
Chapter 9

Image Restoration: Basic
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Introduction

Entire books are devoted to this problem [1–5].

Example. Hubble space telescope. (Spherical lens aberration causes space-variant PSF, requiring iterative restoration methods.)
Confocal microscopy. Photograph of moving object with slowshutter.

Overview

Organized by types of degradation.
• 9.2 additive random noise
• 9.3 blurring
• 9.4 blurring and noise
• 9.5 signal-dependent noise
• 9.6 multiple frames

MATLAB commands related to image restoration include the following. Of these, we will focus in particular on the adaptive Wiener
filter for noise reductionwiener2.

deconvblind - Deblur image using blind deconvolution.
deconvlucy - Deblur image using Lucy-Richardson method.
deconvreg - Deblur image using regularized filter.
deconvwnr - Deblur image using Wiener filter.
wiener2 - Perform 2-D adaptive noise-removal filtering.

Of course LSI restoration methods are enabled by MATLAB ’s filtering commands, and iterative restoration methods are easily
implemented using all of MATLAB ’s matrix computation routines.
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Problem formulation
• Previously we consideredimage enhancement, where processing was performed on an image to highlight certain features of

the image. All this processing was done assuming that the initial image was a fairly accurate representation of the objects of
interest. Enhancement methods aread hocusually assuming no model for the degradation or object. Evaluation is typically
qualitative.
• In this chapter we consider the problem ofimage restoration, where the image has been degraded prior to entering our image

processing system. The goal of an image restoration algorithm is to generate an estimate of the original picture prior tothe
degradation.
• There is some overlap between image restoration and image enhancement. Often image enhancement algorithms, such as median

filtering, can be used to restore degraded images. However, the term image restoration is usually associated with minimizing,
or even removing, image artifacts due toblurring and noise. Restoration methods are usually based on explicit models and
evaluated quantitatively (e.g., MSE).
• There are multiple sources of blurring: camera motion, temporal aliasing, out of focus lens, etc. In general, the algorithms used

to reduce the effects of blurring are specific to the source ofblurring.
• There are multiple sources of noise: additive Johnson noise, bit loss in communication, multiplicative noise (e.g., speckle), etc.

Again, the sources of noise usually dictate the type of processing performed.
• In actual systems the degradation often occursbeforethe digitizing system,i.e., in the following model.

f(x, y)→ Degradation→ g(x, y)→ Digitizer →
︸ ︷︷ ︸

model

g[n,m]→ Restoration→ f̂ [n,m]→ Display → f̂(x, y) .

Thus the ultimate goal could be to recoverf(x, y) from g[n,m]. The above model is sometimes called acontinuous-to-discrete
degradation. Although the model shown above is often theoretically appropriate, for simplicity, many image restoration methods
are developed using a simplerdiscrete-to-discretedegradation model in which the degradation occurs after thedigitization process,
as shown below:

f(x, y)→ Digitizer → f [n,m]→ Degradation→
︸ ︷︷ ︸

model

g[n,m]→ Restoration→ f̂ [n,m]→ Display → f̂(x, y) .

Everything to the left ofg[n,m] in the above diagrams is amodelonly. It has been said that “all models are wrong, but some
models are useful,” and this remark can apply to either of theabove models.

If an image restoration procedure is accurate, then the processed image

f̂ [n,m] ≈ f [n,m] .

Assuming a discrete-space degradation model facilitates discrete-space algorithms for image restoration. For many forms of
degradation, this assumption is sufficiently accurate.

One can also use a discrete-to-discrete model but include a down-sampler in the model for a closer approximation to the continuous-
to-discrete model:

f(x, y)→ Digitizer → f [n,m]→ Degradation→ Down sampling→
︸ ︷︷ ︸

model

g[n,m]→ Restoration→ f̂ [n,m] .

Of coursef [n,m] is never known in practice, but we often know something aboutthe characteristics off [n,m] that can help
design the restoration method. For example, we might assumef [n,m] is the realization of a random process with certain statistical
properties. Under such models we have the possibility of designing a restoration system that is optimal in some sense, such as

minimizing the MSEE

[∣
∣
∣f̂ [n,m]− f [n,m]

∣
∣
∣

2
]

.
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9.1
Degradation Estimation

Before some degradation can be removed, we must know something about its properties. Sometimes we know its propertiesa
priori . In most circumstances, however, we do not know the properties fully. Consequently, a common first step in any image
restoration procedure is to estimate the degradation itself so that procedures for “optimal” removal can then be designed.

