1 =
1

N
W ′.

Thus, from (DFT-10),

x = W−1X =
1

N
W ′X,

which is the matrix-vector form of (DFT-7).

We can also viewParseval’s relationfor the DFT in matrix vector form:

x′y =

(

1

N
W ′X

)′ (
1

N
W ′Y

)

=
1

N2
X ′WW ′Y =

1

N2
X ′(NI)Y =

1

N
X ′Y ,

and as a special case:

‖x‖
2

= x′x =
1

N
X ′X =

1

N
‖X‖

2
.

The MATLAB commanddftmtx constructs the matrixW above.
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2D DFT using matrices (See [2, Section 5.2].)

What about the 2D DFT? The 2D DFT is also a linear transformation of theNM values

x[n,m], n = 0, . . . , N − 1, m = 0, . . . ,M − 1

to theNM coefficients
X[k, l], k = 0, . . . , N − 1, l = 0, . . . ,M − 1.

We can also represent this linear transformation by aNM ×NM matrix. Yet apparently MATLAB does not have a single built-in
command for constructing this matrix. How can we construct it?

The first thing we must do is arrange the 2D set of image values into a 1D vector. The standard method for this is calledlexico-
graphic ordering, defined as follows:

x = [x[0, 0] x[1, 0] . . . x[N − 1, 0] x[0, 1] . . . x[N − 1, 1] . . . x[0,M − 1] . . . x[N − 1,M − 1]]T

In MATLAB , if the image array is represented by

xarray =







x[0, 0] . . . x[0,M − 1]
...

.. .
...

x[N − 1, 0] . . . x[N − 1,M − 1]






,

then formingx from xarray is as simple as typing:

x = xarray(:),

which is sometimes written in papers as
x = vec(xarray).

We can similarly arrange the DFT coefficientsX[k, l] in lexicographic ordering as a vectorX. The relationship betweenX andx

is given as follows:
X = (WM ⊗WN )x, (DFT-11)

whereA⊗B denotes theKronecker product of two matrices, defined by

A⊗B =







a11B . . . a1nB
...

. ..
...

am1B . . . amnB






.

MATLAB ’s kron command computes the Kronecker product. Sokron(dftmtx(M),dftmtx(N)) constructs the 2D DFT
matrix. For a128 × 128 image, this matrix would be1282 × 1282, which would require 4Gbyte to store in the usual double
precision format. And even if we could store it, the expression (DFT-11) is very inefficient computationally compared tothe 2D
FFT. However, for analysis purposes, the representation (DFT-11) can be quite useful.

The above formulation is useful for certain types of analyses.

Example. If Y = AX, whereX is a random vector with covariance matrixCov{X}, then the covariance matrix ofY is given by

Cov{Y } = Cov{AX} = ACov{X}A′.

Supposex[n] includes both a deterministic signal component and an additive random noise component,i.e.,

x[n] = µ[n] + ε[n],

whereµ[n] is deterministic andε[n] is an uncorrelated sequence of random variables all having the same varianceσ2. Then of
courseCov{x} = σ2I. Suppose we take the N-point DFT ofx[n]; what is the covariance of the DFT coefficients?

Cov{X} = Cov{Wx} = W Cov{x}W ′ = Wσ2IW ′ = σ2WW ′ = σ2NI.

So if the signal values are uncorrelated (and have the same variance) then the DFT coefficients are also uncorrelated (andhave the
same variance).

This general conclusion applies to any orthogonal transformation, and is the foundation for modern image processing methods like
“denoising using wavelets” [4].
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Discrete cosine transforms (DCT)

The DFT/FFT are excellent for convolution, and useful for frequency-domain analysis of sampled analog signals. So why did
someone invent a new transform, the DCT?

For good image compression, we would likeenergy compaction; a good transform will result in “Fourier coefficients” thatare
mostly near zero; we can discard or coarsely quantize the small coefficients, and use most of the bits to represent the larger
coefficients. Note that for any orthogonal transform{φk,l} total energy is always preserved by Parseval’s theorem:

∞
∑

n=−∞

∞
∑

m=−∞

|x[n,m]|
2

=
∞
∑

k=−∞

∞
∑

l=−∞

‖φk,l‖
2
|ck,l|

2
.

