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Abstract

This expository note has two goals. We first introduce the Hochschild homology of a ring,
and study the degeneracy and the non-degeneracy of its HKR spectral sequence following [ABM].
After that, we introduce the Topological Hochschild homology, and give a detailed computation
of the topological Hochschild homology for perfectoid rings and general quasi-regular semi-
perfectoid rings, following [BMS2, Section 6-8].
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Conventions

Depending on the focus of each section, both of the notations π∗ and H∗ appear in this note. We
fix the convention that πi = H−i for i ∈ Z. Under the identification, the homological canonical
truncation τ≤i is the same as the cohomological canonical truncation τ≥−i.

1 HH and its basic properties

The Hochschild homology was invented as a generalization of the differential forms to non-commutative
geometry. In this section, we introduce the Hochschild homology together with its basic properties.

Last edited: April 5, 2021

1



1.1 Conctruction

Let k be a commutative ring. For an associative k-algebra A, we define the Hochschild complex of
A over k to be

HH(A/k) := A⊗A⊗LkAop Aop,

as an algebra object in the derived category D(k) of k-modules.

Remark 1.1.1. When A is commutative, the ring Aop is equal to A itself, and the Hochschild
complex is the self intersection of the diagonal ∆ in the product X × X, for the affine scheme
X = Spec(A).

The Hochschild homology can be written more explicitly as below. Recall the bar complex of
the left A⊗Lk Aop algebra A is defined as

B•(A/k) := A⊗Lk A A⊗Lk A⊗Lk A
b′oo · · · ,b′oo

where the map b′ is given by (in the case when A is flat over k)

a0 ⊗ · · · an 7−→
n∑
i=0

(−1)ia0 ⊗ · · · ⊗ ai−1ai ⊗ · · · ⊗ an.

The bar complex has a natural A⊗Lk Aop-linear structure by acting A (resp. Aop) on the far left (resp.
far right) component from the left (resp. right). It is acyclic except at the degree 0 where the 0-th
homotopy group is A. So bar complex B•(A/k) gives a flat resolution of A as a left A⊗Lk Aop-algebra,
and we get a natural quasi-isomorphism

A⊗A⊗LkAop B•(A/k) −→ HH(A/k).

By writing down the tensor product explicitly, we obtain a model for the Hochschild homology as
below:

HH(A/k) ∼=
(
A A⊗Lk A

boo A⊗Lk A⊗Lk A
boo · · ·oo

)
where the map b is given by (in the case when A is flat over k)

b(a0⊗· · · an) = a0a1⊗· · ·⊗an−a0⊗a1a2⊗· · ·⊗an+· · ·+(−1)na0⊗· · ·⊗an−1an+(−1)n+1ana0⊗· · ·⊗an−1.

Moreover, when A is commutative, the derived tensor product A⊗Lk A above can be represented by
the non-derived tensor product P• ⊗k P• for a simplicial flat k-algebra resolution P• → A.

From the construction above, the homotopy groups of HH(A/k) of lower degrees are quite
computatble.

Example 1.1.2. Let A be a flat k-algebra.

(i) The 0-th Hochschild homology π0HH(A/k) is A/[A,A].

(ii) Assume A is commutative. Then we have π1HH(A/k) is naturally isomorphic to the Kähler
differential Ω1

A/k, via the map

π1HH(A/k) −→ Ω1
A/k; a⊗ b 7−→ a · db.

1.2 Properties

We then introduce some basic properties of the Hochschild homology.

Proposition 1.2.1 (Étale base change). Let A be a commutative k-algebra, and let A′ be an étale
A-algebra. Then the following canonical map is a quasi-isomorphism

HH(A/k)⊗A A′ −→ HH(A′/k).
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Proposition 1.2.2 (Transitivity). Let A → B be a map of k-algebra such that A is commutative.
Then the functoriality of the Hochschild homology induces the following natural quasi-isomorphism

HH(B/k)⊗LHH(A/k) A −→ HH(B/A).

In the case when A is commutative, the Hochschild homology encodes the information of the
Kähler differentials. More precisely, we have the following result.

Theorem 1.2.3 (Hockschild-Kostant-Rosenberg). Let A be a commutative k-algebra. Then the
Hochschild homology HH(A/k) admits a natural complete descending N-indexed filtration whose i-th
graded pieces is LiA/k[i], for i ≥ 0. In particular, when A/k is smooth, we get a natural isomorphism

ΩiA/k
∼= HHi(A/k), i ≥ 0.

Here LiA/k = L∧i LA/k is the i-th cotangent complex for A/k, which is a derived generalization
of the i-th Kähler differential to all algebras over k, not necessary smooth.

The filtration above, which is the called the HKR filtration, is defined as follows. Pick any
simplicial k-polynomials resolution P• of A. Then the Postnikov filtration on each HH(Pn/k) (defined
by the canonical truncation τ≤i on the Hochschild homology HH(Pn/k)) induces a filtration on
HH(A/k), whose i-th graded pieces is quasi-isomorphic to the complex HHi(P•/k)[i]. It can be
showed that the filtration is independent of the choice of P•.

1

1.3 The action by sphere

As seen above, the Hochschild homology serves as a non-commutative analogue of Kähler differential
forms of all degrees in the non-commutative world. It is then natural to ask if we cam also define a
version of the differential operator, generalizing the natural differential operator d : ΩiA/k → Ωi+1

A/k

for a commutative k-algebra A. In fact, there exists such a differential operator, coming from a
natural operator by the sphere.

More precisely, the Hochschild complex is equipped with a natural S1-action. This can be seen
as follows: As an object in the symmetric monoidal ∞-category CAlg(D(k)), the derived tensor
product A⊗L

A⊗LkAop A
op can be regarded as the tensor product

A⊗Lk colim


∗ t ∗ //

��

∗

∗


Note that as a point ∗ is quasi-isomorphic to a line, the colimit of the diagram ∗ t ∗ //

��

∗

∗

is

nothing but identifying the two ends of a line together, which is exactly S1. So this gives the
identification

HH(A/k) := A⊗LA⊗LkAop A
op ∼= A⊗Lk S1.

Here the tensor product A ⊗Lk S1 is the object in CAlg(D(k)) satisfying for any B ∈ CAlg(D(k)),
we have a weak equivalence of mapping spaces (Kan complexes)

MapCAlg(D(k))(A⊗k S1, B) ∼= MapSpace(S
1,MapCAlg(D(k))(A,B)).

1In a slightly fancier language, we can first define the Postnikov filtration on HH(P/k) for smooth algebras P
over k. Then the HKR filtration is the left Kan extension of this filtration from smooth k-algebras to all (simplicial)
k-algebras.
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As S1 is a topological group, the action of S1 on itself induces an action of S1 on X = HH(A/k) ∼=
A⊗Lk S1. Namely we have a map of ring object in the infinity category Space of Kan complexes

S1 −→ MapCAlg(D(k))(X,X).