Two main approaches to characterizing degradations.
• Extract information about the degradation processes from the degraded image itself.

If an image is degraded by additive noise, then we can estimate the power spectrum or the probability density function of
the random noise process from intensity fluctuations withina uniform brightness region, such as the sky or the background
surrounding the brain in a brain image.
Estimating a noise power spectrum makes an additional implicit assumption (beyond additivity) of the noise.

What is it? ??
If an image is blurred by an out of focus lens such that the degraded image is approximately related tof [n,m] by

g[n,m] ≈ f [n,m] ∗∗ b[n,m],

then we can estimate the blurring functionb[n,m] if the object contains an impulse (or something close to an impulse), that is
f [n,m] ≈ δ2[n− n0,m−m0] somewhere in the image.
Also, if there is a uniform speckle field (only true for coherent imaging systems), then the blurring function can be estimated by
the 2D correlation function in the neighborhood of the speckle field.
• Another approach to degradation characterization is to directly model the degradation (based on studying the degradation mech-

anisms) and then to estimate parameters of the model from theimage or from separate “calibration” measurements.

Example. Consider an analog imagefa(x, y) that is blurred by planar motion during photographic exposure. A simple model for
a photograph of a flatstationary scenetaken by a moving camera is:

ga(x, y) =
1

T

∫ T/2

−T/2

fa(x− x0(t), y − y0(t)) dt = fa(x, y) ∗∗ 1

T

∫ T/2

−T/2

δ2(x− x0(t), y − y0(t)) dt, (9-1)

wherex0(t) andy0(t) represent the horizontal and vertical displacements of thecamera relative to its position at timet = 0,
assumingx0(0) = y0(0) = 0, andT is the total exposure duration.

Does the degradation in (9-1) correspond to an LSI system? ??

The PSF of this motion blur and its corresponding frequency response are given by:

ba(x, y) =
1

T

∫ T/2

−T/2

δ2(x− x0(t), y − y0(t)) dt
F←→ Ba(νX, νY) =

1

T

∫ T/2

−T/2

e−ı2π(νXx0(t)+νYy0(t)) dt .

Example. If there is linear motion in thex direction such thatx0(t) = kt andy0(t) = 0, thenBa(νX, νY) reduces to

Ba(νX, νY) = sinc(kνXT ) .

(Note thatk must have units distance/time, which balances above.) In the space domain,

ba(x, y) =
1

kT
rect

( x

kT

)

?? .

What is missing from the above? ??
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Suppose we are given a digital photograph corrupted by (assumed known) motion blur and we wish to perform discrete-space
restoration.
What should the corresponding discrete-to-discrete blur function b[n,m] for this model?
If f [n,m] = fa(n∆X,m∆Y), then does there exist a discrete impulse responseb[n,m] such that

g[n,m] = ga(n∆X,m∆Y) = f [n,m] ∗∗ b[n,m]?

Digital restoration algorithms require such ab[n,m], so this is an important practical point to resolve!
In particular, it may be reasonable to assume thatfa(x, y) is band-limited, but whetherb(x, y) is band-limited may be less clear.

Since the system is LSI, iffa(x, y) is bandlimited, then so isga(x, y). Thus, working in the frequency domain we have

g[n,m]
DSFT←→ G(ωX, ωY) =

∞∑

k=−∞

∞∑

l=−∞

1

∆X∆Y

Ga

(
ωX/2π − k

∆X

,
ωY/2π − l

∆Y

)

=

∞∑

k=−∞

∞∑

l=−∞

1

∆X∆Y

Fa

(
ωX/2π − k

∆X

,
ωY/2π − l

∆Y

)

Ba

(
ωX/2π − k

∆X

,
ωY/2π − l

∆Y

)

= F (ωX, ωY) B(ωX, ωY)

where (assumingfa(x, y) is bandlimited and adequately sampled):

F (ωX, ωY) =

∞∑

k=−∞

∞∑

l=−∞

1

∆X∆Y

Fa

(
ωX/2π − k

∆X

,
ωY/2π − l

∆Y

)

B(ωX, ωY) =

∞∑

k=−∞

∞∑

l=−∞

Ba

(
ωX/2π − k

∆X

,
ωY/2π − l

∆Y

)

rect2(ωX/2π − k, ωY/2π − l) .

