
Chapter 10

Image Coding
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Introduction

Entire books devoted to this problem,e.g., [1].

Coding goal: represent an image with “as few bits as possible” while preserving the “quality” (meaning visual quality usually)
required for the particular application.

Course goal: familiarity with theelements of image coding systems at a level suitable for reading current literature.

Outline
• quantization (scalar, vector)
• codeword assignment
• waveform coding
• transform coding
• image model coding
• interframe image coding, color, channel errors, ...

Relevant MATLAB commands:dct2, idct2, dctdemo, blkproc, and many more.

Overview
• Image coding methods fall into two categories
• lossless- the recovered image exactly matches the original image
• lossy aka “information preserving” - the recovered image does notexactly match the original image, but the “essential

information” is retained.
Unfortunately, there is no widely accepted metric for “essential information,” so the usual measure of image fidelity ispeak
signal-to-noise ratio(PSNR):

PSNR= 10 log10

2552

∑N−1
n=0

∑M−1
m=0 (f [n,m]− f̂ [n,m])2

.

• Typical image coding system

source
f [n,m]

→ image coder→ channel coder→ channel→ channel decoder→ image decoder→
reconstructed

image
f̂ [n,m]

• If the bits are stored on a reliable medium like hard disk, then channel coding is unnecessary.
• If the bits are transmitted over a noisy communication channel, like a telephone line, then channel coding may be essential.
• A good image coder will produce what appears to the channel coder to be a random bit sequence. In this type of scenario,

the channel coding method can be designed independently of the source coding method. Channel coding is a separate topic
considered in EECS 650. In this course we will focus on the image coding problem, which is a special case of the more
general source coding problem covered in EECS 651.

• The image coder typically has the following form:

source image→ transformation→ quantization→ codeword assignment→ bit stream.

The transformation extracts image information prior to quantization. The transformation usually takes one of three forms.
• Waveform Coder: The intensity information itself is coded.
• Transform Coder: Some integral transform of the image, suchas the DCT, is computed.
• Model Coder: A model of the image is formulated and parameters of the model are estimated for a particular image (this is

analogous to LPC coding in speech processing). The model parameters are passed to the quantizer.
• The steps of transformation, quantization, and codeword assignment are often closely linked.
• However, the general principles governing quantization and codeword assignments are separable from the choice of the image

transformation. We will study quantization and codeword assignment procedures independently before looking at different
transformation procedures and complete image coding systems.
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10.1

Quantization

The process of representing a real-valued imagef [n,m] (or some other array of real numbers such as transform coefficients or
model parameters) by a finite set of bits is calledquantization.
• If we quantize each value independently, then the procedureis calledscalar quantization.
• If we group together multiple values and quantize them simultaneously, it is calledvector quantization (as discussed later).

10.1.1
Scalar quantization

Let f denote a continuous scalar quantity. We wish to representf with a finite number of bits (m) resulting in one ofL = 2m

possible levels. Assigning a specificf to one ofL levels is calledamplitude quantization.

Let f̂ denote the quantized value off . We consider deterministic quantization strategies, where

f̂ = Q(f) andQ : R→ {r1, r2, . . . , rL} .

We callQ thequantization operator. Theri’s are called thereconstruction levels.

Example. The following figure shows a case whereL = 4.

-
f

6Q(f)

d1 d2 d3r1

r2

r3

r4

Any such operation will always involvequantization error or quantization noise:

f̂ = Q(f) = f + eQ whereeQ , f̂ − f (10.2)

If we choose theri’s properly, then as the number of levelsL increases, “on average” the quantization error should decrease.

Key questions:
• What is the “best” choice of theri’s?
• How should we chooseQ(f), i.e., how do we choose the regionsCi = {f : Q(f) = ri} ..
• How many levelsL are required for a given “accuracy”?

In 1D one can argue easily that theCi regions should be contiguous intervals, so we generally form Q as follows:

Q(f) =







r1, d0 < f ≤ d1

...
...

ri, di−i < f ≤ di

...
...

rL, dL−1 < f ≤ dL,

where theL + 1 values{di} are calleddecision boundaries. (It is possible to haved0 = −∞ anddL =∞.)

The simplest choice isequally spaced decision boundaries and to chooseri to be themidpoint of each interval. This simple
approach (which is rarely optimal in terms of quantization error) is calleduniform scalar quantization:

di − di−1 = ∆, ri =
di + di−1

2
, i = 1, . . . , L.

Although the form of (10.2) might suggest otherwise, in general the quantization erroreQ will be signal dependent. However,
whether the quantization error iscorrelated or not with the signal depends on the specifics of the distribution of f and the quanti-
zation scheme.
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Design of reconstruction levels and decision boundaries

As a general rule, to minimize quantization error, one wouldlike to assign more reconstruction levels (theri’s) near the values off
that are more likely. To formulate objective criteria for choosing the “best”ri’s anddi’s, we must choose a method for quantifying
the quantization error.

The first ingredient is adistortion measured(f, f̂). Typical choices are|f − f̂ | or |f − f̂ |2. To obtain a scalar cost function, we
must somehow “average” over the possible values off . To proceed, weassume thatf is a random variable with pdfp(f). We then
define theaverage distortionto be

D = E
[

d(f, f̂)
]

=

∫

d(f,Q(f)) p(f) df .

If we choose the quadratic distortion measured(f, f̂) = (f − f̂)2, then minimizing the average distortion is equivalent to a MMSE
approach:

D =

∫

|f −Q(f)|2 p(f) df =

L∑

i=1

∫ di

di−1

(f − ri)
2 p(f) df .

To minimize this average distortion, we can equate to zero the partial derivatives ofD with respect to the design parameters (the
ri’s and thedi’s). Specifically:

0 =
∂

∂ri
D =

∫ di

di−1

2(f − ri) p(f) df = 2

∫ di

di−1

f p(f) df −2ri

∫ di

di−1

p(f) df,

and byLeibniz’s rule :

0 =
∂

∂di
D = (di − ri)

2 p(di)−(di+1 − ri+1)
2 p(di), i = 1, . . . , L− 1.

These lead to the following set of equations:

ri =

∫ di

di−1
f p(f) df

∫ di

di−1
p(f) df

, i = 1, . . . , L (weighted centroid)

di =
ri + ri+1

2
, i = 1, . . . , L− 1 (midpoint)

d0 = min {f : p(f) > 0}
dL = max {f : p(f) > 0} . (10.9)

Unfortunately, these equations are usually nonlinear and must be solved numerically.

Example. If f is uniformly distributed over[a, b], then the MMSE decision boundaries and reconstruction levels are given by

di = a + (b− a) i
L andri = di − b−a

2L respectively, which corresponds touniform scalar quantization.

Exercise. Show that the MSE in the above example isσ2
f/L2. Naturally, asL increases, the average distortion decreases.
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Example. Suppose we apply uniform scalar quantization to variableshaving the exponential distributionp(f) = e−f u(f), using
levelsri = ia, i = 1, . . . , L. What shoulda be?
The distortion is ((Picture) ):

D =

∫ 3
2
a

0

(f − a)2 e−f df +

L−1∑

i=2

∫ (i+1/2)a

(i−1/2)a

(f − ia)2 e−f df +

∫ ∞

(L−1/2)a

(f − La)2 e−f df .

Usingint anddiff from MATLAB ’s symbolic toolbox yields:

∂

∂a
D = e−a/2 (a2/8− a + 2)− 2 + 2a +

L−1∑

i=1

[

(a2/4 + a + 2)a e−(i+1/2)a − (a2/4− a + 2)a e−(i−1/2)a
]

+ [a/2− 1− (L− 1/2)(a2/4− a + 2)] e−(L−1/2)a

It is unlikely that we will find an analytical form for the minimizer. We can usefmin or fsolve to minimizeD numerically.
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Distortion D vs separation a

• Minimum distortionD decreases asL increases, as expected.
• Optimala does not halve asL doubles, unlike for uniform distribution.

(Therefore redesign of quantizer is needed for eachL of interest.)

As a consequence of the central limit theorem, Gaussian random variables frequently arise in many problems (although not neces-
sarily in image coding problems...). The book compares the MSE of uniform scalar quantization and the MSE of optimal (MMSE)
quantization for a Gaussian random variable. On average, the MMSE approach saves about 1/2 bits (per coded value) for 7 bit
accuracy (128 levels). (The savings are more dramatic with vector quantization.)

See [2] for a thorough analysis of uniform scalar quantization.
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Companding (another scalar quantization method)

Since uniform scalar quantization is MSE-optimal for uniformly distributed random variables, a natural quantizationapproach is
to first transform to a uniform random variable, and then apply uniform scalar quantization to the result.

Illustration of companding approach:

f → T → g → Uniform quantizer→ ĝ → T−1 → f̂ .

The two key questions are the following.
• What should the companding functionT (f) be?
• Is the resulting system optimal?

We have seen previously that if random variableX has cdfFX(x), thenY = FX(X) has a uniform distribution. Thus

g =

∫ f

−∞

p(f ′) df ′ , T (f)

is uniformly distributed over[0, 1]. So the appropriate companding function is just the CDF off (which we might need to learn
from training data).