Note that since the right side above is a commutative ring object in the Space, the adjoint map to
the forgetful functor from k-algebras to sets induces a map of commutative ring objects

C∗(S
1, k) −→ MapCAlg(D(k))(X,X),

where the left side is the k-linear singular complexes of S1. Note that since S1 is connective with
π1(S1) = Z, and πi(S

1) = 0 for i ≥ 2, the chain complex C∗(S
1, k) is quasi-isomorphic to the

ring k[ε]/ε2 in CAlg(D(k)), where ε is of homological degree 1. So explicitly the S1-action on
X = HH(A/k) is equivalent to a map ε : X → X[1] of complexes, such that ε2 = 0.

The operator ε on the Hochschild homology is called the Connes operator. It turned out that
this is exactly the relative differential operator:

Proposition 1.3.1 ([Mor19], Remark 2.12). Let A/k be a smooth commutative algebra. Then the
S1-action on HH(A/k) induces a commutative differential algebra structure on the homology ring
π∗HH(A/k). Moreover, the universal property of the de Rham complex induces the following natural
commutative diagram with vertical maps being isomorphisms:

ΩnA/k
d //

��

Ωn+1
A/k

��
πnHH(A/k)

ε // πn+1HH(A/k).

Remark 1.3.2. Here we note that the tensor product A⊗Lk S1 of an object A ∈ CAlg(D(k)) with a
topological space S1 above can be defined in a very general framework, where we can replace D(k)
by any symmetric monoidal presentable ∞-category C and S1 by any topological space.

2 (Non)degeneracy of HKR filtration

Recall in the last section that there exists a natural filtration on HH(A/k) to all commutative
algebras A over k, defined as extending the Postnikov filtration of HH(P/k) for smooth k-algebras
P . This induces the HKR spectral sequence as below

Es,t2 = Hs(L ∧t LA/k) =⇒ Hs+t(HH(A/k)).

A natural question is when this spectral sequence degenerates.

2.1 General results

Degeneracy In the characteristic zero, the spectral sequence degenerates canonically in the de-
rived category. Precisely, we have the following:

Proposition 2.1.1. Let k be a field of characteristic zero. Then for any k-algebra A, there exists
a canonical quasi-isomorphism between the Hochschild homology HH(A/k) and the derived wedge
algebras ⊕

i∈N
Symi

A(Ω1
A/k[1]) ∼=

⊕
i∈N

L ∧i LA/k[i].

In particular, the HKR spectral sequence for HH(A/k) degenerates.

The idea of the proof is to use the S1-action and introduce the Adams operator on HH(A/k),
which induces a decomposition of the Hochschild homology into different eigenspaces in a canonical
way.
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Proof. We first assume A is smooth over k.
Recall that the Hochschild homology HH(A/k) is equivalent to the tensor product A ⊗ S1,

that comes with a natural action by the circle S1. We consider the endomorphism S1 → S1 given
by z 7→ z2. This induces an endomorphism ψ2 : HH(A/k) → HH(A/k), called Adams operator.
Moreover, this allows us to regard HH(A/k) to be a natural object in the (∞) category of connective
commutative ring in D(k[k]), where t acts on HH by the Adams operator.

Then we notice that the first Hochschild homology π1HH(A/k) is generated by H1(S1,Z) under
the following map

π0HH(A/k)⊗k H1(S1,Z) −→ π1HH(A/k),

where the generator of H1(S1,Z) is the k-derivative operator. Furthermore, by applying the Adams
operator onto π1HH(A/k), we see the first Hochschild homology is the eigenspace of value 2. By the
multiplicativity, since π∗HH(A/k) is generated by π1HH(A/k), we see πiHH(A/k) is the eigenspace
of ψ2 of eigenvalue 2i.

At last, notice the assumption that k is of characteristic zero. In this way, since πiHH(A/k) is
supported over t− 2i in Spec(k[t]) = A1

k, we get

HH(A/k) =
⊕
i∈N

πiHH(A/k)[i].

So the results follows by a standard left Kan extension argument to the general case.

Remark 2.1.2. The proof above also implies that when k is a field of characteristic p > 0, either
assume A is smooth of dimension ≤ p− 1, or only consider the truncated object HH(A/k)/FiliHKR,
we will still get the decomposition (notice that we may change 2 to some other prime numbers if
necessary).

Nondegeneracy In the positive characteristic case, the degeneracy fails in general. This was first
observed by Antieau-Bhatt-Mathew in [ABM]. Their main result is the following.

Theorem 2.1.3 ([ABM], Theorem 1.1). Let k be a perfect field of characteristic p > 0. Then there
exists a smooth projective variety X of dimension 2p over k such that the HKR spectral sequence of
HH(X/k) does not degenerate.

We now follow [ABM] and explain how to construct such an example.
We assume k to be a field of characteristic p > 2 throughout the rest of this subsection. To

simplify the notation, for a scheme/syntomic stack X over k, we denote by LiX to be the i-th derived
wedge product L∧i LX/k of its cotangent complex over k. Following [ABM], we use E(x) to denote
the k-exterior algebra generated by the variable x, and P (y) the k-polynomial generated by the
variable y.

The idea is essentially about studying the Hodge cohomology and Hochschild cohomology of
certain stacks in positive characteristic. It turns out that even for the classifying stack Bµp and
Bαp, their HKR spectral sequences already do not degenerate. In this way, by a technique of
approximating the stack by smooth projective varieties, we could eventually get examples in the
scheme case.

Remark 2.1.4 (Non-degeneracy for Bµp). The non-degeneracy of Hochschild homology already
appears when we consider the classyfying stack Bµp.

On the one hand, pointed to the author by Bhatt, the Hochschild homology HH(X /k) of a
syntomic stack X admits a natural map from the Hochschild homology HH(D(X /k) of the derived
(∞)-category of quasi-coherent sheaves over X , which exhibits HH(X /k) as the Atiyah-Sagal com-
pletion of HH(D(X )/k). In the case of schemes X , the two Hochschild homology coincide. When
X = BGm or Bµp, as the categories of quasi-coherent sheaves over BGm and Bµp are equivalent to
the categories of Z-graded and Z/p-graded k-vector spaces, their Hochschild homology are the same
as the Hochschild homology of disjoint union of Z and p copies of single points separately, which are
thus living in the cohomological degree zero.
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On the other hand, by a computation similar to the Theorem 2.2.1.(i) below using the co-Lie
complex, the Hodge-cohomology of Bµp has higher terms. So we get the non-degeneracy for Bµp,
assuming the above fact about the Hochschild homology of (stable ∞) categories.

2.2 Cohomology of Bαp

We first give the computational results for the Hodge cohomology, de Rham cohomology and
Hochschild cohomology of Bαp.

