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Abstract

This is the note for the talk at June 26, 2018, in the University of Michigan, as a digres-
sion for the serial lectures on Drinfeld’s geometric Langlands correspondence (from Galois to
automorphic)[Dri83]. We will mostly follow de Jong’s paper [deJ01], discuss the relation of Drin-
feld’s theorem and the de Jong’s conjecture, and prove the structure result for the deformation
ring of mod-` representations of fundamental groups.

1 De Jong’s conjecture

In this section, we will formulate the conjecture and sketch the proof for GL2-case using Drinfeld’s
thoerem.

Statement of the conjecture

Let F be a finite field of characteristic `, F = F((t)). Assume X is a normal scheme of finite type
over a finite field k of characteristic p, where p 6= `. Let X be the base change of X to k, and we fix
a geometric point x of X. Then there exists a natural exact sequence of étale fundamental groups

0 // π1(X,x) // π1(X,x) // Gal(k/k) // 0.

The de Jong’s conjecture is about the finiteness of the image of π1(X) in a given continuous
F((t))-representation of π1(X).

Conjecture 1.1 (De Jong, [deJ01] 2.3). Assume ρ : π1(X)→ GL(V ) is a continuous representation,
where V is a finite dimensional F -vector space and GL(V ) has the topology induced from End(V ).
Then the image ρ(π1(X)) of the geometric fundamental group is finite.

The conjecture is equivalent to the statement that the geometric monodromy group of any given
lisse F((t))-sheaf over X is finite.

Remark 1.2. The higher dimensional conjecture was proved in most of the cases by Bockle-Khare,
and Gaitsgory separately.

We first note that the proof for GL1 does not need a lot of efforts granting an fact about the
abelianization of fundamental groups:

Proposition 1.3. When dim(V ) is 1, the above conjecture holds.

Proof. By the geometric class field theory, the abelianization πab1 (X) is of the form

(pro− p)× (finite)× Ẑ,

such that πab1 (X) maps surjectively onto the first two factors. (The case when X is a curve comes
from the geometric class field; the general case was proved by Deligne [Del80], 1.3.1.) But note that
GL1(F ) = F((t))∗ is of the form

(pro− `)× (finite)× Z.
From this, by the continuity, we see the image of π1(X) can only be a finite group.
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Proof of the Conjecture for GL2

Here we sketch how to prove the conjecture for dim(V ) = 2, granting the geometric Langlands
correspondence of GL2 by Drinfeld [Dri83].

The very first reduction is to reduce the conjecture to the case when X is a smooth projective
curve. More precisely, we have

Theorem 1.4 ([deJ01], 2.17). The conjecture for dim(V ) ≤ n holds if and only if it holds for every
case (X,V, ρ), where X is a smooth projective curve, dim(V ) ≤ n, and ρ|π1(X) is absolutely Lie

irreducible, with det(ρ) = 1.

Here we note that the absolutely Lie irreducible for a representation of G is defined as for any
open subgroup U ⊂ G, the restriction of the representation on U is (algebraically) irreducible.

Proof.Step 1 We first consider the reduction from a normal scheme of dimension n to a curve.

Assume the conjecture for X of dimension strictly smaller than n holds. Since π1(X) is the
quotient of the Galois group Gal(k(X)s/k(X)) of the function field, for any dominant map

X ′ → X of the same dimension, the corresponding π1(X
′
) → π1(X) is open. Note that the

conjecture preserves by taking an open subgroup of π1(X) (which corresponds to a finite étale
covering X), so we may assume X is smooth affine and geometrically connected. Besides, since
the pro-` subgrou 1 + tEndF (V ) is open in GL(V ), we could take an open subgroup such that
ρ factors through the pro-`-quotient of π1(X).

Then by shrinking X if necessary, we may assume there exists an elementary fibration ([SGA4],
XI section 3):

X
f // X ′

g // Y,

where f is an open immersion, g is smooth proper of relative dimension 1, such that X ′ → X
is étale over Y . Moreover, by taking an étale map of Y and base change if necessary, we may
assume X → Y has a section. Then there exists a short exact sequence of pro-`-fundamental
groups ([SGA1], XIII, 4.3 and 4.4)

0 // π`1(Xy, y) // π`1(X,x) // π`1(Y, y) // 0,

where y is a geometric point of Y over x.

From this, by taking the bigger diagram consisting of arithmetic and geometric fundamental
groups, we see it suffices to prove the finiteness for the image of π`1(Y ) and π`1(Xy), which is
true by induction.

Step 2 The second reduction is to reduce the case of normal curves to projective curves. For this, we
consider the completion X ⊂ X ′ for X ′ smooth projective. Then

Then we recall a variant of Drinfeld’s main theorem. We fix Λ to be the ring F[[t]].