Applying uniform scalar quantization tog will minimize

E
[
(g −Q(g))2

]
= E

[
(T (f)−Q(T (f)))2

]
6= E

[
(f −Q(f))2

]
,

so thiscompandingapproach is not MSE optimal in terms off . However, the MMSE criterion is somewhat arbitrary anyway,and
chosen primarily for its analytical convenience, so in practice minimizingE

[
(T (f)−Q(T (f)))2

]
may produce reasonable coded

images.

Example.
Supposef has the pdfp(f) = 2/f2 for f ∈ [1, 2], and we wish to assignL levels using companding. The required transformation
for this random variable is

g =

∫ f

1

2/x2 dx = 2− 2/f.

The associated reconstruction levels and decision boundaries (in terms ofg) are

d
(g)
i = i/L, r

(g)
i = (i− 1/2)/L.

Since2/f = 2− g we havef = 2
2−g , so the associated reconstruction levels and decision boundaries (in terms off ) are

di =
2

2− i/L
, ri =

2

2− (i− 1/2)/L
.
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High-rate scalar quantization

As shown by Gersho [3], fork-dimensional quantization with distortion using
∥
∥
∥f − f̂

∥
∥
∥

r

2
the optimal centroid density is propor-

tional topk/(k+r), for large rate,i.e., largeL.

In particular, in 1D (k = 1) using MSE (r = 2) distortion, the optimal density isp1/3.

Thus, for largeL, instead of solving for theri values using the coupled system (10.9), one can choose the centroidsri non-iteratively

asri = G−1
(

i−1/2
L

)

, whereG(t) =
∫ t

−∞
p1/3(f) df .

Some related (?) MATLAB commands.

QUANT Discretize values as multiples of a quantity.
QUANTIZE An example M-File S-function vectorized quantizer
lvq.m: learning vector quantization.
NEWLVQ Create a learning vector quantization network.
NNT2LVQ Update NNT 2.0 learning vector quantization network to NNT 3.0.
LEARNLVQ Learning vector quantization rule.
VMQUANT Variance Minimization Color Quantization.
VMQUANTC Variance Minimization Color Quantization (MEX file).

Bit allocation

If we chooseLi = 2Bi reconstruction levels for quantization theith scalarfi, then codingfi alone would requireBi bits.

If we are codingN statistically identically distributed scalarsfi, then if we assign the same number bitsBi to each variable, the
total number of bits will beB =

∑N
i=1 Bi. For waveform coding, using equal bits for each pixel may be reasonable. For transform

coding, however, the different transform coefficients can have very different energies / variances (indeed the point ofthe transform
is to compact most of the signal energy into a few coefficients). When the variances are nonuniform, we should also allocatethe
bits nonuniformly to the different coefficients.

This bit allocation problem is very important. If the pdf’s of thefi’s have the sameform but different variances, then an approxi-
mate solution to problem of allocatingB total bits toN variables is given by

Bi =
B

N
+

1

2
log2

σ2
i

[
∏N

j=1 σ2
j

]1/N
.

• If the σi values are all identical, thenBi = B/N , which is uniform allocation.
• Otherwise,the higher variance values are allocated more bits.
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10.2
Vector quantization

Rather than quantization each scalar one at a time, it is often advantageous to group scalars into “blocks” and jointly quantize the
block. This type of approach is calledvector quantization (VQ).

Why consider VQ? ??

Let f = [f1 . . . fN ]T denote anN -dimensional vector consisting ofN real-valued elements. In vector quantization, we mapf to
one ofL “ reconstruction levels” ri, each of which is also anN -dimensional vector:

f̂ = Q(f) =







r1, f ∈ C1
...

...
ri, f ∈ Ci
...

...
rL, f ∈ CL,

whereQ : R
N → {r1, . . . , rL} ,

where the setCi is called theith cell.

Graphical display ofQ is more complicated in VQ than in scalar quantization. The caseN = 2 is about all that we can visualize
easily. The MATLAB commandvoronoi computes theVoronoi diagram that, given theri’s, displays them as dots in the plane,
and displays the boundaries of theCi’s, assuming anearest neighborassociation rule.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

f
1

f 2

Voronoi Diagram

VQ Design

The same questions arise as in the scalar case, plus some additional ones.
• How many “levels”L are required to achieve a specified “accuracy.”
• What should theri’s be?
• How should we choose theCi’s?
• What shouldN be?
• When does VQ outperform scalar quantization?
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The advantage of VQ is that it can exploitstatistical dependencebetween elements of the vectorf to achieve either
• Lower average distortion than scalar quantization with thesame number of levels, or
• fewer levels (better compression) for the same average distortion.

The following values were extracted from theflower.tif image in MATLAB ’s image processing toolbox.

0 100 200 300
0

50

100

150

200

250

300

Red pixel

G
re

en
 p

ix
el

Flower image scatter plot

0 100 200 300
0

50

100

150

200

250

300

Red pixel

R
ed

 p
ix

el
 r

ig
ht

 n
ei

gh
bo

r

Flower image scatter plot

Scalar quantization of each variable corresponds to a rectilinear or “plaid” decomposition of the 2D plane. Such a decomposition
would needlessly allocate cells in the upper left hand corner. A VQ design can concentrate the cells where they are needed. The
advantages can increase further asN increases beyond 2.

To quantify the average distortion, we first must define a distortion measured(f , f̂), and then, again assuming thef is a random
vector with pdfp(f), we can define theaverage distortionas follows:

D = E[d(f , Q(f))] =

∫

d(f , Q(f)) p(f) df =

L∑

i=1

∫

Ci

d(f , ri) p(f) df ,

where the integrals areN -dimensional.

Codebook design

The set{r1, . . . , rL} is called acodebooksince given the sequence of bits that describes an indexi ∈ {1, . . . , L}, you “look up”
the correspondingri in the codebook to reconstruct the image (or its coefficientsor model parameters).

Both the transmitter and the receiver must have a copy of the codebook through some “prior agreement” (e.g., it is built into the
system design) or somehow transmitted separately.

The goal of VQ codebook design is to choose theri’s (and theCi’s) to minimize the average distortionD for a given class of
images (i.e., for a given pdfp(f)).

Designing a VQ codebook is very challenging! (This problem alone has generated many dissertations.)

The following two conditions are necessary for a given design to be optimal.

Condition 1.
Q(f) = ri iff d(f , ri) ≤ d(f , rj) for j = 1, . . . , i− 1, i + 1, . . . , L

In words, for every input vector, the quantizer must always choose the reconstruction level that minimizes the distortion.
(The proof is easy; just consider the alternative.)

Condition 2. Each reconstruction levelri must minimize the average distortion in the corresponding cell Ci:

ri = arg min
r

E[d(f , r) |f ∈ Ci] . “generalized centroid ”

Again, if this condition did not hold for a given supposedly optimal quantizer, we could easily construct a quantizer with lower
average distortion, contradicting the purported optimality.
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These two conditions suggest the initial design of an iterative procedure for determining theri’s and theCi’s given the pdfp(f)
and the desired number of levelsL.
• If we somehow knew theri’s, then in principle we could find theCi’s using Condition 1:

Ci = {f : d(f , ri) ≤ d(f , rj) for j = 1, . . . , i− 1, i + 1, . . . , L} . (10-3)

• On the other hand, if we knew theCi’s we could in principle find theri’s using Condition 2.
In particular, suppose the distortion measure is the quadratic function:

d(f , f̂) =
∥
∥
∥f − f̂

∥
∥
∥

2

.

We know from estimation theory that the quantity that minimizes the expected squared error is theconditional mean:

arg min
r

E
[

‖f − r‖2 |f ∈ Ci
]

= E[f |f ∈ Ci] =

∫

Ci
f p(f) df

∫

Ci
p(f) df

(10-4)

(cf. (10.9)).

Since in practice we know neither theri’s nor theCi’s, we make an initial guess of theri’s and then iterate from there.

Example. We wish to find the MMSE quantization method (intoL levels) for the 1D exponential distributionp(f) = e−f u(f).
We can begin with an initial guess of theri’s, sayri = i/2, i = 1, . . . , L. The iterative algorithm then proceeds as follows.
• Given the most recent estimates of theri’s, we evaluate (10-3) to estimate theCi’s. In this simple 1D case theCi’s are just

intervals, and clearly the endpoints of those intervals aresimply the midpoints between each of theri values as follows:

Ci =







[

0,
r1 + r2

2

]

, i = 1

[
ri + ri−1

2
,
ri + ri+1

2

]

, i = 2, . . . , L− 1

[
rL−1 + rL

2
,∞

]

, i = L.

• Given those most recent estimates of theCi’s, we evaluate (10-4) to compute newri’s. EachCi is an interval of the form[ai, bi],
where theai’s andbi’s depend on the previousri’s. Thus

rnew
i = E[f | f ∈ Ci] =

∫

Ci
f p(f) df

∫

Ci
p(f) df

=

∫ bi

ai
f e−f df

∫ bi

ai
e−f df

=
(1 + ai) e−ai − (1 + bi) e−bi

e−ai − e−bi
.

(This is a “textbook” type of example. Rarely will we get sucha simple form.)