Normally a sum of products does not equal the products of sums. Why does it work here? ??

Thus, in the bandlimited case, we have the followingexactdiscrete-to-discrete model:

g[n,m] = f [n,m] ∗∗ b[n,m]

where the required blurb[n,m] has the following frequency response

b[n,m]
DSFT←→ B(ωX, ωY) =

∞∑

k=−∞

∞∑

l=−∞

1

∆X∆Y

H

(
ωX/2π − k

∆X

,
ωY/2π − l

∆Y

)

where
H(νX, νY) = Ba(νX, νY) ∆X∆Y rect2(∆XνX,∆YνY) .

Sob[n,m] corresponds to samples ofh(x, y), where

h(x, y) = ba(x, y) ∗∗ sinc2

(
x

∆X

,
y

∆Y

)

.

Of course ifba(x, y) is already appropriately bandlimited, then the convolution with the sinc has no effect.

The book describes B(ωX, ωY) as “an aliased version of Ba(νX, νY).” Do you agree? ??

Given this discrete approximation, coefficients describing the degradation model must be obtained. For the example stated above
of linear motion only along thex direction, we need “only” to estimatek (relative camera velocity) from the original image. That
is, the total blurring function can be accurately modeledif the parameterk can be reasonably estimated from the original image.
The motion parameter can be obtained from alternate information or by estimating the blur of a known object in the photograph
(e.g., from an appropriately oriented object boundary that is known to be sharp but appears blurred).
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Performance measures

To quantify both the degree of degradation as well as the improvements due to restoration algorithms, various performance measures
are used in the literature. Here are some examples.
• Themean square error (MSE) between a restoration̂f [n,m] and an originalN ×M imagef [n,m] is the per-pixel average

error energy:

MSE =
1

NM

N−1∑

n=0

M−1∑

m=0

∣
∣
∣f̂ [n,m]− f [n,m]

∣
∣
∣

2

.

Note that this is aspatialaverage, not an ensemble average.
• If we have a statistical model for the images,i.e., we treatf [n,m] as random process, then often we defineMSE in terms

ensemble averages:

MSE = E

[∣
∣
∣f̂ [n,m]− f [n,m]

∣
∣
∣

2
]

.

Note that this MSE could be a function of pixel locationn,m, but typically we use this MSE in the context of WSS random
process models, in which case the MSE is not a function ofn,m.
• A slight inconvenience of MSE is that its units are the squareof the original image units. In photographic imaging, where

the intensities typically are arbitrary units, this is a minor issue. But in applications like X-ray CT, where the pixel values
have physically meaningful units, it can be preferable to use error measures that are expressed in those very units. One simple
solution is to take the square root of MSE, known as theroot mean-squared error (RMSE):

RMSE =
√

MSE.

• In cases where the image units are arbitrary, it is preferable to report error measures that are invariant to the choice ofunits by
normalizing. There are a multiple definitions ofnormalized mean square error(NMSE) in the literature, so when reporting
results it is wise to specify which version was used. Examples for single realizations are:

NMSE =
MSE

1
NM

∑N−1
n=0

∑M−1
m=0 |f [n,m]|2

, NMSE =
MSE

1
NM

∑N−1
n=0

∑M−1
m=0

∣
∣f [n,m]−f̄

∣
∣
2 , wheref̄ ,

1

NM

N−1∑

n=0

M−1∑

m=0

f [n,m],

and for cases with random process models:

NMSE =
MSE

E

[

|f [n,m]|2
] , NMSE =

MSE

Var{f [n,m]} .

Lim defines thenormalized mean square error(NMSE) between the original imagef [n,m] and the restored imagêf [n,m]
as follows:

NMSE

{

f [n,m], f̂ [n,m]
}

,
Var

{

f [n,m]− f̂ [n,m]
}

Var{f [n,m]} · 100%.

Lim notes that using the variance yields invariance to DC shifts (bias). But in quantitative applications, such biases are important.
• No matter which NMSE definition is used, usually we define theSNRas its reciprocal, possibly in dB:

SNR =
1

NMSE
, SNR = 10 log10

1

NMSE
.