Theorem 1.5 (Drinfeld). Assume ρ : π1(X)→ GL2(F((t))) is a two dimensional continuous repre-
sentation with trivial determinant, such that ρ|π1(X) is absolutely irreducible. Then there exists an

eigenform f : GL2(AX)→ Λ such that

Tvf = Tr(ρ(Fv))f ;

Uvf = q−1
v f.

Remark 1.6. The statement is slightly different from the Main theorem in [Dri83]: the coefficient
of the representation here is the field F((t)) of characteristic `, while that in Drinfeld’s paper is a
finite extension of Q`. Besides, the irreduciblility here is stronger than that in [Dri83]. We refer to
[deJ01], section 4 for the adjustment from Drinfeld’s paper to the version we need.
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Next we note that given the condition in the Drinfeld’s theorem 1.5 (especially the requirement
that the determinant of ρ is trivial), eigenvalues of Tv are in fact algebraic:

Fact 1.7 ([deJ01], 4.8). Assume f is an eigenform over Λ with central character uvf = q−1
v f for

each v ∈ X. Then all the eigenvalues tv are algebraic, namely there exists a finite extension E/F
such that all of the tv are contained in E.

Namely the Fact says that when f comes from the representation ρ in the Theorem 1.5, the trace
of Frobenius Frv on the representation is inside F. Granting this, the conjecture for dim(V ) = 2 is
done assuming the following criterion of finiteness:

Proposition 1.8 ([deJ01], 2.8). Under the condition of the conjecture 1.1, the following two are
equivalent:

(i) ρ(π1(X)) is finite.

(ii) For each Frobenius element Fv (well-defined up to conjugacy) of v ∈ X, its characteristic
polynomial under ρ has coefficients in F.

Proof. By the Cheboterav’s density theorem for the fundamental group (reference?), the second
condition implies the characteristic polynomial

Pg(T ) = an(g)Tn + an−1(g)Tn−1 + · · ·+ a0(g)

of any ρ(g) with g ∈ π1(X) has coefficients in F. Then we observe that by the continuity of the ρ,
the function

π1(X)→ F; g 7→ ai(g)

is also continuous, since ai can be given as the trace function of the i-th wedge product of ρ. For
this reason, by the finiteness of F, each ai is locally constant and there exists an open subgroup
H = π1(Y ) ⊂ π1(X) such that ρ(g) has one as their only eigenvalues for g ∈ H.

Now we claim that the image ρ(H) is finite. We first note that the subgroup ρ(H) in GL(V )
is unipotent. So by the general fact about the unipotent subgroup of the GLn, there exists a basis
of V such that ρ(H) are all of the upper triangular (Consider the irreducible component W of ρ|H ,
then the F [H] maps surjectively onto End(W ). But for any h ∈ H, and any

∑
aihi, the trace

Tr((h − 1)(
∑
aihi)) is 0. Thus h − 1 = 0.) Moreover, since F = F((t)) is of characteristic `, any

element in H is nilpotent by a `-power. We note that there exists a decreasing filtration of ρ(H)
by the derived series ρ(H)(i) = closure of [H(i−1), H], such that each factor is nilpotent by `n.
Thus ρ(H) is a successive extension of pro-` nilpotent groups. So to prove the finiteness of the pro-`
unipotent subgroup ρ(H), it suffices to show that ρ(H) is topologically finite generated (thus so are
ρ(H)(i))

The last statement is true: since the image of π1(Y ) = H is pro-`, it factors through the
pro-`-quotient π1(Y )→ π`1(Y ). And by the equality

Hom(π`1(Y ),Z/`Z) = H1(π`1(Y ),Z/`Z) = H1(Yét,Z/`Z),

the result then follows from the finiteness of the étale cohomology.

2 Deformation rings and their structure

In this section, we study the deformation ring for mod-` representations of fundamental groups π1(X)
and π1(X). We will use the Conjecture 1.1 to show the structure theorem for the deformation ring
of π1(X).

We fix O to be the ring of integers in a finite totally ramified extension of the fraction field of
the Witt vector Frac(W (F)). Let C be the category of complete Noetherian local rings R over O
such that R/mR = F.
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Let Γ be a profinite group. Assume ρ0 : Γ → GLn(F) to be a continuous residual repre-
sentation, and ε : Γ → O∗ be a continuous character such that ε ≡ det ρ0 mod mO. Then the
deformation functor is given by the equivalent classes of liftings

Def(Γ, ρ0, ε) : C −→ Set;

R 7−→ {ρR : Γ→ GLn(R) | det ρR = ε; ρR ≡ ρ0 mod mR}/ ∼,

where two liftings ρR ∼ ρ′R if one can be conjugated to another by an element in GLn(R).
Now we state our main theorem.