The following plot shows theri’s as a function of iteration, starting from equally-spacedvalues. As the iterations proceed, the
average distortion decreases towards alocal minimum. There is no guarantee in general that the limitingri’s produced by this
method will be theglobal minimizers of the average distortion. To increase the chances of finding a global minimizer, one must
initialize the algorithm multiple times with different initial guesses for theri’s, and use the run that yields the lowest MSE.
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Notice that the algorithm puts a higher density ofri values where the pdfp(f) is larger.
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The K-means algorithm

There is a large practical problem with the above approach though. In practice, we rarely knowp(f); we just havetraining data
consisting of images that are (hopefully) representative of the class of interest.

TheK-means algorithm (K = L here), discovered in the late 50’s, is a practical solution to the problems mentioned above. It is
also called theLBG algorithm after Linde, Buzo, and Gray who popularized it in the 80’s.

The K-means algorithm iskmeans in MATLAB . See also the related c-means methodfcm andfcmdemo.

Why “means?” Ifd(·, ·) is the quadratic distortion measure, then the expectation in Condition 2 is theconditional mean(10.9).

If we have a sample{fj}Mj=1 of training vectors (e.g., 2×2 blocks of pixels from an image), then themaximum likelihood estimate
of the pdfp(f) is given by:

p̂(f) =
1

M

M∑

j=1

δN (f − fj),

whereδN denotes theN -dimensional Dirac impulse. Substituting this estimator in for p(f) into the condition mean expression
(10.9) yields

∫

Ci
f p̂(f) df

∫

Ci
p̂(f) df

=

∫

Ci
f

∑M
j=1 δN (f − fj) df

∫

Ci

∑M
j=1 δN (f − fj) df

=

∑

j:fj∈Ci
fj

∑

j:fj∈Ci
1

= sample mean of thefj ’s in Ci,

which is an intuitive choice forri— simply the empirical average of the associatedfj ’s.

Replacing (10.9) with the above empirical average in the iterative algorithm described above yields the following practical algo-
rithm, called theK-means algorithm, also called theclustering algorithm in the pattern recognition literature. (We begin with an
initial guess ofri’s.)
• Let Ci be the set offj ’s that are closer tori than to any of the otherr’s.

(This step is expensive since it requiresO(LM) operations.)
• Let rnew

i be the empirical average of thefj ’s in Ci.
• Repeat...

LBG showed that this iterative algorithm converges to a local minimum of theempirical average distortionD, defined by:

D = Ep̂[d(f , Q(f))] =

∫

d(f , Q(f)) p̂(f) df =
1

M

M∑

j=1

‖fj −Q(fj)‖2 .

Again, running with multiple initial guesses can lowerD at the price of increased computation.

Use of VQ codebooks
• Transmission (coding): compare a givenf to all of theri’s, finding theri that is the closest.

Then transmit bits that describe the indexi.
The “compare” part of the coding operation is called afull search and is very computationally expensive!
(Computations grow exponentially with the vector dimension N .)
• Decoding: look up in the codebook theri associated with the received bits describing the indexi.

To reduce coding computation, one can design the codebook (theri’s) using certain constraints, such as requiring atree codebook,
which facilitates abinary search rather than afull search for finding the closestri.

What will be the tradeoff of constraining the structure of the ri’s in the interest of saving computation? ??

Summary of VQ
• Better performance (lower average distortionD) than scalar quantization for same bit rate.
• Greater complexity / computation.
• Appropriate for broadcast applications with one expensivecentral transmitter and many simpler receivers.

The principles here are useful not only for vector quantization, but also forclustering of data.



c© J. Fessler, April 18, 2005, 11:14 (student version) 10.13

Example. Here is a distribution (withN = 2) for which vector quantization is significantly more efficient than uniform scalar
quantization.
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10.2
Codeword assignment

Recall:
source image→ transformation→ quantization→ codeword assignment→ bit stream.

After the quantizer has represented parameters of the imagein terms ofL possible levels, we must assign each level a specific
codeword (i.e., a sequence of 0s and 1s). The receiver in an image coding system inverts this relationship: it takes each received
codeword and from it identifies the corresponding reconstruction levelri.

For the receiver to be able to uniquely identify a reconstruction level, we must assign each level{1, . . . , L} to a different codeword.
The transmitter sends all of an image’s codewords as a long sequence, so the codewords must be uniquely identifiable when received
as a long sequence. Such a code is calleduniquely decodable.

Some simple codes are not uniquely decodable.

Example. Consider the case whereL = 4. The obvious natural codeword assignment is simply







r1 → 00
r2 → 01
r3 → 10
r4 → 11







This obvious type of codeword assignment is calleduniform-length codeword assignment. This choice guarantees that the
sequence will be uniquely decodable.

When would you want to use anything other than uniform-length codeword assignment? ??

If r1 andr2 occur more frequently in the class of images of interest, then one might think of trying the following codeword
assignment







r1 → 0
r2 → 1
r3 → 10
r4 → 11







,

so that fewer bits are allocated to the more likely centroids.

Unfortunately, the second approach is not uniquely decodable. If we receive the sequence 010, we cannot tell whether it corresponds
to r1, r3 or r1, r2, r1. One way to fix this problem is to use a codeword assignment like the following:







r1 → 0
r2 → 10
r3 → 110
r4 → 111







.

Theaverage bit rateof a coding scheme is given by

b̄ =
L∑

i=1

pi bi,

wherepi is the probability of occurrence of the of theith reconstruction level (aka message), andbi is the number of bits assigned
to theith message. In a uniform codeword assignment,b = log2 L, sob̄ = b since

∑L
i=1 pi = 1.
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10.2.2Variable-length codeword assignment

The latter example usesvariable-length codeword assignment, which can be based on the relative probabilities (thepi values) of
theL “messages.” If thepi values are nonuniform, then we can usually reduce the average bit rate to be lower thanlog2 L by using
shorter codewords for the more probable messages.

What is the lowest possible average bit rate? Information theory shows that the average bit rate is never lower than theentropy of
the messages, defined by:

H = −
L∑

i=1

pi log2 pi .

It can be shown that
0 ≤ H ≤ log2 L andb̄ ≥ H. (10.32)

When is the entropy equal to log2 L? ??
When is the entropy equal to 0? ??

From (10.32) we can conclude thatuniform-length codeword assignmentis optimal forL = 2b̄ equally probable messages.

Which scalar quantization method always yields equally probable reconstruction levels? ??

To assign codewords in a way that would achieve the lower limit on average bit rate, ideally we would use

bi = − log2 pi

bits for theith message, so that the average bit rate would be

b̄ =
∑

i

pi bi =
∑

i

pi(− log2 pi) = H.

Unfortunately, however,− log2 pi is usuallynot an integer, so we must do some “rounding” which will result ina code that will
not quite minimize the average bit rate1.

1This problem can be mitigated by grouping multiple messages together into a block and assigning codewords to each possible block.
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Huffman coding

What is the lowest possible average bit rate if we constrain ourselves to auniquely decodablecode that (of course) must have an
integer number of bits per message?

Although there may not be a simple analytical expression forthis constrained minimizer, theHuffman coding procedure gives
us analgorithm for designing the code (given the probabilitiespi) that is guaranteed to be optimal in that constrained sense.The
following figure (from Lim) illustrates the approach:

Algorithm:
• Start with the two messages with the lowest probability (a4 anda6).
• Assign a single bit to distinguish these messages from each other and combine the messages to form a new messagea7.
• Based on the new “reduced” set of messages(a1, a2, a3, a5, a7), assign a single bit to distinguish two messages with the lowest

probability(a3, a7).
• New bits are added to the left of previously assigned bits.
• Continue this procedure until the most probable level is assigned.

The final code word assignment is shown above.

For this example, the entropy is

H = −
[
5

8
log2

5

8
+

3

32
log2

3

32
+ · · ·+ 1

32
log2

1

32

]

≈ 1.752 bits / message,

where as the average bit rate of the Huffman code is

b̄ =
5

8
1 +

3

32
3 + · · ·+ 1

32
4 ≈ 1.813 bits / message.

What would the average bit rate be for uniform-length coding? ??
(But this example is a bit unfair since 6 is not a power of 2.)
Sincelog2 6 ≈ 2.585, Huffman coding is still better than what would be achieved by uniform-length coding of long blocks.
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A disadvantage of variable-length coding is that theinstantaneous bit ratediffers from theaverage bit rate, so buffering is
required at the receiver, which adds complexity. This is a concern in real-time image communication systems, but not a significant
issue when coding for image archiving to storage.

By grouping multiple messages into a block, one can design variable-length codes whose average bit rate is as close as desired to
the lower limit specified by the entropy. In practice the probabilities of the reconstruction levels are not exactly known anyway, but
must be approximated by a training image set, so designing super-complicated codes to approach the theoretical entropylimit is
probably pointless.

10.2.3Joint optimization of quantization and codeword assignment

So far we have consideredseparately the issues of quantizer design and codeword assignment. In reality, these issues are coupled.

Example. If one intends to use uniform-length codes to avoid buffering issues, then the only logical choice forL is L = 2b̄, where
b̄ is the specified average bit rate. Using anyL that is not a power of two would be pointless for uniform-length codes (unless block
coding is applied of course).
• A uniform quantization method will usually yieldnonuniform probabilities, sovariable-length codeword assignmentmay

significantly reduce the average bit rate.
• A nonuniform quantization method (companding in particular) may result in approximately equal probabilities, in which case

uniform-length codeword assignmentis likely to be adequate.