To compute cohomology of Bαp, we will need to make use of the canonical action by Gm. Recall
that there exists a natural action of Gm on the affine line A1 = Spec(k[t]) with t being of weight one,
which leaves the subgroup αp invariant and gives an action of Gm on αp. This induces an action on
Bαp and its Hodge, de Rham and Hochschild cohomology. In particular, by the functoriality, the
differential maps in various spectral sequences of Bαp we consider will preserve the weight of the
Gm-action, and we get a natural grading on cohomology of Bαp.

Now we state the calculation for Bαp as below.

Theorem 2.2.1 ([ABM], 4.10-4.13). (i) The Hodge cohomology ring of Bαp is isomorphic to the
ring E(α)⊗P (β)⊗E(u)⊗P (v), where α ∈ H1(Bαp,O), β ∈ H2(Bαp,O), u ∈ H0(Bαp,LBαp),
and v ∈ H1(Bαp,LBαp). Moreover, the weights of α, β, u, v are 1, p, p, 1 separately.

(ii) The de Rham cohomology ring of Bαp is isomorphic to E(u′) ⊗ P (β′), where α′ is of coho-
mological degree 1 and weight p, and β′ is of degree 2 and weight p. In particular, both the
Hodge-de Rham and the conjugate spectral sequence do not degenerate.

(iii) The Hochschild cohomology ring of Bαp is isomorphic to E(u) ⊗ P (β) ⊗ k[v]/vp, where α is
of cohomological degree 1 weight 1, β of degree 2 and weight p, u is of degree 0 and weight 1.
In particular, the HKR spectral sequence of Bαp does not degenerate.

Computation

(i) We first consider how to compute H∗(Bαp,O).

For a finite flat commutative group scheme G, there exists a natural equivalence of the cate-
gories

Coh(BG) ∼= coModfk(OG) = (Modfk(OG∨))op.

Moreover, the structure sheaf OBαp under this equivalence is transformed into the trivial
representation of G over k. When G = αp, its Cartier dual is equal to itself, so the derived
global section of OBαp is computed by the extension group

H∗(Bαp,O) = Ext∗Oα∨p
(k, k) = Ext∗k[t]/tp(k, k).

In this way, by the standard resolution of the residue field k over k[t]/tp, we get the isomorphism
of graded rings

H∗(Bαp,O) ∼= E(α)⊗ P (β),

where α is of cohomological degree 1 and weight 1, while β is of cohomological degree 2 and
weight p.

To compute the Hodge cohomology, we use a result of Totaro to relate it to the cohomology
of co-Lie complex. Here we recall that the co-Lie complex coLie(G) ∈ D(Repk(G)) = D(BG)
for a k-group scheme G is defined as the G-representation i∗LG, where i : Spec(k)→ G is the
identity map for the group scheme G. When G = αp, by computing the cotangent complex for
the Gm-equivariant triple αp → A1 → Spec(k), the co-Lie complex of αp is then isomorphic to
the following k-complex

coLie(αp) = i∗( (tp)/(t2p)
d // k[t]/tp · dt ) ∼= OBαpu[1]

⊕
OBαpv[0].
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Here u is of cohomological degree (−1) and weight p, and v is of cohomological degree 0 and
weight 1. And the splitting of coLie(αp) in the derived category follows from the observation
that the obstruction class of it, which corresponds to an element in Ext2(OBαp ,OBαp) of
weight p− 1, does not exist by the previous computation.

Now we are able to compute the Hodge cohomology of a classifying stack. The technique we
use is the following general fact by Totaro:

Fact 2.2.2. [Tot18, Theorem 3.1] Let G be a flat affine group scheme over k. Then there
exists a natural multiplicative graded quasi-isomorphism in the derived category D(k)

RΓ(BG,
⊕
i∈N

LiBG) ∼= RΓ(G,
⊕
i∈N

Symi(coLie(G))[−i]).

Here the right site is the cohomology of G-representation.

When G = αp, by the previous computation, the symmetric algebra on the right side above
can be written as⊕

i∈N
Symi(coLie(αp))[−i] ∼= E(u)⊗ P (v)⊗k OBαp ∈ D(Bαp).

In particular, applying the above fact to G = αp, we get

H∗(Bαp,L∗Bαp) ∼= H∗(Bαp,OBαp)⊗k ∼= E(u)⊗ P (v)

∼= E(α)⊗ P (β)⊗ E(u)⊗ P (v).

So we are done.

(ii) We then consider the de Rham cohomology.

Recall the Hodge filtration is a N-indexed, complete descending filtration on the derived de
Rham complex, which induces the following E1-spectral sequence

Es,t1 = Ht(Bαp,LsBαp) =⇒ Hs+t
dR (Bαp/k).

There exists another N-indexed, increasing exhaustive filtration on the derived de Rham com-
plex, which exists only for positive characteristic and is called the conjugate filtration, which
induces an E2-spectral sequence

Es,t2 = Hs(Bα(1)
p ,Lt

Bα
(1)
p

) =⇒ Hs+t
dR (Bαp/k).

Here Bα
(1)
p is the Frobenius twist of Bαp, and is abstractly (and k-linearly through the Frobe-

nius) isomorphic to Bαp. In particular, by the finite dimensionality of the Hodge cohomology,
the degeneracy of one of the above spectral sequences would imply the another.

Now as Bα
(1)
p is twisted by the Frobenius, the Gm action on the abutment of the conjugate

spectral sequence all has weights divisible by p.2 In particular, the conjugate spectral sequence
implies that the weights of de Rham cohomology of Bαp are all p-divisible. On the other hand,
in the Hodge-de Rham spectral sequence, both the cohomological classes α and v are of weight
1. So by the Gm-equivariance of the Hodge-de Rham spectral sequence, after computing a

2To see this, we need to notice that the only possible Gm-action on X(1) for X = Å1 that is compatible with the
Cartier isomorphism is the p-th power action, which can be seen from the following diagram of Spec(k)-schemes

X(1) × Gm
// X(1)

X × Gm

(c,id)

OO

// X.

c

OO
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finite amount of images of v and α under differential maps, we see α has to map onto (up to
a unit) the element v. Similarly, the classes β and u will be kept. As an upshot, we get

H∗dR(Bαp/k) ∼= P (β′)⊗ E(u′),

where β′ is of cohomological degree 1 and weight p, and u′ is of degree 2 and weight p.

(iii) At last, we compute the Hochschild homology.

We first notice that by the construction, there exists a natural map from RΓ(Bαp,O) to
RΓ(Bαp,HH) that admits a section by choosing a projection from the sphere S1 to a point.3

In particular, the class α and β coming from the cohomology of the structure sheaf OBαp
will leave invariant. So the cohomology algebra H∗(HH(Bαp/k)) is a graded algebra over
H∗(Bαp,O) = E(α)⊗ P (β).