For image compression, what matters is how the energy is distributed among the various components.

Image compression is often done in blocks. Suppose we selecta small block from some natural image. The DFT of the block gives
us the values of the discrete Fourier series of the periodic extension of that signal. Suppose the periodic extension hasa discontinuity
at the block boundaries. Then the DFT coefficients will decayslowly, just like the FT of a square wave (discontinuous) decay as
1/k, whereas those of a triangle wave decay as1/k2. Soanydiscontinuities in an image, including at the boundary of a block, lead
to poor energy compaction of the DFT coefficients.

As an additional drawback of the DFT, if the image is real, then its coefficients are complex. All other things being equal,when
developing image compression methods one would usually prefer real valued quantities over complex values if the original image
is real.

To overcome these drawbacks of the DFT,discrete cosine transform(DCT) uses the trick of taking the image (block) and forming
a symmetrized version of it before computing a DFT. This symmetrization has the effect of
• eliminating discontinuities at the block edges, and
• yielding real coefficients.

Interestingly though, the DCT is derived via the DFT. So Fourier analysis is still the fundamental tool, even for this newtransform.

1D DCT

Consider the signal of extentN = 4: x[n] = {2, 4, 6, 8}. Its 4-point circular extension is̃x[n] = {. . . , 2, 4, 6, 8, 2, 4, 6, 8, 2, . . .} .
Note the discontinuity.

Now consider the new signal of length2N :

y[n] =







x[n], 0 ≤ n ≤ N − 1
x[2N − 1− n], N ≤ n ≤ 2N − 1
0, otherwise,

which isy[n] = {2, 4, 6, 8, 8, 6, 4, 2} in the example.
This signal has no jumps at the boundaries. We now derive the DCT via the DFT. For0 ≤ k ≤ 2N − 1:

Y [k] =

2N−1
∑

n=0

y[n] e−ı 2π

2N
kn =

2N−1
∑

n=0

y[n] W kn
2N

=

N−1
∑

n=0

x[n] W kn
2N +

2N−1
∑

n=N

x[2N − 1− n] W kn
2N

=

N−1
∑

n=0

x[n] W kn
2N +

N−1
∑

n=0

x[n]W
k(2N−1−n)
2N =

N−1
∑

n=0

x[n]W kn
2N [1 + W−k

2N ]

= W
−k/2
2N

N−1
∑

n=0

x[n]
(

W
k(n+1/2)
2N + W

−k(n+1/2)
2N

)

= W
−k/2
2N

N−1
∑

n=0

x[n] 2 cos

(

2πk(2n + 1)

4N

)

,

whereWN , e−ı 2π

N .
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Suppose we started with a lengthN signalx[n]. Now we have2N complexDFT coefficientsY [0], . . . , Y [2N − 1]. This hardly
seems like progress towards compaction! But obviously there must be some redundancies in theY [k]’s.
• Note thatY [N ] = 0, which is a consequence of the symmetry in the construction of y[n].
• W

k/2
2N Y [k] is real if x[n] is real, since it is a sum ofx[n]’s times a cosine.

• One can verify that we really need only savehalf of theY [k]’s due to the following form of odd symmetry:

−W
(2N−k)/2
2N Y [2N − k] = W

k/2
2N Y [k], k = 1, . . . , 2N − 1.

In light of these properties, the 1D DCT is defined as follows:

Cx[k] ,

{

W
k/2
2N Y [k], 0 ≤ k ≤ N − 1

0, otherwise.

Cx[k] =

N−1
∑

n=0

2x[n] cos

(

πk(2n + 1)

2N

)

, k = 0, . . . , N − 1.