However, in our consideration of quantizer design, we triedto minimize theaverage distortionD subject to a given number of
reconstruction levelsL. In practice, it would often be preferable to minimize the average distortionsubject to a given constraint
on the average bit rate b̄. (Depending on the probability distributions, differentL’s could yield the samēb with variable-length
codeword assignment.)

This problem is calledjoint optimization of the quantizer and thecodeword assignment. However, joint optimization is a
challenging nonlinear problem.

Overall, the goal is to use the minimum number of bits to code an image with average distortion that is lower than some given
specification.
• In practical systems, most of the burden is usually put on either the quantization stage or the codeword assignment stage.

For example, a nonuniform quantizer is used so that each reconstruction level has the same probability (i.e., all messages are
approximately equally probable). A simple uniform coder can be used for this system.
• In contrast, for the same level of overall distortion at the same bit rate, we could use a uniform quantizer with many more

levels, and then use variable-length codewords to compensate for the fact that uniform quantization will yield unequally likely
messages for any distribution of values other than uniform.
• Often practical considerations such as buffering size, computational requirements, etc., must be factored into any design and

optimization procedures.
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10.3

Waveform coding

Now that we have summarized quantization and codeword assignment, we return to the issue of what image variables are actually
quantized and coded.

In this section we considerwaveform coding, where the image pixel values themselves are coded. We considertransform coding
andmodel codingin subsequent sections.

10.3.1
Pulse code modulation

The simplest waveform coding method ispulse code modulation(PCM), which is just another name foruniform scalar quanti-
zation of the pixel values.

Typical image acquisition devices like CCD detectors are essentially PCM systems since the A/D converter maps continuous-
valued electrical signals (corresponding to image intensities at each pixel) into a finite set of levels,e.g., L = 28 for an 8-bit A/D
converter.

8 bits/pixel is typical for most monochrome applications, although 12 bits/pixel is also common for medical image applications.
The book shows pictures illustrating thecontouring effectsof quantizing to small number of bits/pixels.

Usingnonuniform scalar quantization can improve PCM system performance, in the spirit ofcompandingas discussed earlier.
Logarithmic transforms are one “common” choice.

Given an 8-bit image, how does one apply uniform scalar quantization to yield an image with only 32 levels? Do you

just divide by 8? ??

Robert’s pseudonoise technique

Quantization noise is signal dependent, as discussed earlier.

To reduce the contouring effects of quantization noise, onecan applyRobert’s pseudonoise technique, which makes the noise
more signal independent.

f [n,m]→ ⊕

↑
w[n,m]

→ Uniform scalar quantizer→ ⊕

↑
−w[n,m]

→ f̂ [n,m] .

The white noisew[n,m] should have a uniform distribution over[−∆/2,∆/2], where∆ is the quantization interval.

Basically, we add noise before quantization and then attempt to subtract it back out after quantization. Since quantization is
nonlinear, this subtract does not work perfectly, and the resulting f̂ [n,m] will certainly have errors. But the visual characteristics
of those errors may be less objectionable than the contouring effects.

Both the encoder and the decoder “must” share identical copies ofw[n,m]. (More practically, they must share a common method
for generatingw[n,m].)

One can apply noise reduction methods to the output image to reduce the resulting additive noise since it is approximately signal
independent.

(This idea does not easily apply to the CCD situation where the input image is actually analog.)

The plots on the following page show the application of Robert’s technique to the Saturn image. The quantization error plots (f̂−f
vsf ) suggest that the quantization noise is independent of of the signalf .

The quantized image is only 2 bits per pixel. With even 4 bits per pixel it looks pretty reasonable, since the eye is good at averaging
over the local signal-independent noise.

However, note the unnecessary noise in the uniform background region.

The marginal distribution of the error is essentially uniform [−∆/2,∆/2] in both cases.
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10.3.2Delta modulation

The PCM quantization method completely ignores the presence of correlation (cf. flower scatter plot shown earlier) between
neighboring pixel values, since each pixel is coded independently.

One way to exploit correlation, while still using scalar quantization, is to usedelta modulation, which codes thedifference between
neighboring pixel values.

In fact, it is even possible (and often the case) that one can use a single bit for quantizing the difference. (A one bit quantizer is
particularly easy to implement.)

skim...

10.3.3Differential PCM

Like DM but using multiple bits to code the error, and using anautoregressive prediction filter.

skim...

10.3.4Two-channel coders

Separately code the low-frequency and high-frequency components, using different bit-rates and tolerable distortions for each
channel.

skim...

Analysis of delta modulation
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For gaussian random variables, as well as many others, entropy is a monotonically increasing function of variance. So methods
that reduce variance will reduce entropy and thus improve the rate-distortion tradeoff.

Let x[n] denote a WSS random process with autocorrelation functionRx[n]. Now define the processy[n] = x[n]−x[n− 1] based
on difference between neighboring sample values. When is thevariance ofy[n] smaller than that ofx[n]?

Ry[0] = E
[

|y[n]|2
]

= E
[
(x[n]−x[n− 1]) (x[n]−x[n− 1])

∗]
= 2Rx[0]−2 real(Rx[1]),

so

Var{y[n]} = 2Var{x[n]} (1− ρ1) whereρ1 =
real(Rx[1])

Var{x[n]} .

So Var{y[n]} < Var{x[n]} if and only if ρ1 > 1/2, i.e., if there is sufficient positive correlation between neighboring signal
values.
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10.3.5
Pyramid coding

This is another method for exploiting correlation between pixels, both neighboring and farther away.

The basic idea is that if we appropriately down-sample an image and then upsample, we should get the original image back except
for some fine details.

In pyramid coding the image is viewed as having several different levels of resolution. Only the differences between the different
resolution levels are transmitted. Also, at each level of resolution the image is subsampled producing an image with smaller
dimensions. This type of processing is a classic example ofsub-band coding.

Pyramid coding is based on successive subsampling. Subsampling is performed by first low pass filtering the image:

fL
0 [n,m] = hL[n,m] ∗∗ f0[n,m] .

Following filtering, the image is decimated at a 2:1 ratio,i.e.,

f1[n,m] =

{
fL
0 [2n, 2m], 0 ≤ n ≤ 2K−1, 0 ≤ m ≤ 2K−1

0, otherwise.

We assumeN = M = 2K + 1 and we use an odd number of points for each subimage so that thefilter hL[n,m] is symmetric
about the subsampled points, andfK [n,m] consists of a single point in the sub-band image.

The imagef0[n,m] is called thebase of the pyramid, andf1[n,m] is called the first-level image of the pyramid.

If f0[n,m] has(2K + 1)× (2K + 1) pixels, thenf1[n,m] has(2K−1 + 1)× (2K−1 + 1) pixels.

We can repeat this process as illustrated below

fk[n,m]→ lowpass
hL[n,m]

→ fL
k [n,m]→ subsample

↓ 2
→ fk+1[n,m]

There are a variety of possible choices forhL[n,m], each leading to a different “type” of pyramid.

The Gaussian and Laplacian pyramid representations

The so-calledGaussian pyramid is based on the zero-phase separable choicehL[n,m] = h[n] h[m], where

h[n] =
[

1
4 − a

2
1
4 a 1

4
1
4 − a

2

]
,

anda is a free parameter. Fora = 0.4, the filter looks like [0.05 0.25 0.40.25 0.05], which is roughly samples of a Gaussian
function, hence the name.

Using this filter, the pyramid process can be graphically represented in 1-D as follows

(Picture)

Thekth image in the pyramid has(2K−k + 1)× (2K−k + 1) pixels. If N = M = 2K + 1, then theKth image in the pyramid is
just one pixel.

Earlier in the course we saw that we can approximately recover a downsampled image by using interpolation-based upsampling.
Such interpolation will notexactly recover the original image, but the differences will small and somewhat randomly distributed.
The basic idea behind of pyramid coding (for a single level) is to code the low resolution version, and thedifference imagebetween
the original image (at that level) and its prediction based on interpolation from the coarser level.

Let I denote the interpolation operator (linear, or whatever, aslong as the coder and decoder agree!). The error between an image
fk[n,m] and its prediction is given as follows:

ek[n,m] , fk[n,m]− I{fk+1[n,m]} .

If there were no quantization applied, we could recoverfk[n,m] exactly at any stage by

fk[n,m] = I{fk+1[n,m]}+ ek[n,m] .
︸ ︷︷ ︸

(Low resolutionprediction plus additionaldetails.)
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Applying such ideas recursively, we can recover the original image f0[n,m] exactly usingfK [n,m] and ek[n,m] for k =
0, . . . ,K − 1.

The imagesfK [n,m] andek[n,m] for k = 0, . . . ,K − 1 form aLaplacian pyramid (so called for reasons to be described soon),
wherefK [n,m] is the top level of the pyramid (coarsest resolution), andek[n,m] is thekth level of the pyramid.

The original base-level imagef0[n,m] is reconstructed as follows:

fK [n,m] → I →
⊕

↑
eK−1[n,m]

→ fK−1[n,m]→ I →
⊕

↑
eK−2[n,m]

→ · · · → f1[n,m]→ I →
⊕

↑
e0[n,m]

→ f0[n,m]

The double-boxed items are quantized, coded, and transmitted.

Coding issues

So far we have said little about coding.