It is left to consider the class u and v. We first notice that as the Frobenius morphism of αp
factors though Spec(k), the induced endomorphism on the Hochschild homology kills both u
and v. On the other hand, pointed by [ABM, Page 10, footnote], the induced morphism on
the zero-th Hochschild homology H0(HH(Bαp/k)) coincides with the p-th power map. This
implies that the element vp, which is in the abutment Ep,−p2 and is of weight p, will be killed in
the Hochschild homology. Note that by looking at the weights of lower terms, the only weight
p elements that could map onto the element vp in the spectral sequence is u (up to a unit)
via the differential dp. In this way, in the Ep+1-page of the HKR spectral sequence, the only
possiblely alive elements are permanent sub-algebra E(α)⊗P (β) together with c, c2, . . . , cp−1,
which by degree reason will leave invariant. So we are done.

2.3 Approximations by schemes

In this subsection, we introduce the technique of approximating the classifying stack by schemes. We
will use this to finish the proof of the Theorem 2.1.3, showing the existence of schematic examples
where HKR spectral sequences fails to degenerate.

We first introduce the notion of the Hodge d-equivalence.

Definition 2.3.1. Let X → Y be a map of syntomic stacks over k. We call it is a Hodge d-
equivalence if the cofiber for the induced morphism RΓ(Y ,LsY ) → RΓ(X ,LsX ) lives in D(k)≥d−s,
for each s ∈ N.

Note that by applying the conjugate spectral sequence, the Hodge d-equivalence implies that
the cofiber of RΓdR(Y )→ RΓdR(X ) lives in D(k)≥d. (Here you might be wondering why don’t we
use the Hodge-de Rham spectral sequence instead, which is left as an exercise.)

The condition is satisfied for example for a complete intersection of in Pn, and is equivariant
under the group quotient. Precisely we have the following results.

Proposition 2.3.2 ([ABM], Proposition 5.3). Let X be a d-dimensional complete intersection in
the projective space Pnk . Then X → Pnk is a Hodge d-equivalence.

Here we note that the Proposition 2.3.2 should be a singular generalization of the classical weak
Lefschetz theorem, proved for example in SGA7.

Proposition 2.3.3 ([ABM], Proposition 5.10). Let X → Y be a Hodge d-equivalence of syntomic
k-schemes that is equivariant under an action by an affine k-group G of finite type. Then the induced
quotient map [X /G]→ [Y /G] is also a Hodge d-equivalence.

Assuming the above, we can give a proof for the Theorem 2.1.3.

Theorem 2.3.4. Let G be an affine k-group scheme which is either finite or geometrically reductive.
Then for any d ≥ 0, there exists a smooth projective k-schemes X of dimension d together with a map
X → BG, such that the induced natural map Hs(BG,LtBG)→ Hs(X,LtX) is injective for s+ t ≤ d.

3This could also be seen from the definition HH(A/k) = A ⊗L

A⊗kA
A.
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Proof. We first assume G is finite. Then by a Bertini type result, we can find a finite dimensional
representation V of G together with a d-dimensional complete intersection X ⊂ P(V ), such that X
is G-stable and G acts freely on X, with the quotient X/G = [X/G] being smooth and projective.
This provides us with the following diagram

X/G
f // [P(V )/G]

g

��
BG,

where f is a Hodge d-equivalence by Proposition 2.3.2 and Proposition 2.3.3, and g : [P(V )/G]→ BG
is a projective bundle morphism that induces an injection on Hodge cohomology. So we are done in
this case.

We then consider the case of geometrically reductive group. (Where do we need “geometri-
cally”?) Denote by Gr to be the Frobenius kernel of G. Then the tower of closed immersions {Gr}
produces the following chain of co-Lie complexes

coLie(G) −→ · · · −→ coLie(Gr) −→ coLie(Gr−1) −→ · · · −→ coLie(G1).

By the assumption of the geometric reductiveness ofG, each transition map coLie(Gr)→ coLie(Gr−1)
is an isomorphisms on its zero-th cohomology and is zero on its (−1)-th cohomology. So for each i,
we get the quasi-isomorphisms

R limRΓ(BGr,SymicoLie(Gr)) ∼= R limRΓ(BGr,H
0(SymicoLie(Gr))) ∼= R limRΓ(BGr,SymicoLie(G)).

At last, to finish the proof of this case, we recall the following general fact about finite dimen-
sional representation of G and its Frobenius kernels.

Fact 2.3.5. [Jan87, Corollary II4.12] Let G be a reductive group over a perfect field k of positive
characteristic, and let Gr be its r-th Frobenius kernel. Then for a finite dimensional representation
V of G over k, we have

Hi(G,V ) ∼= lim←−
r

Hi(Gr, V ), i ∈ N.

In this way, by the finite dimensionality of Hi(G,SymicoLie(G)) and Hi(Gr,SymicoLie(G)), we
get

RΓ(BG, SymicoLie(G)) ∼= limRΓ(BGr,SymicoLie(Gr)).

Note that by the Fact 2.2.2 we have

Hs(BG,LtBG) ∼= lim←−
r

Hs(BGr,LtBGr ).

Hence the result reduces to the case of finite group schemes.

Proof of Theorem 2.1.3. We apply the Theorem 2.3.4 toG = αp and d = 2p, and let Y = X/G be the
quotient scheme. So the result follows from the injectivity of Hodge-cohomology Hs(Bαp,LtBαp)→
Hs(Y,LtY ) for s + t ≤ 2p, and the observation that the class v ∈ H1(Bαp,LpBαp) is the image of α

under the differential dp : H0(Bαp,LBαp)→ Hp(Bαp,LpBαp). So we are done.

3 THH and its basic properties

Now we introduce the topological Hochschild homology for ring spectra, generalizing the Hochschild
homology for rings.
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3.1 Construction

Recall that a (connective) spectrum X = X• is a sequence of spaces (Kan complexes) indexed by
N, together with maps εn : Xn → ΩXn+1 from Xn to the loop space of Xn+1, such that each εn is
a weak equivalence. The collection of spectra Sp forms an infinity category. Let Sp be the infinity
category of spectra, and let Alg(Sp) (resp. CAlg(Sp)) be the monoidal (resp. symmetric monoidal)
infinity category of (resp. commutative) ring spectra, or the E1 (resp. E∞) algebras in Sp. Then
for a map of objects k → A in Alg(Sp), we can define the Hochschild homology of spectra to be

HH(A/k) := | A A⊗k Aoo oo A⊗k A⊗k Aoo oo
oo · · · | .

When k is the sphere spectrum S (the unit object in Alg(Sp)), we have

HH(A/S) := | A A⊗S Aoooo A⊗S A⊗S Aoooo
oo · · · | .

In this case, we call HH(A/S) the topological Hochschild spectrum of A, and denote it by THH(A).
Here we note that similar to the case of the Hochschild complex, the THH(A) can be defined

as the product
A⊗S S

1,

where the object A⊗S S
1 satisfies the required adjunction condition of mapping spaces:

MapCAlg(Sp)(A⊗S S
1, B) ∼= MapSpace(S

1,MapCAlg(Sp)(A,B)),

where B is an E∞-ring spectrum. In particular, the THH(A) is equipped with a natural S1-action.
Moreover, the topolocical Hochschild spectrum is connective, namely it has no cohomology of positive
degrees.