A few properties of the DCT:
• Maps anN -point sequence to anotherN -point sequence.
• If x[n] is real, then so is its DCT.
• Cx[0] = 2Y [0], so the 0th component of the DCT is twice that of the DFT.

• We can express it using basis functions:Cx[k] = 〈x, φk〉, whereφk[n] , 2 cos
(

πk(2n+1)
2N

)

.

• Is the set of signals {φk} an orthogonal set over n = 0, . . . , N − 1? ??
Why does it matter? Simplicity in reconstruction:x[n] =

∑N−1
k=0

〈x, φk〉

‖φk‖
2 φk[n].

For the inverse DCT, one can recover the2N -point DFT coefficientsY [k] from the DCT coefficientsCx[·] as follows:

Y [k] =











W
−k/2
2N Cx[k], k = 0, . . . , N − 1

0, k = N

−W
−k/2
2N Cx[2N − k], k = N + 1, . . . , 2N − 1.

Substituting into the iDFT formula and simplifying (or applying the orthogonality of the DCT basis) yields:

x[n] = y[n] =
1

N

N−1
∑

k=0

w[k]Cx[k] cos

(

πk(2n + 1)

2N

)

, n = 0, . . . , N − 1,

where, becauseY [0] = 2
∑N−1

n=0 x[n], we have

w[k] ,

{

1/2, k = 0
1, otherwise.

(DFT-12)

Rarely does oneimplementthe DCT using the two boxed formulae above, since that would requireO(N2) operations. Instead one
uses an FFT-based algorithm.

Basic algorithm for 1D DCT
• extendx[n] to formy[n]. (Use MATLAB ’s fliplr or flipud command.)
• compute2N -point DFTY [k] from y[n]. (Use MATLAB ’s fft command.)
• Cx[k] = W

k/2
2N Y [k], k = 0, . . . , N − 1 (Use MATLAB ’s real command after scaling by theW k/2

2N ’s since there will be some
residual complex part due to finite precision.)

Similar for inverse DCT. In fact it can be done usingN -point DFTs too. (A problem in Lim.)

Caution! MATLAB ’s dct command uses a slightly different definition of the DCT that is normalized so that it is anorthonormal
transformation, following [2, p. 150-3].
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Example: x[n] = {2, 4, 6, 8} has DFT{20,−4 + ı4,−4,−4− ı4}. The DCT is{40,−12.6, 0,−0.897}, which has nominally
better compaction since one of the entries is zero.

Since the DCT input sequencey[n] has no extraneous sharp discontinuities, it will lead to better energy compaction in the frequency
domain than the DFT input sequencex[n], i.e., more energy is concentrated in low frequency components.

What is the catch? What signals are better compacted by the DFT? ??

0 1 2 3 4 5 6

−1

0

1

DCT Basis, N=6

0 1 2 3 4 5 6

−1

0

1

0 1 2 3 4 5 6

−1

0

1

0 1 2 3 4 5 6

−1

0

1

0 1 2 3 4 5 6

−1

0

1

0 1 2 3 4 5 6

−1

0

1

n

φ k(n
)
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2D DCT

The 2D DCT is defined similarly to the 1D DCT, except that the symmetrizing extension is a 2D operation:

y[n,m] =







x[n,m] +x[2N − 1− n,m]
+ x[n, 2M − 1−m] +x[2N − 1− n, 2M − 1−m], n = 0, . . . , N − 1,m = 0, . . . ,M − 1
0, otherwise,

assumingx[n,m] is a finite-extent signal that is nonzero only overn = 0, . . . , N − 1, m = 0, . . . ,M − 1.

Example.
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By a similar derivation as the 1D case (see text):

Cx[k, l] =
N−1
∑

n=0

M−1
∑

m=0

4x[n,m] cos

(

πk(2n + 1)

2N

)

cos

(

πl(2m + 1)

2M

)

,

and

x[n,m] =
1

NM

N−1
∑

n=0

M−1
∑

m=0

w[k] w[l]Cx[k, l] cos

(

πk(2n + 1)

2N

)

cos

(

πl(2m + 1)

2M

)

,

wherew[k] was defined in (DFT-12).