Indeed, so far we have actuallyexpanded the number of pixels by about 33%, sincee0 is the same size asf0, ande1 is about a
quarter of that size, ande2 is another quarter of that, so roughly1 + 1/4 + 1/16 + · · · = 1

1−1/4 = 4/3. At first glance this hardly
looks like progress towardsimage compression!
• BecausefK [n,m] andek[n,m] have different characteristics (see analysis below) they are quantized differently.
• Higher level (coarser) images generally have higher variances than lower level images. This means that more bits per pixel must

be assigned to these images. However, these images are smaller, resulting in a small number of total bits needed.
• Lower level (finer) images (e0[n,m] ande1[n,m]) will have many zeros. These images, although large, require few bits for

coding if some sophisticated entropy coding scheme is used.
• “Optimal” allocation of the bits between the different pyramid levels is an interesting and challenging problem.
• Quite faithful reproduction of images can be produced usingpyramid coding at very low bit rates (e.g., 0.5 bit/pixel).

Combinations of run-length encoding and other sophisticated entropy coding schemes are needed to reach the 0.5 bit/pixel level.
Nevertheless, the complicated processing inherent in pyramid coding does result in high compression ratios.
• Pyramid coding is suitable for progressive data transmission. At any level of the reconstruction we can always produce ablurred

representation of the image.

After quantizing, coding, and transmitting (or archiving)the bits corresponding to the base image and the error images, the decoder
can (approximately) reconstruct the original base-level imagef0[n,m] as follows:

f̂K [n,m] → Interp → ⊕

↑
êK−1[n,m]

→ f̂K−1[n,m]→ Interp → ⊕

↑
êK−2[n,m]

→ · · · → f̂1[n,m]→ Interp → ⊕

↑
ê0[n,m]

→ f̂0[n,m]
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Analysis of the Laplacian pyramid

The Laplacian pyramid is just an invertible method forimage representation(in fact it could be called animage transformation),
and this representation is useful for other image processing tasks likeedge detectionandobject recognition.

What are the properties of the ek[n,m] images?

Book’s analysis skip

Suppose for discussion purposes that the interpolation method recovers the (lowpass filtered) image at the finer scale,i.e.

I{fk+1[n,m]} ≈ fL
k [n,m] = h[n,m] ∗∗ fk[n,m] .

Then

ek[n,m] = fk[n,m]− I{fk+1[n,m]}
≈ fk[n,m]−h[n,m] ∗∗ fk[n,m]

= fk[n,m] ∗∗ (δ2[n,m]−h[n,m]).

In particular
e0[n,m] ≈ f0[n,m] ∗∗ (δ2[n,m]−h[n,m]).

Sinceh[n,m] is a (zero phase) lowpass filter,ek[n,m] will have highpass characteristics (including zero DC component).

At the next level of the pyramid:

e1[n,m] = f1[n,m]− I{f2[n,m]} ≈ f1[n,m]−h[n,m] ∗∗ f1[n,m] .

To put this back in terms of the base image’s coordinates,the book claims that “making a few additional approximations, we
obtain” after interpolating:

I{e1[n,m]} ≈ I{f1[n,m]}− I{h[n,m] ∗∗ f1[n,m]}
≈ f0[n,m] ∗∗ h[n,m]−h[n,m] ∗∗ f0[n,m] ∗∗ h[n,m]

= f0[n,m] ∗∗ (h[n,m]−h[n,m] ∗∗ h[n,m]) .

Sinceh[n,m] is lowpass,h[n,m]−h[n,m] ∗∗ h[n,m] the book claims that is a bandpass filter.But that is incorrect when
h[n,m] is the ideal lowpass!Continuing to the next level,the book claims that we get

I{I{e2[n,m]}} ≈ f0[n,m] ∗∗ (h[n,m] ∗∗ h[n,m]−h[n,m] ∗∗ h[n,m] ∗∗ h[n,m]) .

In each case, the filters that relate theek[n,m] images to the base image arebandpass filtersof different center frequencies and
bandwidths. Ask increases, the filter has effectively a smaller bandwidth with lower passband frequencies.

Since a Gaussian convolved with a Gaussian is still Gaussian, the filters are approximately the difference of two Gaussians, which
in turn is approximately theLaplacian of Gaussiandiscussed previously, hence the nameLaplacian pyramid .
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My analysis (in 1D for simplicity)

Thedown samplingstep:

fL
k = hL ∗ fk

DSFT←→ FL
k = HLFk

What should HL(ω) be ideally? ??

fk+1 = downsample(fL
k )

DSFT←→ Fk+1(ω) =
1

2

[

FL
k

(ω

2

)

+FL
k

(ω

2
± π

)]

=
1

2

[

HL

(ω

2

)

Fk

(ω

2

)

+HL

(ω

2
± π

)

Fk

(ω

2
± π

)]

.

In particular, ifHL(ω) ≈ rect
(

ω
π

)

(2π)
, then for|ω| < π we have the following approximation:

Fk(ω) ≈ 1

2
HL

(ω

2

)

Fk−1

(ω

2

)

≈ 1

2
HL
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)[
1
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1
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2
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≈ · · · ≈ 1

2k
HL

(ω

2

)

F0

( ω

2k

)

.

In particular,Fk(ω) consists of those frequency components ofF0(ω) up toπ/2k.

The interpolation step:
f I

k+1 , I{fk+1} = hI ∗ fU
k+1

wherefU
k+1 is upsampling by zero insertion,i.e.,

fU
k+1[n] =

{
fk+1[n/2], n even
0, otherwise

DSFT←→ FU
k+1(ω) = Fk+1(2ω),

andhI is the lowpass filter associated with the interpolation. (Typically hI = 2hL.) In the frequency domain:

F I
k+1(ω) = HI(ω) FU

k+1(ω)

= HI(ω) Fk+1(2ω)

= HI(ω)
1

2
[HL(ω) Fk(ω) +HL(ω ± π) Fk(ω ± π)]

≈ H2
L(ω)Fk(ω),

assuminghI = 2hL and making the very reasonable approximation (which is exact for ideal lowpass filters) that

HI(ω) HL(ω ± π) ≈ 0.

Theerror step:

ek = fk − I{fk+1} = fk − f I
k+1

DSFT←→ Ek(ω) = Fk(ω)−F I
k+1(ω) ≈

[
1−H2

L(ω)
]
Fk(ω)

≈
[
1−H2

L(ω)
] 1

2k
HL

(ω

2

)

F0

( ω

2k

)

,

for |ω| < π. In particular, ifHL(ω) = rect
(

ω
π

)

(2π)
, then for|ω| < π:

Ek(ω) =
1

2k
F0

( ω

2k

)

1{π/2<|ω|<π}.

Plugging in the limits of the indicator function intoF
(
ω/2k

)
shows thatEk(ω) contains information about the original image

F0(ω) over the frequency bandπ
2k+1 < ω < π

2k , which is closely related tosubband coding.
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16

π
8

π
4

π
2 π
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F4(ω)
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More analysis of pyramid decomposition (for ideal filters and interpolators)for interested readers

First, lowpass:fL
k [n,m] = fk[n,m] ∗∗ h[n,m] whereh[n,m] = 1

4 sinc2

(
n
2 , m

2

)
. Hence

FL
k (ωX, ωY) = Fk(ωX, ωY) H(ωX, ωY) = Fk(ωX, ωY) rect2

(ωX

π
,
ωY

π

)

(2π,2π)
.

Second, downsample:fk+1[n,m] = fL
k [2n, 2m]. Hence from homework:

Fk+1(ωX, ωY) =
1

4

[

FL
k

(ωX

2
,
ωY

2

)

+FL
k

(ωX

2
− π,

ωY

2

)

+FL
k

(ωX

2
,
ωY

2
− π

)

+FL
k

(ωX

2
− π,

ωY

2
− π

)]

=
1

4

[

Fk

(ωX

2
,
ωY

2

)

rect2

(ωX

2π
,
ωY

2π

)

(2π,2π)
+ · · ·

]

.

To save writing, hereafter we only consider the range−π ≤ ωX, ωY ≤ π for the arguments on the left-hand side. Thus
Fk+1(ωX, ωY) = 1

4 Fk

(
ωX

2 , ωY

2

)
rect2

(
ωX

2π , ωY

2π

)
, since the rect’s eliminate the other terms over this range.

Applying this relationship recursively yields the following pyramid of lowpass filtered images:

Fk(ωX, ωY) =

(
1

4

)k

F0

(ωX

2k
,
ωY

2k

)

rect2

(ωX

2π
,
ωY

2π

)

, k = 0, 1, 2, . . . .

Third, interpolate:f I
k+1[n,m] =

∑∞
k=−∞

∑∞
l=−∞ fk+1[n,m] sinc2(n/2− k,m/2− l), so from homework:

F I
k+1(ωX, ωY) = 4Fk+1(2ωX, 2ωY) rect2

(ωX

π
,
ωY

π

)

= Fk(ωX, ωY) rect2

(ωX

π
,
ωY

π

)

.

Fourth, error image:ek[n,m] = fk[n,m]− f I
k+1[n,m], so

Ek(ωX, ωY) = Fk(ωX, ωY)−F I
k+1(ωX, ωY) = Fk(ωX, ωY)

[

1− rect2

(ωX

π
,
ωY

π

)]

.