Example 3.1.1. Let k be an ordinary commutative ring, and let A be a k-algebra. We abuse A
and k to denote the Eilenberg-Maclane spectrum of A and k separately, which comes with a natural
structure of ring spectra. Then the Hochschild spectrum of A/k is the quasi-isomorphic to the
Eilenberg-Maclane spectrum of the Hochschild complex of A/k.

3.2 Relation to HH

Recall that the sphere spectrum S is connective such that π0(S) is the ring of integers Z. This
provides us with a map of commutative ring spectra S→ Z (where the latter is the Eilenberg-Maclane
spectrum of Z), together with a natural restriction (forgetful) functor from monoidal ∞-category
of Z-algebras to that of S-algebras. Here the restriction functor can be extended to the symmetric
monoidal ∞-category of commutative ring objects in the derived infinity category D(Z) and D(S).
In particular, for any ordinary ring A, the restriction map allows us to regard it as a S-algebra and
compute the topological Hochschild complex THH(A) = HH(A/S). Besides, the functoriality for
S→ Z induces a map

THH(A) −→ HH(A/Z).

In fact, the Proposition 1.2.2 of transitivity can be extended to the ring spectra, and we have the
following quasi-isomorphism

THH(A)⊗THH(Z) Z −→ HH(A/Z).

Here we note that by taking the p-completion of spectra, we can get a p-adic completed version of
the base change formula.4

We can then take the homology to get the map αn : THHn(A) −→ HHn(A/Z) for n ∈ N. Then
we have the following two basic facts about their homologies:

4We want to mention that though the Hochschild homology HH(A/Z) can be regraded as either an E∞-spectrum,
or a commutative ring object in the derived ∞-category of abelian groups, the p-adic completions in those two ∞-
categories are compatible. This can be seen by the given tensor product formula and the following commutative
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(i) The map αn is an isomorphism for n ≤ 2.

(ii) For each αn, its kernel and the cokernel are killed by integers that are depending on n.

Here the observations is induced from the following fact of the stable homotopy groups of spheres:

Fact 3.2.1. The homotopy groups of sphere spectrum S are given by

πn(S) =


0, n < 0;

Z, n = 0;

n− th stable homotopy group of spheres, n > 0.

In particular, πn(S) are torsion for n ≥ 1.

Remark 3.2.2. The philosophy of considering the restriction from Z to S has more general ana-
logues: the inclusion R → C allows us to give a complex manifold the complex strucutre, and the
inclusion Q→ K for a finite Galois extension K/Q gives us the Galois structure.

4 THH and its brothers of perfectoid ring

In this section, we compute the p-completed topological Hochschild homology of a perfectoid ring,
following the Section 6 of [BMS2]. The main idea is to use the computation of THH(Fp) by Bökstedt
and the formal properties of THH to deduce the general cases.

4.1 THH of a perfectoid ring

We first compute the p-completed topological Hochschild homology THH(R;Zp) of a perfectoid ring
R.

For a ring R, we denote by THH(R;Zp) and HH(R;Zp) to be the p-completion of THH(R) and
HH(R) separately, regarded as E∞-rings.

The first main result is the following.

Theorem 4.1.1 (Theorem 6.1, [BMS2]). Let R be a perfectoid ring. Then the graded algebra
π∗THH(R;Zp) is isomorphic to a polynomial ring R[u] over R, where u ∈ π2THH(R;Zp) ∼= π2HH(R;Zp) ∼=
ker(θ)/ ker(θ)2 is a generator of degree 2 over R.

Proof.

Step 1 We first notice that the p-completed Hochschild homology of a perfectoid ring R is naturally
described as follows

πiHH(R;Zp) ∼=

{
R, 2|i ≥ 0;

0, else.
.

To see this, we recall from the HKR filtration in the Theorem 1.2.3 that HH(R;Zp) admits
a decreasing N-filtration such that i-th graded piece is quasi-isomorphic to the derived p-
completion of the (L ∧i LR/Z)[i]. To compute this cotangent complex, we use the natural
triple

Z −→ Ainf(R)→ R,

diagram

Sp
p−completion //

⊗THH(Z)Z

��

Sp∧p

⊗THH(Z;Zp)Zp

��
D(Z)

p−completion
// Dcomp(Zp)

.
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where the latter is the map θ that is a complete intersection with ker(θ)/ ker(θ)2 generated by
an element u. The ring Ainf(R)/p is perfect, so we get

(L ∧i LR/Z)∧ ∼= L ∧i (R[1]) ∼= R[i],

thus the i-th graded piece of HH(R;Zp) is isomorphic to R[2i].

We want to warn the reader that though each homotopy group of HH(R;Zp) looks identical
to that of THH(R;Zp) (which we will prove soon), the essential difference of them is the ring
structure of HH(R;Zp) and THH(R;Zp): the latter is a polynomial ring, while the first one is
divided algebra over R.5

Step 2 Next thing we show is the base change formula. Namely, for a map of perfectoid rings R→ R′,
there exists a natural quasi-isomorphism

THH(R;Zp)⊗LR R′ −→ THH(R′;Zp).

To show this, we consider the base change −⊗LTHH(Z) Z. After applying this functor, we get

HH(R;Zp)⊗LR R′ −→ HH(R′;Zp),

which is a quasi-isomorphism by the Step 1. Moreover, by induction and the fact that
πiTHH(Z) is finite abelian, we can show that the truncated map below is a quasi-isomorphism

(THH(R;Zp)⊗LR R′)⊗THH(Z) τ≤nTHH(Z) −→ THH(R′;Zp)⊗THH(Z) τ≤nTHH(Z), ∀n ∈ N.

The rest then follows from the equality

THH(R;Zp)⊗LR R′ = lim
n
τ≤n(THH(R;Zp)⊗LR R′)

∼= lim
n

(
(THH(R;Zp)⊗LR R′)⊗THH(Z) τ≤nTHH(Z)

)
∼= lim

n
(THH(R′;Zp)⊗THH(Z) τ≤nTHH(Z))

∼= lim
n
τ≤n(THH(R′;Zp)⊗THH(Z) THH(Z))

= THH(R′;Zp)⊗THH(Z) THH(Z).

The only non-trivial fact we are going to need is the following, which was due to Bökstedt
[Bök85]:

Fact 4.1.2. The graded algebra π∗THH(Fp) is isomorphic to the polynomial ring of one
variable in degree 2 over Fp.

This together with the base change formula implies that for any perfect algebra R in charac-
teristic p, the natural map Fp → R induces the natural quasi-isomorphism

THH(R;Zp) = THH(Fp;Zp)⊗LFp R ∼= R[u].