• Thepeak SNRor PSNR is also frequently reported, often in dB:

PSNR, 10 log10

max(n,m) |f [n,m]|2

MSE
.

• Another (less common) option is to modify the MSE definition to make it invariant to amplitude scale factors:

MSE = min
α

1

NM

N−1∑

n=0

M−1∑

m=0

∣
∣
∣α f̂ [n,m]− f [n,m]

∣
∣
∣

2

,



c© J. Fessler, March 21, 2005, 9:22 (student version) 9.7

or to make it invariant to spatial shifts:

MSE = min
n′,m′

1

NM

N−1∑

n=0

M−1∑

m=0

∣
∣
∣f̂ [n− n′,m−m′]− f [n,m]

∣
∣
∣

2

.

• All of the above are “squared error” performance measures, which are convenient for analysis. But worst-case errors and`1
errors can also be of interest:

max
n,m

∣
∣
∣f̂ [n,m]− f [n,m]

∣
∣
∣ ,

1

NM

∥
∥
∥f̂ − f

∥
∥
∥

1
=

1

NM

N−1∑

n=0

M−1∑

m=0

∣
∣
∣f̂ [n,m]− f [n,m]

∣
∣
∣ .

Clearly there are a variety of possible performance measures.
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9.2

Reduction of additive random noise

I consider this topic to bedenoisingnot image restoration...

Additive random noise model:
g[n,m] = f [n,m] + v[n,m],

wherev[n,m] is additive noise, usually assumed to beindependentof the signalf [n,m], unless otherwise specified.

Example. Thermal noise in CCD detector electronics, or (in some cases) amplitude quantization noise.

(Caution: quantization noise can be signal dependent.)

Note that there is no blurring considered in this model.

9.2.1
Wiener filter : effect of non-zero mean

As derived previously, if the signal and noise are zero mean and WSS, the Wiener filter gives minimum MSE over all LSI methods,
where

f̂ [n,m] = h[n,m] ∗∗ g[n,m], whereh[n,m]
DSFT←→ H(ωX, ωY) =

Pf (ωX, ωY)

Pf (ωX, ωY) +Pv(ωX, ωY)
,

for uncorrelated signal and noise.

BecauseH(0, 0) =
Pf(0,0)

Pf(0,0) + Pv(0,0) < 1, if the signal meanµf is nonzero, then the usual (linear) Wiener filter would be biased:

E

[

f̂ [n,m]
]

= E[h[n,m] ∗∗ g[n,m]] = h[n,m] ∗∗ E[g[n,m]] = h[n,m] ∗∗ µf = µf

∞∑

n=−∞

∞∑

m=−∞

h[n,m] = µf H(0, 0) < µf .

Thus, for signals with (known!) nonzero meanµf , it is natural to use the followingaffine estimator:

f̂ [n,m] = µf + h[n,m] ∗∗ (g[n,m]−µf ).

A global known mean may be unrealistic. A more realistic model might bef [n,m] = µf [n,m] + f0[n,m], wheref0[n,m] is
zero-mean and WSS, andµf [n,m] is “known” or obeys a model with some unknown parameters. This is sometimes called aWold
decomposition. Now the “affine Wiener filter” problem is to findµf [n,m] andh[n,m] that minimize MSE.

9.2.3
Adaptive image processing

The Wiener derivation assumes WSS signal and noise. For Gaussian noise, the resulting MMSE estimation method is LSI. The
WSS assumption may be reasonable for noise in many circumstances, but is unrealistic for images (signals), since often the local
signal spectrum changes drastically between different image regions.

In adaptive methods, one deliberately changes the behavior of the “filter” in different image regions according to some criteria.

Basically, to reduce noise we would like to smooth a lot wherethe true signal is uniform (low frequency), and smooth less where
the true signal varies rapidly (near edges in particular). Obviously such considerations are application dependent.

Local
Properties

Processing
g[n,m] f̂ [n,m]

One can apply adaptive methods eitherpixel by pixel or block by block. The pixel by pixel methods generally require more
computation. However, the block by block methods can cause abrupt changes in image intensity between blocks, called the
blocking effect. A common and effective method for reducing the blocking effect is to useoverlapping blocks. This increases
computation somewhat, but not as much as full pixel by pixel methods.
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9.2.4
Adaptive Wiener filter for the additive noise model:g[n,m] = f [n,m] + v[n,m] .