Thus, usingk = 0 we have: E0(ωX, ωY) = F0(ωX, ωY)
[

1− rect2

(ωX

π
,
ωY

π

)]

(for |ωX, ωY| ≤ π, and periodic otherwise).

Suppose we were to form an imagegk[n,m] = Ik{ek[n,m]} by taking the error imageek[n,m] at thekth level of the pyramid
and performingk applications of the interpolation method given above to it (for k ≥ 1).

Relate the spectrum ofgk[n,m] to the spectrum of the base imagef0[n,m]. From above, fork ≥ 1:

Ek(ωX, ωY) = Fk(ωX, ωY)
[

1− rect2

(ωX

π
,
ωY

π

)]

=

(
1

4

)k

F0

(ωX

2k
,
ωY

2k

) [

rect2

(ωX

2π
,
ωY

2π

)

− rect2

(ωX

π
,
ωY

π

)]

.

With gk[n,m] = Ik{ek[n,m]} we have (fork ≥ 1):

Gk(ωX, ωY) = 4kEk[2kωX, 2kωY] rect2

(
ωX

π/2k−1
,

ωY

π/2k−1

)

= F0(ωX, ωY)

[

rect2

(
2kωX

2π
,
2kωY

2π

)

− rect2

(
2kωX

π
,
2kωY

π

)]

rect2

(
ωX

π/2k−1
,

ωY

π/2k−1

)

.

Thus Gk(ωX, ωY) = F0(ωX, ωY)

[

rect2

(
ωX

π/2k−1
,

ωY

π/2k−1

)

− rect2

(
ωX

π/2k
,

ωY

π/2k

)]

(for |ωX, ωY| ≤ π, and periodic other-

wise), which is a set of concentric dyadic rectangular annular subbands.

10.3.6Adaptive image coding and vector quantization (skim)

Small sub-blocks of an image can be directly quantized usingvector quantization.

Typical block sizes range from 2 x 2 to 4 x 4. Above 4 x 4, an optimal vector quantizer gets very expensive.

Direct vector quantization is capable of modest reproduction but at very low bit rates (e.g., less than 0.5 bits/pixel).
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10.4

Transform image coding

• Transform coding techniques exploit the property that for typical images (and for appropriate transforms) most of the signal
energy is concentrated in a small fraction of the transform coefficients. Because of this property, it is possible to codeonly a
fraction of the transform coefficients without seriously affecting the image.
• The transform coefficients can be quantized and coded in any way. Traditionally, simple scalar quantization with uniform length

coding has been used, where the number of reconstruction levels decreases away from the region of energy compaction.
• Vector quantization, especially of higher order coefficients, is starting to be used in real systems.
• To date, primarily linear transforms have been used for image coding.
• An ideal transform (like the KL transform) would make the coefficients uncorrelated (or even independent), in which casescalar

quantization would be quite natural. (There still would be abenefit of going to VQ even in the case of independent coefficients
because of the “sphere packing” problem.)

The basic block diagram of a transform codec is the following.

x→ Transform
X−→ Quantize

X̂−→ Transmit/Store
X̂−→ “Inverse Transform”→ x̂

The vectorx ∈ R
N might represent the entire image, or, more typically, it represents some block of pixel values,e.g., in JPEG one

uses8× 8 blocks.

For simplicity of decoding, typically one uses a linear “inverse transform” in which the final image is represented as a linear
combination of basis vectors:

x̂ =

K∑

k=1

bkX̂k,

where the vectors{b1, . . . , bK} are sometimes called thedictionary or library . The traditional choice uses a dictionary where
K = N , but more recentlyovercompleteexpansions whereK > N have also been proposed.

For simplicity, we consider the case whereK = N hereafter, in which case if thebk vectors are a basis forRN , and hence linearly
independent, then we can define aN ×N transformation matrix

W = [b1 . . . bN ]
−1

,

so that the transform and inverse transform arg given by:

X = Wx, x̂ = W−1X̂.

What are desirable properties of transformations?
• invertible
• easily computed
• separable (for reduced computation viarow-column decomposition)
• real, fast, etc.

• correlation reduction (to facilitate scalar quantization)
• energy compaction
• energy preservation (like Parseval’s theorem):

‖Wx‖2 = c ‖x‖2

for some constantc independent ofx.
This property holds withc = 1 if W is aunitary matrix , i.e., corresponding to aorthonormal transformation . In this case
W−1 = W ′, Q−1 = Q′, whereW ′ is theHermitian transposeof W , and

‖X‖2 = ‖Wx‖2 = x′W ′Wx = x′x = ‖x‖2 .

This property is desirable since it assures us that small transform coefficients contribute only a small amount to the reconstructed
signal’s energy, so discarding a small transform coefficient (i.e., quantizing them to zero) will not seriously degrade the image.
(Of course, discarding alot of small coefficients will have a synergistic effect that is likely to be noticeable.)

There is often atradeoff between the energy compaction property and computational considerations. For example, the 2D DFT is
very easy to compute using the row-column 2D FFT. But image regions containing edges are poorly compacted by the DFT.
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Karhunen-Loève Transform

Suppose that you are willing to assume that your image (or image block)x is a realization of a random vector with known
covariance function

K = Cov{x} = E[(x− E[x])(x− E[x])′] .

Under this (often artificial) assumption, thelinear transformation (actually, it is anaffine transformation) that is optimal in terms
of the energy compaction property, is theKarhunen-Loève(KL ) transform (KLT ).

The KLT solves the following problem. We wish to approximatex ∈ C
N using the following affine expression:

x̂ = Bα + v,

whereB = [b1 . . . bM ] is aN ×M matrix withM ≤ N orthonormal columns that does not depend on any givex, butv ∈ C
N

is also independent ofx, B′v = 0, and each coefficient vectorα ∈ C
M may depend (possibly even nonlinearly) onx. We want

to chooseB, α, andv to minimize the MSEE
[

‖x̂− x‖2
]

.

We derive shortly that the optimal choice forv is v = (I −BB′)µ, the optimal choice forα is α = B′x, and most importantly,
the basis vectorsbk must be theM eigenvectors ofK corresponding to the largest eigenvalues.

In principle, using lexicographic ordering of finite-sizedimages we could use MATLAB ’s eig function to find the required eigen-
values and eigenvectors. In practice this can be nontrivialfor large image sizes.

Alternatively, one can find the KL representation of small (e.g., 8 × 8) blocks of images from a representative training set (which
are used to form an empirical estimate of the covariance matrix). This approach only requires finding the eigenvectors ofa64× 64
covariance matrix, which is trivial. The eigenvectors found this way will be optimal for the training set; whether they will have
good energy compaction for a subsequent image of interest will depend on how “representative” that image is of the imagesin the
training set.

If K is circulant, i.e., if the image is circularly WSS, then what are the eigenvectors and eigenvalues? ??

The sense in which the KL transform is optimal is that if we order the eigenvalues from largest to smallest, and then look at
the expected error in a truncated expansion that only includes the first, say,M coefficients, then the KL transform will have the
minimum such MSE over all linear transformations. In other words, the firstM components describe as much of the variance of
the signal (energy compaction) as is possible with a linear orthonormal transformation.

Furthermore, the KL coefficients are completely uncorrelated, as shown by the following argument for a finite-extent signalx.

Denote the covariance matrix of the lexicographically ordered image vectorx by

K = E[(x− E[x])(x− E[x])′] .

SinceK is symmetric nonnegative definite, it has an orthogonal eigen-decomposition:

K = V ΛV ′,

where the columns ofV are its eigenvectors, andΛ is a diagonal matrix with its eigenvaluesλk.

The KL transform in matrix vector form is given by:

X = V ′(x− E[x])

and the inverse transform is given by
X = E[x] +V X.

(Note the small detail here that the transform is actuallyaffine rather thanlinear if the mean is nonzero.)

To show that the KL coefficients are uncorrelated, we examinethe covariance matrix of the coefficient vectorX:

Cov{X} = Cov{V ′x} = V ′ Cov{x}V = V ′KV = V ′(V ΛV ′)V = Λ,

which is diagonal. So the KL coefficients are perfectlyuncorrelated. They also have the bestenergy compactionas shown below.

However, for the reasons described above, the KL transform is impractical, so is rarely used in practical image coding. It is useful
for analysis and insight.
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KLT derivation

Let x be a random vector of lengthN with knownN ×N covariance matrixK and known meanµ.

Let T = [φ1 . . . φN ]′ denote anN × N orthonormal transformation with basis functionsφi, i = 1, . . . , N , such thatT ′T =
TT ′ = I, i.e., ‖φi‖ = 1 andφ′

iφj = 0, i 6= j.

We want to form an approximation tox using justM < N components:

x̂(α,ν) =
M∑

i=1

αiφi + ν,

where theαi’s can depend onx, butν cannot (we must preselectν), and whereν′φi = 0 for i = 1, . . . ,M .

Goal: chooseν, α, andT (theφi’s) to minimize the MSE between̂x andx, subject to the constraintTT ′ = T ′T = I.