Theorem 2.1 ([deJ01], 3.5). Let X be a smooth geometrically connected curve over Spec(k) for
k finite of characteristic p 6= `. Let ρ0 : π1(X) → GLn(F) be a continuous representation, and
ε : π1(X)→ O∗ compatible with ρ0. Assuming the following conditions

(i) ` - n;

(ii) ρ0|π1(X) is absolutely irreducible.

(iii) The conjecture holds for X and dim(V ) ≤ n.

Then the functor Def(π1(X), ρ0, ε) is representatble by a finite flat O-algebra R which is a complete
intersection.

The strategy of the proof is to compare the deformation problem for Def(π1(X), ρ0, ε) and
Def(π1(X), ρ0|π1(X), ε|π1(X)). The very first question is the representability of the above two func-

tor. Since both π1(X) and π1(X) are profinite whose pro-` quotient is topologically finitely gener-
ated, and by assumption ρ0|π1(X) and ρ0 are absolutely irreducible, due to the Schlessinger-Mazur

theorem ([Maz89], Section 1.2) both of the functor are representable. We denote by (R, ρ) and
(R, rho) to be the representable pairs for the above two deformation problem, together with univer-
sal representations. Here we note that since ρ|π1(X) is a deformation of ρ0|π1(X) on R ∈ C, by the

universal property of (R, ρ) there exists a morphism

ψ : R −→ R.

The first step is to describe the structure of the ring R, which is relatively easier.

Proposition 2.2. The O-algebra R is isomorphic to O[[x1, . . . , xs]] for some s ∈ N.

Proof. The idea is to study the obstruction space of deformation ring, as in [Maz89], section 1.6. Let
Ad(ρ0|π1(X)) be the adjoint representation of ρ0|π1(X), and di be the dimension of Hi(π1(X), Ad(ρ0|π1(X))).

Then by [Maz89], Proposition 2 in the Section 1.6, R is a power series ring of dimension d1 if d2

equals 0.
We then compute d2 by using the étale cohomology. Since X is a K(π1, 1) for étale cohomology,

we have
Hi(π1(X), Ad(ρ0|π1(X))) = H2(Xet,F),

where F is the locally constant F-étale sheaf associated to the adjoint representation sln(F) with
adjoint action. Since X is a curve, when X is affine, H2 = 0. And if X is projective, by the Poincaré
duality and the observation that F is self-dual, d2 equals to the dimension of

H0(X,F),

which corresponds to the dimension of subvector space of Fn that is invariant under the adjoint
representation ρ0|π1(X). But by assumption ρ0|π1(X) is absolutely irreducible. Hence d2 = 0, and
we get the result.

Here we remark that the Poincaré duality only works for X over k, so we cannot apply the same
method to X.
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Frobenius twist Our next step is to study R with the help of R and the Frobenius twist.
Pick F ∈ π1(X) be a Frobenius element, i.e. a lift of the topological generator of Gal(k/k) to

π1(X). Let h1 be an element in GLn(R) such that h1 ≡ ρ0(F ) mod mR. Define the Frobenius twist
ρF to be the representation of π1(X) over R given by

π1(X) 3 γ 7−→ h−1
1 ρ(FγF−1)h1.

By the choice of h1 and F , ρF is a deformation of ρ0|π1(X), which leads to an endomorphism

Φ : R→ R together with an element h2 ∈ GLn(R) such that

Φ ◦ ρ = ch2 ◦ ρF .

Moreover we could construct its inverse ρF
−1

in the same way. So by the universal property of R
again, the endomorphism Φ is thus an O-linear isomorphism.

We could also define the F-twist of ρ. We then notice that the two representations ψ ◦ ρ|π1(X)

and ψ◦ρF |π1(X) are equivalent by a conjugation, since ρ(FγF−1) can be written as ρ(F )ρ(γ)ρ(F )−1.

So by the universal property of R again we have the equality

ψ ◦ Φ = ψ : R→ R.

This leads to the observation that R→ R factors through R→ R/IΦ, where IΦ is the ideal

IΦ = (r − Φ(r), r ∈ R).

And since Φ is a O-linear ring homomorphism, IΦ is generated by s elements xi − Φ(xi).
In fact, the quotient ring is exactly R:

Proposition 2.3. The map φ : R→ R identifies R as

O[[x1, . . . , xs]]/(x1 − Φ(x1), . . . , xs − Φ(xs)).