The idea: use ashift variantfilter whose width depends on the local image features. In mathematical form:

f̂ [n,m] =
∑

n′

∑

m′

h[n,m;n′,m′; g] g[n′,m′] .

There are many ways to choose such adaptive filter. For the (now classic) adaptive Wiener filter, one assumes thatlocally

f [n,m] = mf + σf u[n,m]

wheremf is the local mean (average of neighboring pixels),σf is the local standard deviation off [n,m], andu[n,m] represents
local uncorrelated signal variations havingunit variance, i.e., Ru[n,m] = δ2[n,m] . Then defining the zero-mean signalf ′ =
f −mf , we havePf ′(ωX, ωY) = σ2

f so the (linear) Wiener filter is

H(ωX, ωY) =
Pf ′(ωX, ωY)

Pf ′(ωX, ωY) +Pv(ωX, ωY)
=

σ2
f

σ2
f + σ2

v

=
1

1 + σ2
u/σ2

f

and h[n,m] =
σ2

f

σ2
f + σ2

u

δ2[n,m] .

Thus (using the affine form of the Wiener filter that accounts for nonzero mean):

f̂ [n,m] = mf + h[n,m] ∗∗ (g[n,m]−mf ) = mf +
σ2

f

σ2
f + σ2

u

(g[n,m]−mf ) =
σ2

f

σ2
f + σ2

u

g[n,m] +
σ2

u

σ2
f + σ2

u

mf .

In practice, we apply the above principlelocally using estimates of the local mean and variance:

f̂ [n,m] =
σ̂2

f [n,m]

σ̂2
f [n,m] + σ2

u

g[n,m] +
σ2

u

σ̂2
f [n,m] + σ2

u

m̂f [n,m],

which is a weighted combination of the (estimated)local meanm̂f andlocal contrastg[n,m]−mf , where

m̂f [n,m] = m̂g =
1

(2M + 1)2

M∑

k=−M

M∑

l=−M

g[n− k,m− l] (amoving average!)

σ̂2
g [n,m] =

1

(2M + 1)2 − 1

M∑

k=−M

M∑

l=−M

(g[n− k,m− l]− m̂f [n,m])
2

σ̂2
f [n,m] = max{σ̂2

g [n,m]− σ2
u, 0}.

(The “−1” above is perhaps unessential, but is motivated by the unbiasedness of the usual sample standard deviation.)

Note that with therectangular window w[n,m] =

{ 1
(2M+1)2−1 , |k|, |l| ≤M

0, otherwise,
we have

σ̂2
g [n,m] =

∞∑

k=−∞

∞∑

l=−∞

w[k, l] (g[n− k,m− l]− m̂f [n,m])
2

= w[n,m] ∗∗ g2[n,m]−2 m̂f [n,m] · (w[n,m] ∗∗ g[n,m]) + m̂2
f [n,m]

(2M + 1)2

(2M + 1)2 − 1
.

• This is anothertwo-channelprocessing method.
• Reduces blurring relative to the LSI Wiener method.
• There is still the issue of choosing neighborhood size.

Unfortunately, the adaptive Wiener filter still produces noisy edges, as illustrated in the following example.

Why does the adaptive Wiener filter perform poorly in this case? ??
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9.2.7Edge-sensitive adaptive image restoration

The preceding example showed that the isotropic characteristic of the classical adaptive Wiener filter yields suboptimal results near
image edges. An alternative is to apply a 1D adaptive Wiener filter in x, then iny, then perhaps at±45◦. This “separable” approach
saves computation, and often works better than the 2D approach!

Example. For horizontal filter, we simply use a horizontal row of pixels to estimate the local mean and variance, as follows:

m̂f [n,m] = =
1

2M + 1

M∑

k=−M

g[n− k,m] (a 1Dmoving average!)

σ̂2
g [n,m] =

1

(2M + 1)− 1

M∑

k=−M

(g[n− k,m]− m̂f [n,m])
2
.

9.2.5 Adaptive restoration based on the noise visibility function

This is yet another variation on the Wiener filter that adaptsbased on a quantitative measure of how visible a given type ofnoise
would be to a human viewer.