The approximation error is

ε(α,ν) = ‖x̂(α,ν)− x‖2 =

∥
∥
∥
∥
∥

M∑

i=1

αiφi + ν − x

∥
∥
∥
∥
∥

2

and we first minimize this error overα:

min
α

ε(α,ν) = min
α
‖x̂(α,ν)− x‖2 = min

α

∥
∥
∥
∥
∥

M∑

i=1

αiφi + ν − x

∥
∥
∥
∥
∥

2

∂

∂αi
ε(α,ν) = φ′

i

[
M∑

k=1

αkφk + ν − x

]

= αi − φ′
ix,

sinceT ′T = I. Equating the partial derivatives to zero yields

αi = φ′
ix, i = 1, . . . ,M.

Thus we have

x̂(ν) =

M∑

i=1

φiφ
′
ix + ν

with corresponding error:

ε(ν) , E
[

‖x̂(ν)− x‖2
]

= E





∥
∥
∥
∥
∥

M∑

i=1

φiφ
′
ix + ν − x

∥
∥
∥
∥
∥

2


 = E





∥
∥
∥
∥
∥
ν −

N∑

i=M+1

φiφ
′
ix

∥
∥
∥
∥
∥

2


 ≡ ‖ν‖2 − 2ν′
N∑

i=M+1

φiφ
′
ix.

Taking the gradient with respect toν yields

1

2
∇′ε(ν) = ν −

N∑

i=M+1

φiφ
′
iµ.

Equating this gradient to zero yields:

ν =
N∑

i=M+1

φiφ
′
iµ.

Fortunately, this solution for the bestν satisfiesφ′
iν = 0, i = 1, . . . ,M , otherwise we would have to minimize overν using

Lagrange multipliers.

We now have our MMSE (over theαi’s andν) affine approximation:

x̂ =

M∑

i=1

φiφ
′
ix +

N∑

i=M+1

φiφ
′
iµ =

M∑

i=1

φiφ
′
i(x− µ) + µ,
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so we can turn to the more interesting and challenging problem of asking: what should theφi’s be (fori = 1, . . . ,M ) to minimize
the MSE? The MSE is

ε = E
[

‖x̂− x‖2
]

= E





∥
∥
∥
∥
∥

M∑

i=1

φiφ
′
i(x− µ) + µ− x

∥
∥
∥
∥
∥

2


 = E





∥
∥
∥
∥
∥

N∑

i=M+1

φiφ
′
i(x− µ)

∥
∥
∥
∥
∥

2




=
N∑

i=M+1

E
[

(φ′
i(x− µ))

2
]

=
N∑

i=M+1

φ′
i E[(x− µ)(x− µ)′]φi =

N∑

i=M+1

φ′
iKφi

To minimize overφi, we must include the constraint‖φi‖2 = 1 using a Lagrange multiplier:

∇′ε− λi∇′
(

‖φi‖2 − 1
)

= 2Kφi − λi2φi

Equating to zero yields:

Kφi = λiφi,

which means that theφi’s must beeigenvectorsof the covariance matrixK.

Substituting this relationship back into the error expression yields:

ε =

N∑

i=M+1

λi.

Clearly then, to minimize the MSE for anyM we should arrange theλi’s (and hence the corresponding eigenvectors, theφi’s) in
decreasing order.

Thus, we have shown that, over all (affine) orthonormal transformations, truncated toM < N terms, the KLT has the MMSE,
assuming that the covariance matrixK and meanµ are known.

Example. Generally it is impractical to apply the KLT to an entire image. However, one can extract small blocks of pixels from an
image (e.g., 8× 8) and arrange those as 64-element vectorsxl for l = 1, . . . , L whereL is the number of such blocks available in
a training set. From the training set, we canestimate the covariance matrixK using the sample covariance:

K̂ =
1

L

L∑

l=1

(xl − x̄)(xl − x̄)′ where the sample mean vector is:x̄ =
1

L

L∑

l=1

xl.

The empirical covariance matrix̂K is nonnegative definite, so we can use its (orthonormal) eigenvectors as anempirical KL
transform .

A practical disadvantage of this approach is that the basis would be different for every image (or class of images), so in aheteroge-
neous environment like the internet, one would have to transmit the basis along with the image, which would add some overhead
and complexity. Using a “generic” predetermined basis likethe DCT avoids the need for communicating a different basis for each
image.

Summary: the KLT gives the MMSE basis for a truncated representation of a random vector with known mean and covariance
matrix. There was no consideration of quantization errors in this analysis. However, for “high resolution” (asymptotic) bit rates,
one can generalize this conclusion to include the effects ofquantization errors. (See EECS 651...)

Example.

I took the 256x256camerman.tif image and partitioned it intoL = 322 subimages of size8 × 8, which I arranged as a
collection ofL vectors of lengthN = 64 and passed it to MATLAB ’s cov routine, which computes the sample covarianceK̂

described above. The first figure below shows that64 × 64 covariance matrix. I then passed the sample covariance matrix to
MATLAB ’s eig function which computed its eigenvalues (shown below) and eigenvectors. Ireshaped each64× 1 eigenvector
into an8 × 8 eigenimage, and all 64 eigenimages are shown below. For comparison purposes, I also show the 64 basis images
associated with the DCT command (usingkron anddctmtx). There is a remarkable degree of similarity.
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Other transforms

DCT, DFT, and Hadamard are the most common.

The Hadamard transform is computationally the simplest. ItsN × N , basis matrices are denotedHn whereN = 2n, n =
1, 2, 3, . . .. They can be generated easily by the core matrix

H1 =
1√
2

[
1 1
1 −1

]

and the recursion

Hn = Hn−1 ⊗H1 =
1√
2

[
Hn−1 Hn−1

Hn−1 −Hn−1

]

.

The Hadamard transform isunitary .

If we ignore the
√

2’s, computing the transform simply requires additions and subtractions!

However, the Hadamard transform, does not usually have the energy compaction properties of either the DFT or DCT.
There usually is a tradeoff between complexity and energy compaction.

We have previously discussed the fact that the DCT often has better energy compaction than the DFT because of the way edge
conditions are handled.

10.4.2
Practical considerations in transform image coding

Because of computational constraints, most transform coding systems work onsubimages.

However, the subimages must not be chosen too small or there will be little exploitation of correlations between image regions.

Typically 8 x 8 or 16 x 16 sub-images are used.

All coefficients of the transform are not coded with equal accuracy.

There are two basic approaches to transferring reduced information about transform coefficients.
• Zonal and threshold coding
• Only encode a limited set of transform coefficients.
• Each coefficient of the reduced set is coded with high accuracy.
• The set of coefficients to be coded can be determined as follows.
• Use predeterminedzones, as shown in Fig. 10.43.
• Select coefficients based on a threshold condition.

Obviously, the threshold approach produces a better representation, but must somehow also encode information about the
positions of the selected frequencies.
Run-length coding and variations can be applied for this purpose.

• Bit allocation methods
Bits for coding subimages are allocated based on the expected variance of the transform coefficients. Coefficients with alarge
variance are assigned a large number of bits, and coefficients with small variances are assigned a small number of bits. An
example of such an allocation for DCT coding at 0.5 bit/pixelis shown in Fig. 10.44.
So that the same quantization step size can be used for all coefficients, typically the coefficients are first normalized bytheir
“expected” standard deviation prior to scalar quantization.

Degradations
• Quantization noise can causes “graininess”
• Coefficients corresponding to high spatial frequencies areusually eliminated or assigned fewest bits, resulting in a loss ofspatial

resolution.
• Thus use of subimages causesblocking effectdue to artificial discontinuities at block boundaries that are very noticeable to the

human eye.
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Summary of design parameters
• transform
• subimage size
• selection of coefficient set
• bit allocation
• quantization levels

One practical issue is whether a variable bit rate is tolerable. For example, using a threshold to select coefficients will yield different
numbers of coded coefficients for different blocks.

10.4.3
Reduction of blocking effect

Blocking artifacts can be reduced by overlapping subimages. However, in image coding large overlaps are not acceptablebecause
of the greatly increased number of coefficients. Consequently, only small overlap, or no overlap at all, is used in practice for
transform image coding.

Blocking artifacts can also be reduced by low pass filtering in the neighborhood of subimage boundaries.

10.4.4Hybrid transform coding

In a hybrid coder, one spatial dimension is waveform coded and the other is transform coded, as illustrated below

f [n,m]→ 1D transform along rows→ 1D “waveform” coding along columns→ codeword assignment→

→ decoding→ 1D “waveform” reconstruction along columns→ 1D inverse transform along row→ f̂ [n,m]

Although conceptually simple, hybrid systems have not beenused very much in practice. This is because at very low bit rates,
transform coders work best, but at very high bit rates where faithful reproductions are needed, a hybrid system does not perform
any better than a simple waveform coder. Thus, hybrid codershave limited applicability in 2D.

10.4.5
Adaptive coding schemes

Bit allocations, zones, etc. can all be selected adaptively, either per image, or per block or group of blocks.

What is the tradeoff of adaptive methods? ?? The overhead associated with adaptive methods usually is worth the overall
savings! A classic example of this is JPEG, which uses adaptive coding of DCT coefficients in8× 8 blocks.
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JPEG coding, a case-study in practical transform image coding (from [4])

Goals:
• Close to state-of-the art (circa 1990) in terms of compression rate
• Generally applicable (grayscale, color, multiple component)
• User selectable quality level
• Tractable computation
• Four modes (4 separate codecs since no single method adequately works for all situations):
• Sequential - left-to-right, top-to-bottom scan
• Progressive - blurry-to-clear recovery. First pass, low frequency DCT coefficients. Subsequent passes, additional frequency

bands of DCT coefficients. Decoded images are all the same size at each pass.
• Lossless - exact recovery (albeit with smaller compressionratios)
• Hierarchical - access coarsely sampled version without decoding high resolution information.