Step 3 To prepare for the case where R is of mixed characteristic, we want to show that THH(R;Zp)
is pseudo-coherent (i.e. it is quasi-isomorphic to a bounded to the right complex of finite free
R-modules).

To see this, we use the specialization from THH to HH (Paragraph 3.2)

THH(R;Zp)⊗LTHH(Z) Z ∼= HH(R;Zp).

5By a result of Illusie (cf. [Ill72]), for a flat R-module M , there exists an isomorphism of graded rings

π∗L ∧∗R (M [1]) ∼= Γ∗RM.
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From the Step 1, we know that HH(R;Zp) has no negative homology. Moreover, as shown
in the Lemma 2.5 in [BMS2], each πiTHH(Z) is a finite group. This together with the Tor
spectral sequence shows that each THH(R;Zp) ⊗THH(Z) τ≤nTHH(Z) is pseudo-coherent by
induction. So the claim follows by taking the limit of the following equality

τ≤nTHH(R;Zp) ∼= THH(R;Zp)⊗THH(Z) τ≤nTHH(Z).

Here the equality follows from the observation that the fiber THH(R;Zp)⊗THH(Z) τ>nTHH(Z)
of the map above is the homotopical twist by degree n of the tensor product of two connective
THH(Z)-modules (which is also connective). Note that the pseudo-coherence of THH(R;Zp)
implies that each homotopy group of it is a finitely generated R-module.

Step 4 Now we are ready to show the quasi-isomorphism for the general case, where R is of mixed
characteristic. We prove this by induction on τ≤nTHH(R;Zp). Notice that as τ≤2THH =
τ≤2HH, the case for n = 2 follows from the computation in the Step 1.

Assume the isomorphism τ≤nTHH(R;Zp) ∼= τ≤nR[u]. By the pseudo-coherence of THH(R;Zp),
the n + 1-th homotopy of THH(R;Zp) is a finitely generated R-module, which we denote by
M . By the multiplicativity, we have a natural map of graded rings

τ≤n+1R[u] −→ τ≤n+1THH(R;Zp)

which is an isomorphism on the quotient ring of truncation τ≤n. This induces a natural map
of R-modules

M ′ :=

{
R · un+1

2 , 2|n+ 1;

0, else.
−→M,

Here the image of M ′ in M is the natural map, where the existence of ui in the homotopy
π2iTHH(R;Zp) follows from the ring property of π∗THH(R;Zp). So to finish the induction
process, it suffices to show that the map of R-modules M ′ →M is an isomorphism.

To do this, we consider the two specializations: over p and away from p. As p is in the radical
ideal of the ring R, away from p we have

πn+1THH(R;Zp)⊗Q = πn+1HH(R;Zp)⊗Q ∼= R⊗Q,

where we use the fact that Q = THH(Z)⊗Z Q in the Paragraph 3.2.

For the locus over p, consider the surjection R → R := lim−→x 7→xp R/pR, where the ring R is a
perfect algebra in characteristic p. Note that by the induction hypothesis and the Tor spectral
sequence of E∞-rings (cf. [DAGIII] 4.2.13), we natural map below is a quasi-isomorphism

M ⊗R R = πn+1THH(R;Zp)⊗R R −→ πn+1THH(R;Zp).

Here the induction is used to show the vanishing of higher Tor-groups in the spectral sequence,
as each τjTHH(R;Zp) is free over R for j ≤ n. So we can base change the map M ′ → M
along R→ R, then M ′⊗RR→M ⊗RR is an isomorphism by the base change formula (along
Fp → R) in the Step 2:

M ′ ⊗R // M ⊗R ∼= πn+1THH(R;Zp)

πn+1THH(Fp) = Fp · u
n+1
2

ii OO

Here the above is the case when 2|n+ 1; for the case when 2 - n+ 1 both sides above are zero
so the equality follows trivially.

13



When 2 - n + 1, as M ⊗ R is zero, by the finitely generatedness of M and the Nakayama’s
lemma (as the kernel of R → R is in the radical ideal of R), we know M is also zero. When
2|n+ 1, the map

M ′ →M

is surjective, which follows again from the Nakayama’s lemma. As M ′ is free of rank one over
R, to show the injectivity, it suffices to show that M ⊗ κ is of dimension at least one for any
point κ of Spec(R) over p. But note that the subset of points of Spec(R) that are lying over
p is exactly Spec(R), where the base change M ⊗R R is isomorphic to R. So we are done.

4.2 TC− and TP of a perfectoid ring

We then compute the (topological) negative cyclic homology and periodic homology of a perfectoid
ring R.

As we mentioned in the last subsection, the topological Hochschild homology THH(A) and its p-
completion THH(A;Zp) admits a S1-action. This allows us to define the homotopical (co)invariants
and the Tate construction of THH(A) under S1, namely:

TC−(A) = THH(A)hS
1

, TP(A) = THH(A)tS
1

:= cofib(Nm : THH(A)hS1 [1]→ THH(A)hS
1

).

Here Nm : THH(A)hS1 [1]→ THH(A)hS
1

is the norm map from the homotopical S1-coinvariants to
the homopotical S1-invariants. Here each of them is an E∞-ring spectra.

Moreover, following [NS18], we could define a Frobenius action on those homology theories. Let
Cp be the cyclic subgroup of order p in the S1. Then there is a natural Frobenius map of E∞-ring
spectra

ϕ : THH(A) −→ THH(A)tCp ,

which is equivariant under the S1-action. Here the S1-action on the target is given through S1/Cp ∼=
Cp.

The same construction holds when we replace everything above by their p-completion.

Remark 4.2.1. We want to mention that the existence of the Frobenius map ϕ makes use of the
universal property of the sphere spectrum S in the ∞-category of E∞ rings. In particular, the
Frobenius map does not exist in general over the Hochschild homology. We refer the reader to the
[NS18, III 1.9] for detailed discussion.

Now we specify to the case for a given perfectoid ring A = R. Consider the natural map of E∞
ring spectra

TC−(R;Zp)
ϕhS

1

//

��

(THH(R;Zp)tCp)hS
1 ∼= TP(R;Zp)

��
THH(R;Zp) ϕ

// THH(R;Zp)tCp .

(∗)

Here the identity (THH(R;Zp)tCp)hS
1 ∼= TP(R;Zp) is given by [NS18, Lemma II.4.2]. Our goal is

to identify the homotopy of those ring spectra and indicating how the classical Frobenius appears
among them. Precisely, we have the following.

Theorem 4.2.2 (Theorem 6.2, [BMS2]). Let R be the perfectoid ring as above. Then by applying
the homotopy functor π∗ to the diagram (∗), we get the following commutative diagram

Ainf(R)[u, v]/(uv − ξ)
u7→σ,v 7→ϕ(ξ)σ−1

ϕ−linear
//

θ u7→u,v 7→0

��

Ainf(R)[σ, σ−1]

θ̃ σ 7→σ
��

R[u]
R−linear
u 7→σ // R[σ, σ−1].
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Here θ̃ is the map θ ◦ ϕ−1 : Ainf(R) → R, the element ξ generates ker(θ) and is of degree zero, u
and σ are of degree 2, and v is in the degree −2.