Tuning parameters:
• Width of the local impulse response
• Weighting between raw imageg[n,m] and smoothed image

9.2.6 Short-space spectral subtraction

Consider a small, sayM ×M , spatial window. Within thatM ×M window:

g[n,m] = f [n,m] + v[n,m]
DSFT←→ G(ωX, ωY) = F (ωX, ωY) +V (ωX, ωY),

and assuming zero-mean uncorrelated noise that is uncorrelated with the true image:

E

[

|G(ωX, ωY)|2
]

= E

[

|F (ωX, ωY)|2
]

+E[F (ωX, ωY) V ∗(ωX, ωY)] +E[F ∗(ωX, ωY) V (ωX, ωY)] +E

[

|V (ωX, ωY)|2
]

= E

[

|F (ωX, ωY)|2
]

+E

[

|V (ωX, ωY)|2
]

.

SinceE

[

|F (ωX, ωY)|2
]

= E

[

|G(ωX, ωY)|2
]

−E

[

|V (ωX, ωY)|2
]

, one way to estimate|F (ωX, ωY)| is

̂|F (ωX, ωY)| =
√

max
{

|G(ωX, ωY)|2 − E

[

|V (ωX, ωY)|2
]

, 0
}

,

where we assumeE
[

|V (ωX, ωY)|2
]

is known (usually a constant). An estimate forF (ωX, ωY) is thus:

F̂ (ωX, ωY) =

√

max
{

|G(ωX, ωY)|2 − E

[

|V (ωX, ωY)|2
]

, 0
}

eı∠ G(ωX,ωY) .

Why is using the phase of G(ωX, ωY) reasonable? ??
However, this is not an optimal estimate of phase alone,cf., phase retrieval.

ω ω ω

ω ω

E

[

|F (ωX, ωY)|2
]

E

[

|V (ωX, ωY)|2
]

E

[

|G(ωX, ωY)|2
]

|G(ωX, ωY)|2
∣
∣
∣F̂ (ωX, ωY)

∣
∣
∣
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Wavelet-based image denoising

Take wavelet transform, shrink small coefficients towards zero. Leave larger coefficients unaltered. Hard vs soft thresholding [6].
[7].

9.3

Reduction of image blurring

Next we consider the following dubious model:

g[n,m] = b[n,m] ∗∗ f [n,m] .

Notice the lack of a noise term in this model, yet within 3 paragraphs of this section in Lim the word “noise” appears!

There are two categories of deblurring problems: whenb[n,m] is known, and when it is unknown (or partially known).

9.3.1
Inverse filtering

G(ωX, ωY) = B(ωX, ωY) F (ωX, ωY), so F̂ (ωX, ωY) =







G(ωX, ωY)

B(ωX, ωY)
, B(ωX, ωY) 6= 0,

?, otherwise.

This method isverysensitive to noise, sinceB(ωX, ωY) usually approaches zero for high spatial frequencies(Picture) .

There aread hocfixes to this solution, but the problem is themodel, not thesolution. As a general rule, it is preferable to replace
an artificial model with a more complete model (e.g., by including a noise term) and rederive a better solution than to try to “fix
up” a correct solution to an incorrect model.

A trivial iteration

The book also describes aniterative algorithm for image deblurring. The particular algorithm described ends up being exactly
equivalent to filtering the image using a filter with frequency response:

H(ωX, ωY) =
1− (1− λB(ωX, ωY))k+1

B(ωX, ωY)
=

1

B(ωX, ωY)



1−
k+1∑

j=0

(
k + 1

j

)

(−λB(ωX, ωY))j





=
1

B(ωX, ωY)

k+1∑

j=1

(
k + 1

j

)

(−λB(ωX, ωY))j =

k+1∑

j=1

(
k + 1

j

)

(−λB(ωX, ωY))j−1.

Thus for this particular example, there is absolutely no point to using an iterative algorithm: just apply the corresponding filter and
you get the same results with much less computation.

If however, the blur is shift-variant, or if other constraints (such asf [n,m] ≥ 0) are desired,theniterative algorithms are useful.

9.3.2
Blind deconvolution

All of the methods described herein assume thatb[n,m] is known. In some applicationsb[n,m] may be unavailable or difficult to
determine.