Is the 2D DCT based on a separable basis? ??

Again, rather than using the boxed equations above, one typically uses an FFT-based algorithm.

Basic algorithm for 2D DCT
• Extendx[n,m] to formy[n,m].

Use MATLAB ’s fliplr, flipud, androt90 routines.
• compute2N, 2M -point DFTY [k, l] from y[n,m]. Use MATLAB ’s fft2 routine.
• Cx[k, l] = W

k/2
2N W

l/2
2M Y [k, l], k = 0, . . . , N − 1, l = 0, . . . ,M − 1.

Use MATLAB ’s ndgrid ormeshgrid routine to create the weights, and then take thereal part to eliminate residual complex
component caused by finite numerical precision.

Similar algorithm flow for inverse DCT.

There is ongoing research on even faster algorithms for the 2D DCT, e.g., [5].

Properties of the 2D DCT

linearity , separability

symmetry: x∗[n,m]
DCT
←→ C∗

x[k, l]
If x[n,m] is real, thenCx(k, l) is real.
Parseval:

∑N−1
n=0

∑M−1
m=0 |x[n,m]|

2
= 1

4NM

∑N−1
k=0

∑M−1
l=0 w[k]w[l] |Cx[k, l]|

2

3.3.4The discrete-space cosine transform (for causal sequencesx[n].) skip
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3.4

Fast Fourier transforms (FFT)

Brute-force evaluation of the 2D DFT would requireO((NM)2) flops. By recognizing that the DFT is aseparableoperation, we
can reduce greatly the computation.

Ignoring the braces, we can rewrite the DFT expression as follows:

X[k, l] =
N−1
∑

n=0

M−1
∑

m=0

x[n,m] e−ı2π(kn/N+lm/M)

=
N−1
∑

n=0

e−ı2πkn/N

[

M−1
∑

m=0

x[n,m] e−ı2πlm/M

]

.

This is called therow-column decomposition. Apply the 1D DFT to each column of the image, and then apply the 1D DFT to
each row of the result. Naturally we will want to use thefast Fourier transform (FFT) for these 1D DFTs, which thus reduces the
computation toNO(M log M) for the inner set of 1D FFTs, and thenMO(N log N) for the outer set of 1D FFTs, for a total of
O(MN log MN) flops. For a5122 image, the savings in using the row-column with 1D FFTs is about a factor of 15000 relative
to the brute-force 2D DFT!

In MATLAB , thefft routine applies the 1D FFT to each column of the supplied matrix. So the most basic version of thefft2
routine could be written in one line as follows:

fft(fft(x).’).’

Why the .’ in this? ??

There are also “vector FFT” approaches that can improve overthis row-column approach [6].

3.4.2Minicomputer implementation

skip (The book was written in the late 80’s...)

3.4.3Vector radix FFT

skip “ ... do not offer any significant advantages...”

3.4.4Fast algorithms for DFT

skip (Hard to program. See EECS 658 if interested...)

Nonuniform FFTs

When would one not use the FFT? In some applications, such as MRI and certain versions of tomography, one needs frequency
samples that are nonuniformly spaced. Recently several papers have addressed fast algorithms for this problem beginning with [7]
and including [8–15]. Such methods are often called the nonuniform FFT, or NUFFT. Many of these algorithms have been
presented only for the case of 1D signals. We have recently addressed the multidimensional case [16].

Tricks

There are many useful FFT tricks to further accelerate DFT calculations.

Example. One can compute the DFT of a2N -point real signal by just oneN -point FFT call [3, p. 476].

Example. One can compute the DFT of tworeal signals by just one FFT call [3, p. 475].

This trick, when extended to 2D, is quite useful for convolving two real images.
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Summary

Major topics presented.
• DS orthogonal representation
• DFS, properties, circular convolution
• DFT, properties, circular convolution
• sampling the DSFT, spatial aliasing
• matrix representation
• DCT, properties
• FFT
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