(similar topyramid coding considered in HW)
Useful for display on monitor before printing (thumbnail).

Design choices

1. Transform

Tradeoff between complexity and energy compaction.
What are the two extremes?
• KL is best compaction, most complexity since it is image (covariance class) dependent.
• Waveform coding is lowest complexity but no energy compaction.

Practical compromises
• A low complexity choice is theHadamard transform , discussed above, which requires only additions and subtractions.

But its energy compaction underperforms the DFT and DCT.
• TheJPEG committee chose theDCT based on a (blinded) competition using subjective image quality.

We would expect DCT to outperform DFT based on earlier discussion of edge conditions for DCT (mirroring) vs DFT
(periodic).
• Accuracy specifications on DCT (due to cosines)
• 8 or 12 bit input images (easy to add front-end for floats)
• For 8-bit input images, the DCT coefficients are in the range−210, 210 − 1.

2. Subimage size

Tradeoff between computation and exploitation of correlation.
• Large subimages (or entire image) exploit more correlation, possibly yielding better compression ratios, although the

“economies of scale” in things like shared quantization tables are reduced.
• Small subimages require less computation.

If anN×N image is broken into blocks of sizeM×M , the computation required isO(M2 log M) per block for(N/M)2

blocks for a total ofO(N2 log M), so the smallerM is the less computation.
• TheJPEG committee chose8× 8, again based on blinded visual quality.

3. Quantization / coefficient subset

The 64 DCT coefficients for each block have different variances/energies, so one should quantize them differently.

Some subset of coefficients will even be discarded (quantized to zero).
See earlier discussion of predeterminedzones(predetermined subset) vsthreshold codingwhere the subset is chosen based
on the coefficient magnitudes.

Tradeoff: threshold coding preserves more signal energy, but requires extra bits to code indices of nonzero subset for every
block.

TheJPEG standard:
• 8 by 8 table describing (uniform scalar) quantizer step sizefor each of the 64 DCT coefficients, from 1 to 255.

In terms of the subset of nonzero coefficients, is this zones or threshold based? ??
• Adaptive: specified by “user” for each image. (Default quantization tables are available based on psychovisual experi-

ments.)
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4. Coding (bit allocation)
• DC coefficient coded by difference from previous block (DM idea)

Why? Usually large (0-255 image values), and often varies slowlyspatially.
• Remaining coefficients ordered in a zig-zag sequence from low to high spatial frequency.
• Entropy coding (Huffman or arithmetic) of (bits describing) quantized coefficients.

Requires separate “user supplied” Huffman code table be shared (e.g., encoded) between the coder and decoder.

Other considerations
• Color images etc. (each plane compressed separately)
• Multiple quantization tables and coding tables supported,so they can differ for each component. (But only one table within a

component.)

Performance (starting with 8-bit images)
• 0.25 - 0.5 bits/pixel: moderate to good quality, sufficient for some applications;
• 0.5 - 0.75 bits/pixel: good to very good quality, sufficient for many applications;
• 0.75 - 1/5 bits/pixel: excellent quality, sufficient for most applications;
• 1.5 - 2.0 bits/pixel: usually indistinguishable from the original, sufficient for the most demanding applications.
• Lossless mode (prediction from Left, Above, Above-Left neighbors) yields 2:1 compression of moderately complex color

scenes.

Issue: “block artifacts” - many papers on correction methods.
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10.5

Image model coding

The block diagram of a model coder is shown below.

Transmitter:
f [n,m]→ analysis→ model parameters→ encoder→

Receiver:
→ decoder→ quantized model parameters→ synthesis→ f̂ [n,m]

In principle, one can use any model of a class of images to generate a reduced set of model parameters capturing image content.

Example. Replace “grass” parts of an image with synthetically generate grass texture.

Example. (Fig. 10.53) A portion of the mandrill’s facial hair replaced with pixels synthesized by a simple first-order Markov
model. Hundreds of pixels reduced to just a few parameters.
• Geometry models

Objects in the image are contained in a finite set of possible objects.
• Texture models.

Image texture often can be modeled as a random field with some statistical description. Psychophysical measurements have
shown that random fields with the same 2nd order statistics (i.e., covariance matrices) appear similar to a human observer.
• Combined geometry and texture.

Segment an image into uniform regions based on edge information and generate statistically based texture within identified
regions.
• Fractals.

Use fractal measures to capture complex geometry using a small number of parameters. This method is similar to texture based
methods, where a specific fractal model is used to capture statistics.

Thesynthesispart of such a system is quite challenging, and typically requires a decoder with sizable computational capability.
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10.6

Interframe image coding

There are several ways that we can exploit interframe correlations to improve performance and/or reduce average bit rates.

In the simplest system, either direct waveform coding, suchas DPCM, or transform coding, such as DCT, can be directly extended
to three dimensions. Direct extension to 3D often is not optimal, especially because of the increased computation.

A hybrid system, unlike in 2D, can be very effective for interframe coding. A 3D hybrid system is shown below.

Transmit:

f(n,m, z)→ 2D transform for each z→ T (k, l, z)→ “Waveform coding” along z→ codeword assignment→

Receive:

→ decoding→ 1D waveform reconstruction along z→ 2D inverse transform for each z→ f̂(n,m, z)

The waveform coding portion is usually DPCM so that only one or two frames must be stored at the decoder.

The hybrid system greatly reduces computations because only those DCT coefficients which are retained need be coded by the
interframe DPCM system. That is, waveform coding is only applied to a fraction of the DCT coefficients.

There is no major delay in a hybrid system. For example, in a full 3D transform coder, one frame cannot be reconstructed until all
transform coefficients within a 3D block are received. This means there is at least an N-frame delay in reconstructions for a 3D
transform coder using N consecutive frames of information.

Some simple waveform coders based on DM or DPCM only transmitinterframe differences that exceed a certain threshold. The
instantaneous bit rate fluctuates, but the average rate can be very small. With proper buffering at the receiver, this simple type of
system is capable of significantly reduced bit rates.

As discussed in the previous chapters, interframe motion can be estimated. Using estimates of the motion, we can transmit only
the interframe difference between the expected, motion compensated image and the current image can be transmitted. Also, the
motion parameters must be transmitted. The motion is estimated by the receiver using multiple frames, assuming the samemotion
parameters between frames. Thus, motion does not need to be transmitted given that the decoder has access to the previous
estimated frames.

10.6.2Color image coding skim

10.6.3Channel error effects

Errors in communication have different effects on different image coding schemes. In PCM coding, a bit reversal only affects the
particular pixel whose intensity is represented by the bit in error. This type of noise, at reasonable low bit rates, can be removed
using median filtering, or other nonlinear filtering methods, or often just ignored.

In DPCM coding, bit reversals affect multiple pixel values.Because reconstructed intensities are used recursively, abit reversal
affects all subsequent pixel intensities from that point on. Because of the deleterious effect of a small number of bit reversals on
DPCM reconstruction, these systems are often used with error correcting codes. Error correction, which is necessary tomaintain
fidelity, increases the bits/pixel needed to code the image.

A bit reversal in transform codings affects one particular coefficient. Each coefficient, however, affects all pixels within the
subimage. This, the entire subimage may be corrupted solelyby a single bit reversal. Again, as with DPCM, error correcting codes
are often used with transform coders to eliminate the effectof channel noise. The addition of error correction once again increases
the bit/pixel needed to code the image.
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Summary

This chapter described methods for image coding. Image (andvideo) coding are very active research areas, due to the many
commercial, medical, and scientific applications of digital image.

The JPEG2000 standard is based on wavelets, which offer manyadvantages includingprogressive decoding(cf. pyramid decoder).

10.7 Final comments on image coding

If a highly accurate reconstruction of an image is needed, then there is little difference between the bit rates of waveform and
transform coders. Consequently, because of their simplicity and robustness to channel noise, waveform coders are usually selected
for these applications.

Transform coders, such as JPEG, yield good performance at low bit rates (i.e., in the 0.5-1 bit/pixel range). These coders are usually
computationally complex, but can be justified in circumstances where the cost of the encoder and decoder are small compared to
the cost of communication bandwidth (e.g., the Web).

Model coders can yield modest performance but at greatly reduced bit rate (i.e., < 0.1 bit/pixel). These coders are most commonly
used in applications where intelligibility is the major concern and bandwidths are minimal.

Adaptive coding, although conceptually expensive, often can enhance the performance of almost any image coding system. For
most applications, the increased complexity and slight loss of bandwidth due to communication of adaptive parameters can often
be justified given the level of improvement (e.g., JPEG adaptive bit allocation).

Interframe coding is very useful in applications such as HDTV where the sequence of frames has significant temporal correlation.

A general rule is that as the bits/pixel decreases, the complexity increases. The major design tradeoff usually is between the
complexity of the encoder vs. decoder given a particular communications bandwidth.

Based on the way errors propagate, the decoder must be designed to be robust against channel noise. Error-correcting codes are
often used to reduce the effect of channel noise.
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