Trying to determine bothb[n,m] andf [n,m] from g[n,m] = b[n,m] ∗∗ f [n,m] is a severely under-determined problem. To
illustrate, if (f [n,m], b[n,m]) is one solution, then(b[n,m], f [n,m]) is an equally good solution as far as the data is concerned.
Soblind deconvolution methods work best if considerable prior information aboutb[n,m] is available.
• Support constraints
• Nonnegativity
• Parametric forms forb[n,m]
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9.4

Reducing blur and noise

Now consider the following (more realistic) measurement model:

g[n,m] = b[n,m] ∗∗ f [n,m] + v[n,m] = (b ∗∗ f)[n,m] + v[n,m] .

To recoverf [n,m] from g[n,m] we must both reduce the effects of noisev[n,m] and “deconvolve” the effects of the blurb[n,m].

Two-step methods are a simple approach: first reduce noise, then try a blur removal method. This type of approach is generally
not very good since the blur removal methods described in theprevious section assume noiseless data, whereas noise reduction
methods can at bestreducenoise, noteliminateit.

Wiener filter

One can derive(Problem 9.15) the following Wiener filter for this problem iff [n,m] andv[n,m] are WSS random processes:

H(νX, νY) =
Pf (ωX, ωY) B∗(ωX, ωY)

Pf (ωX, ωY) |B(ωX, ωY) |2 + Pv(ωX, ωY)
=

(
Pf (ωX, ωY) |B(ωX, ωY) |2

Pf (ωX, ωY) |B(ωX, ωY) |2 + Pv(ωX, ωY)

)
1

B(ωX, ωY)
.

One can view this filter as a cascade of a noise reduction system (the Wiener filter derived earlier) and a deblurring system(the
1/B(ωX, ωY) part). However, this formulation doesnot suffer from the instabilities of the naive 1/B(ωX, ωY) inverse filter, since
theB(ωX, ωY) in the numerator cancels out the 1/B(ωX, ωY) term.

Matrix formulation

One can also derive a Wiener-like estimation method for the more general linear model:

g = Bf + v,

wheref andv need not be WSS.

The MMSE affine estimator off (see Section 6.7 of [8]) is:

f̂ = E[f ] +Cov{f , g}Cov{g}−1
(g − E[g]) .

In the usual case where the signal and noise are uncorrelatedand the noise is zero mean, then

f̂ = E[f ] +Cov{f}B′ [B Cov{f}B′ + Cov{v}]−1
(g −B E[f ]) .

We mentioned previously some of the challenges in finding thepower spectrum of signals and noise even in the WSS. Finding the
entire covariance matrixCov{f} is usually even more impractical in imaging problems!

This section of the textbarely scratches the surface of the extensive literature on image restoration methods based on sound
statistical principles. We will discuss better approacheslater as time permits.
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9.5
Reduction of signal-dependent noise

(Arises for nonlinear imaging systems, nonnegativity considerations, non-Gaussian noise, etc.)
A more general degradation “model” is:

g[n,m] = D[f [n,m]]. (9.74a)

If we define
e[n,m] , g[n,m]− f [n,m],

then we can write (9.74a) in the following form:

g[n,m] = f [n,m] + e[n,m] . (9.74a)

If the statistics ofe[n,m] arenot a function of the signalf [n,m], then we can describee[n,m] asadditive, signal-independent
noise. If the properties ofe[n,m] depend on the signal, then we say the noise issignal dependentand the additive expression
(9.74a) is not very useful, and even misleading (and should be avoided in my opinion). Even the “general” form (9.74a) is not
really general enough for some types of measurement noise.

Example. Binary imaging:P{g[n,m] = 1} = 1− exp(− f [n,m]) .

Example. In problems involving photons, the measurement statistics are often Poisson. For such problems we often assume:

g[n,m] ∼ Poisson{α f [n,m] +γ},

whereα andγ are nonnegative constants. This notation is shorthand for saying thatg[n,m] is a Poisson random variable with
meanα f [n,m] +γ, i.e.,

P{g[n,m] = k} = (α f [n,m] +γ)k e−(α f[n,m] +γ) /k!, k = 0, 1, . . . . (9.74a)

The preceding formula is rigorous and unambiguous; expressions like (9.74a) and (9.74a) are often seen in (sloppy) papers on
problems with Poisson “noise,” but are imprecise and shouldbe avoided.