Proof. The proof has two steps: we first show that φ is surjective, then construct a deformation of
ρ0 on the quotient R/IΦ, compatible with ρ|π1(X) on R. Granting this, we get a composition

R
ψ // R // R/IΦ,

where the second map is given by the universal property of R. Note that by the compatibility, the
composition is the natural quotient map. Hence R→ R/IΦ is an isomorphism.

For the first assertion about the surjection, by the completeness and the identity of residues, it
suffices to show the surjection:

mR/(m
2
R

+mOR) −→ mR/(m
2
R +mOR).

Then those two are F-vector spaces which are dual to the tangent spaces

H1(π1(X), Ad(ρ0)) −→ H1(π1(X), Ad(ρ0|π1(X)))

that are associated to the two deformation problems ([Maz89], Section 1.2). So we only need to
show the injectivity of the dual map. Then by the inflation-restriction sequence, it is equivalent to
the vanishing of

H1(Gal(k/k),H0(π1(X), Ad(ρ0|π1(X)))).

But by assumption, ρ0|π1(X) is absolutely irreducible. Thus π1(X)-invariance of Ad(ρ0|π1(X)) is
zero, and we get the assertion.

We next construct a representation of π1(X) over R/IΦ. This will be the place where we need
the condition ` - n in the Theorem 2.1. Note first that since the image of F in π1(X)/π1(X) is the
topological generator, it suffices to extend ρ to the Frobenius element F . Recall that
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Proof for the main theorem

At last, we are reaching the proof of the main theorem 2.1.
We first use some results about commutative algebra. By what we have proved, the deformation

ring R is isomorphic to O[[x1, . . . , xs]]/(x1−Φ(x1), . . . , xs−Φ(xs)). This is a complete intersection
if R/πOR is of dimension 0, for (x1−Φ(x1), . . . , xs−Φ(xs), πO) is a sequence of the power series ring
(which is CM local) of dimension s+ 1. In particular, O[[x1, . . . , xs]]/(f1, . . . , fs) has no O-torsion,
which then implies the flatness. And by the Nakayama’s Lemma with the πO-completeness of R, we
see R is finite over O.

So it suffices to show that R/πO is of dimension 0. Suppose not, then there exists an integral
quotient R/πO −→ A of dimension 1, where A is a complete local domain of characteristic `. We
take the integral closure A′ of A, then we get a morphism R/πO → A′ ∼= F′[[t]], whose composition
becomes

R→ F′[[t]].

This leads to a representation of π1(X) over F′[[t]].
Now by the Conjecture 1.1, the image of π1(X) is finite. Thus by the Lemma 2.4 about

finite dimensional algebras below, the restriction to π1(X) factors through GLn(F′), namely the
representation is given by ρ0 ⊗F F′[[t]]. If F′ is exactly F, then by the universal property of R the
induced morphism

R→ F′[[t]]

factors through R → F → F′[[t]], which contradicts to the construction of A and A′. For the
general case where F′ is finite over F, we only need to note that the universal deformation ring
over O′ = O ⊗W (F) W (F′) is exactly R ⊗O O′. And by the same argument we get the composition

R→ R⊗O′ → F′ → F′[[t]]. So we are done.

Lemma 2.4. Let G be a finite group, and k be any field Assume ρ : G→ GLn(k[[t]]) is a deformation
of an absolutely irreducible representation ρ0 : G→ GLn(k). Then ρ is the base change ρ0 ⊗k k[[t]].

Proof. The idea is to look at the finite-dimensional k algebra k[[t]][G] together with the represen-
tation ρ̃ : k[G] → Mn(k). We denote by K to be the field k((t)). Then ρ induces a representation
K[G] → Mn(K). Let m0 be the kernel of the composition k[G] → K[G] → Mn(K). Then by the
basic fact of finite-dimensional algebras, m0 is a maximal bisided ideal such that k[G]/m0 = Mr(D0),
for D0 a skew field over k. Moreover, we have a surjection

D0 ⊗k K −→ K.

But note that the surjection above is splits, while the map of the Brauer group Br(k)→ Br(K)
is injective. In this way, the map D0 ⊗k K → K is isomorphism, and D0 = k such that the
kernel of K[G] → Mn(K) is m0 ⊗k K. And by comparing the dimension, r = n. For that reason,
the representation ρ ⊗ K comes from a representation ρ′0 ⊗k K; in particular by the injection of
k[[t]] → k((t)) = K, ρ is also the base change ρ′0 ⊗k k[[t]]. In this way, since its reduction mod t is
ρ0, we have

ρ′0 = ρ0,

and ρ is exactly ρ0 ⊗k k[[t]].
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