Before the proof, we want to mention that the prototype of this results, which are special case
for R = Fp, are shown in [NS18, IV.4]. We will make use of these in the following proof for the
general case.

Proof.

TP(R;Zp) We first compute π0TP(R;Zp). To do so, consider the multiplicative Tate spectral sequence

Ei,j2 = π−i(π−jTHH(R;Zp))tS
1

) =⇒ π−i−jTHH(R;Zp)tS
1

= π−i−jTP(R;Zp),

where the formation Ei,j2 on the left is the i-th Tate cohomology of the S1-action on the (−j)-
th homotopy group of THH(R;Zp). Here we note that as BS1 is homotopy equivalent to the
CP∞(check this!), so its cohomology ring H∗(BS1,Z) is isomorphic to H∗(CP∞,Z) = Z[v] for
v being in the degree 2. The Tate cohomology of BS1 is isomorphic to Z[v±1] for v living in
degree 2. Moreover, by the universal coefficient theorem and the Theorem 4.1.1, we know the
Tate cohomology of BS1 with coefficient being R is isomorphic to R[v±1]. So we get

Ei,j2 =

{
Rv

−i
2 u

−j
2 , 2|i, j and j ≤ 0;

0, otherwise.

The spectral sequence can be drawn as follows:

This implies that TP(R;Zp) lives in even degrees and F (R) := π0TP(R;Zp) admits a multi-
plicative complete descending filtration FiliF (R) ⊂ F (R), such that griF (R) ∼= π2iTHH(R;Zp) ∼=
R in degree i ≥ 0 and vanishes otherwise. In particular, the map surjection F (R)→ gr0F (R) =
R is a p-adically complete pro-thickening.

Now by the universal property of Ainf(R) → R, there exists a unique morphism Ainf(R) →
F (R) lifts the surjections onto R, such that ker(θ) ⊂ Fil1F (R). As both Ainf(R) and F (R)
are filtered complete, to show they are isomorphic it suffices to show this for the graded pieces
griAinf(R)→ griF (R) = π2iTHH(R;Zp). Similar to the proof of the Theorem 4.1.1, we show
this by base change to Q and to every point over p, where in the latter case we are taking the
tensor product − ⊗R κ, for κ being a perfect field in characteristic p. Then the rest follows
from the functoriality of Fp → κ, and the computation of the special case when R = Fp as in
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[NS18, Corollary IV4.8], by matching up the generators as follows:

griAinf(R) // griAinf(R)

griZp

OO

∼
// griF (Fp) = π2iTHH(Fp;Zp)

OO

Moreover, the multiplicativity of the Tate spectral sequence implies that TP(R;Zp) is 2-
periodic. This allows us to identify π∗TP(R;Zp) to the graded ring Ainf(R)[σ±1], where σ
generates the second homotopy group.

TC−(R;Zp) To compute the negative topological Hochschild homotopy TC−(R;Zp) = THH(R;Zp)hS
1

, we
consider the homotopy fixed point spectral sequence

Ei,j2 = Hi(BS1, π−jTHH(R;Zp)) =⇒ π−i−jTC−(R;Zp).

This admits a canonical map (not the Frobenius map) to the Tate spectral sequence π−i(π−jTHH(R;Zp))tS
1

),

identifying the terms for i ≥ 1 since π−i(−)tS
1

= Hi(BS1,−) for i ≥ 1. The picture of this
spectral sequence is the following:

In particular, as the spectral sequences are multiplicative, we see π∗TC−(R;Zp) is also living
in even degrees, and the generators of degree 2 and −2 multiply to a generator of Fil1F (R) =

ker(θ) ⊂ Ainf(R) (this is seen as v
2
2 · u−2

2 falls into the Fil1 of π0TP(R;Zp)). In this way, we
can find an isomorphism π∗TC−(R;Zp) ∼= Ainf(R)[u, v]/(uv− ξ), where u is of degree 2 and v
is of degree −2, such that under the canonical map to π∗TP(R;Zp) we have

u 7−→ ξ · σ, v 7−→ σ−1.

The map ϕhS
1

Now we consider the Frobenius map ϕhS
1

. We first compute the induced map on π0. To do
so, we apply the functor π0 to an extended diagram of (∗), and get

Ainf(R) = π0TC−(R;Zp) //

θ

��

Ainf(R) = π0TP(R;Zp)

��

// π0RtS
1

= R

��
R = π0THH(R;Zp) // π0THH(R;Zp)tCp // π0RtCp = R/pR,
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Here the right bottom map is induced by applying (−)tCp at the zero-th homotopical projection

THH(R;Zp) −→ R,

where R has trivial S1-action. Moreover, the top right horizontal map is the θ : Ainf(R)→ R,
which is induced from the universal property of THH(R;Zp). Here we use the equality RtCp =
R/pR for an ordinary commutative ring R (cf. [NS18, Example IV.1.2]), and the right vertical
map is the mod p reduction.

The composition of the bottom line above gives the usual absolute Frobenius

ϕ : R −→ R/pR; x 7−→ xp.

So the above induces the following commutative diagram

Ainf(R)
π0ϕ

hS1

//

θ

��

Ainf(R)

��
R

ϕ
// R/pR.

In this way, by the universal property of the Ainf(R) among all p-complete pro-nilpotent

thickening of R/p, we see π0ϕ
hS1

is the Frobenius map of Ainf(R).

To get π2iϕ
hS1

: Ainf(R) ·u→ Ainf(R) ·σ for i ≥ 1, we use the same strategy before and prove
this by specializing to perfect fields of characteristic p and Q. Then the proof reduces to Fp,
which is proved in [NS18, Proposition IV.4.9].

THH(R;Zp)hCp At last, we compute the homotopy groups of THH(R;Zp)hCp . In fact, the claimed result in the
statement will follow from the Tor spectral sequence as in [DAGIII, 4.2.13] and the following
claim:

Claim 4.2.3. The diagram (∗) is a pushout diagram of E∞-rings.

To see this, we prove a stronger result: for a S1-equivariant THH(R;Zp)-module M (which we
apply to M = THH(R;Zp)tCp , we have a natural quasi-isomorphism

MhS1

⊗TC−(R;Zp) THH(R;Zp) −→M.

To show this, we first notice that from the computations above, we know THH(R;Zp) =

TC−(R;Zp)/v is quasi-isomorphic to the perfect TC−(R;Zp)-complex TC−(R;Zp)
·v // TC−(R;Zp) .