Aside from the notation issues, the problem becomes: how do we recoverf [n,m] from g[n,m] in the presence of signal-dependent
noise? The answer of course depends greatly on thetypeof degradation.

The MAP or penalized-likelihood framework described elsewhere easily accommodates signal-dependent noise, provided one can
specify a statistical modelp(g|f) (such as in (9.74a)) for the measurements. Much of the current literature on image restoration
uses these types of unifying approaches. The book however considers moread hocmethods.

9.5.1Transformation to additive signal-independent noise

In some applications it is possible to find a (memoryless) operator that we can apply to the datag[n,m] to transform the problem
into one where the noise is additive and signal independent.

Example. The canonical example is speckle noise that arises when using coherent illumination (lasers, ultrasound, etc.), which is
approximately multiplicative:

g[n,m] = f [n,m] v[n,m],

wherev[n,m] is random noise that is independent off [n,m].

What transformation would change this into an additive model? ??

log g[n,m] = log f [n,m] + log v[n,m] .

Procedure:
• Apply transformation (logarithm in this case)
• Apply noise-reduction method to the transformed data (e.g., adaptive Wiener filter)
• Invert transformation (exponential in this case)

Example. Decorrelation of signal-dependent quantization noise inimage coding (later).

9.5.2Reduction of signal-dependent noise in the signal domain

Derives an approximate adaptive Wiener filter directly for the case of multiplicative noise, without taking the logarithm.
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9.6

Temporal filtering for image restoration

The methods described in the preceding sections are all designed for the case where a single degraded image of some scene is
available.

In applications such as remote sensing, forensics (from surveillance videos), and real-time medical imaging (e.g., ultrasound), it is
possible for there to be multiple images of the “same” scene.(If the scene or the image recorder are moving though...)

9.6.1
Frame averaging

If the scene and recorder are stationary, then the followingmodel may apply:

gk[n,m] = f [n,m] + vk[n,m], k = 1, . . . ,K.

Example. laser scanners for BW and color documents, mult-scan radar.

The natural approach to combining multiple frames is simplyto take the arithmeticaverage:

f̂ [n,m] =
1

K

K∑

k=1

gk[n,m] .

If the noise is zero-mean and Gaussian, then this is the maximum likelihood (ML) estimator and also the minimum variance
unbiased estimator off [n,m]. For other noise models it may be appropriate to use other combinations (such as the median rather
than the mean for Laplacian noise).
• As long as the above model holds (i.e., no motion), the frame averaging can reduce noise without any loss of spatial resolution!
• For additional noise reduction, of course one can also smooth spatially (e.g., if models for noise and signal PSD are unknown).

9.6.2
Motion-compensated image restoration

If the scene changes from one frame to the next, what will simple time-averaging do? ??

To reduce such motion-induced artifacts, one can first estimate motion parameters (displacements) between image frames. This is
calledregistration. One can then average or filter along motion trajectories.

Example. UsingK frames, a natural estimator is:

f̂ [n,m, t0] =
1

K

K∑

k=1

gk

[

n− d
(k)
X ,m− d

(k)
Y

]

,

where(d
(k)
X , d

(k)
Y ) denotes the estimated displacement vector for thekth frame. (Typically one will need interpolation since the

estimated displacements may be non-integer values.)

This method is appropriate under the following measurementmodel:

gk[n,m] = f [n− vX · (tk − t0),m− vY · (tk − t0), t0] .

That model ignores within-frame motion blur, the importance of which depends on the frame rate.

9.7
Color images

Simple approach: represent color using RGB (or an alternative), apply (monochrome) restoration method to each of the three color
planes, then recombine.

This approach disregards the correlation between color planes. Alternative approaches simultaneously process all color planes,
e.g., [9].
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Summary

This chapter described methods for reducing noise, for reducing blurring, and for the combination of the two. Image restoration
remains an active research area, particularly with regardsto nonlinear algorithms. Most of the literature focuses either on the
denoising problem alone (such as wavelet thresholding methods [6]) or considersbothblur and noise simultaneously. Occasionally
papers still appear that just consider the blur without treating the noise,e.g., [10], but these are the exception since most researchers
are fully aware of the instabilities of deconvolution and realize that one must simultaneously consider the effects of noise when
trying to remove blur.
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