As the tensor product with a perfect complex commutes with limits (This follows from the
truncation and induction, on any finite length complex of finite free TC−(R;Zp)-modules),
we may truncate the map above and do a shift to assume M is coconnective. Then as
MhS1 ⊗TC−(R;Zp) THH(R;Zp) commutes with colimits of coconnective modules M ,6 we may
then truncate above to assume M concentrates at degree zero. So we are left to prove that for
a THH(R;Zp)-module M of degree zero, we have

MhS1

/v ∼= M,

which can be proved as in [NS18, Lemma IV.4.12]. So we are done.

6The statement is similar to the Step 2 and 3 in the proof of the Theorem 4.1.1: we truncate the coconnective M

as τ≥−nM →M → τ<−nM for M ∈ N, then notice that (τ<−nM)hS
1

is still living in the homological degree < −n.

So we get (τ≥−nM)hS
1 ∼= τ≥−nM

hS1
.
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Remark 4.2.4. The proof above also shows that the canonical map TC−(R;Zp) → TP(R;Zp)
induces the following on homotopy rings

Ainf(R)[u, v]/(uv − ξ)
Ainf (R)−linear

u 7→ξ·σ, v 7→σ−1

// Ainf(R)[σ±1] .

Remark 4.2.5 (Case for R = Fp). Let us say a little bit about the computation of π0TP(Fp;Zp) =
π0TC−(Fp;Zp) = Zp that we skipped above.7

By the Step 2 in the Theorem 4.2.2 above, the ring π0TC−(Fp;Zp) is complete under the multi-
plicative N-indexed descending filtration induced from the homotopy fixed point spectral sequence,
where each graded piece is isomorphic to Fp. So by the multiplicity, to show the ring π0TC−(Fp;Zp)
is isomorphic to the ring Zp, it suffices to truncate it and consider the following extension problem

0 −→ gr1 = Fp −→ π0TC−(Fp;Zp)/Fil2 −→ gr0 = Fp −→ 0.

Here we recall that up to isomorphisms there are only two classes of extensions of Fp by Fp, where
one is the direct sum and the another is Zp. Thus the goal is to show that the above exact sequence
is the extension sequence for Zp.

We then notice that the above extension problem only involves τ≤2THH(Fp;Zp) ∼= τ≤2HH(Fp/Z;Zp)
(c.f Subsection 3.2) and τ≤2BS

1 = τ≤2CP∞ = CP1 in the homotopy fixed point spectral sequence, so
we may replace the middle one by H0(CP1, τ≤2HH(Fp/Z;Zp)) via the following projection morphisms

RΓ(BS1,THH(Fp)) −→ RΓ(BS1, τ≤2THH(Fp;Zp)) = RΓ(BS1, τ≤2HH(Fp/Z;Zp)) −→ RΓ(CP1, τ≤2HH(Fp;Zp)).

At last, we observe that the cohomology H0(CP1, τ≤2HH(Fp/Z;Zp)), which is the truncated piece
for the filtration of π0HC−(Fp/Z;Fp) given by the homotopy fixed point sequence, is isomorphic
to π0HC−(Fp/Z;Zp)/Fil2 ∼= dR∧Fp/Z/Fil2 (c.f [BMS2, Proposition 5.15]). Thus comparing with the

extension problem of π0HC−(Fp/Z;Zp)/Fil2 as below, we are done:

0 −→ gr1 = LFp/Zp [−1] = Fp −→ dR∧Fp/Z/Fil2 = Z/p2 −→ gr0 = Fp −→ 0.

5 THH of quasi-regular semi-prefectoid rings

In this section, we compute the THH(A;Zp) for a quasi-regular semi-perfectoid (QRSP) R-algebra
A, where R is a fixed perfectoid algebra.

5.1 General facts for THH over a perfectoid ring

In the first subsection, we provide some general results of THH over the perfectoid ring, following
the section 6.3 in [BMS2].

Theorem 5.1.1 (Theorem 6.7, [BMS2]). Let A be a R-algebra. Then there exists a S1-equivariant
cofiber sequence of THH(A;Zp)-module spectra

THH(A;Zp)[2]
u // THH(A;Zp) // HH(A/R;Zp).

By passing to the homotopy fixed points (resp. Tate constructions) of the above sequence, we get the
similar cofiber sequences for TC− and HC− (resp. TP and HP), with the maps on the left being the
multiplication-by-u (resp. by ξ · u).

Proof. By the relative version of the base change formula for THH and HH in the Paragraph 3.2,
we have

THH(A;Zp)⊗THH(R);Zp R
∼= HH(A/R;Zp).

7The author thanks Shizhang Li for explaining this in the BMS2 reading seminar at Michigan.
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Then note that by the Theorem 4.1.1 we know the ordinary ring R, as a THH(R;Zp)-module, can
be resolved by the sequence

THH(R;Zp)[2]
u // THH(R;Zp) .

Note that everything above are S1-equivariant, where the action on R is trivial. Thus the result
follows by the tensor product and applying the p-adic completion.

The next result describe the homotopy ring of THH(A;Zp) for a quasi-smooth algebra A over
a perfectoid ring R (cf. [BMS2, Definition 4.10]). In particular, we will see how the topological
Hochschild homology encodes the deformation, namely the algebraic information, of the ring A
(over a perfectoid base).

Theorem 5.1.2 (Hesselholt; Theorem 6.9, [BMS2]). For any R-algebra A, there exists a natural
map of graded A⊗R π∗THH(R;Zp)-algebras

Ω̂∗A/R ⊗R π∗THH(R;Zp) −→ π∗THH(A;Zp).

Moreover, when A/R is quasi-smooth (for instance when A is the p-adic completion of a smooth
R-algebra), the above map is an isomorphism.

To construct the map above, it suffices to construct a R-linear map from the p-complete de
Rham complex Ω̂∗A/R to the graded algebra π∗THH(A;R). The universal property of the de Rham

complex Ω∗A/Z among all cdga allows us to produce a map from Ω∗A/Z to π∗HH(A/Z), where the

latter is equipped with the Connes differential induced by the S1-action (Proposition 1.3.1). So
using the identification of π≤2 between HH(A/Z;Zp) and THH(A;Zp) (c.f Paragraph 3.2), we get

Ω̂1
A/R
∼= Ω̂1

A/Z −→ π1HH(A/Z;Zp) ∼= π1THH(A;Zp).

Thus we have a natural anti-commutative homomorphism of graded algebras

Ω̂∗A/R −→ π∗THH(A;Zp).

Proof. The map above is canonical, and we are left to show the isomorphism for quasi-smooth R-
algebra A. Note that by the assumption of quasi-smoothness, the p-complete Hochschild homology
is given by the p-completed de Rham complex

π∗HH(A/R;Zp) ∼= Ω̂∗A/R.

Moreover, the map Ω̂∗A/R → π∗THH(A;Zp) above produces a natural section to the projection

π∗THH(A;Zp) −→ π∗HH(A/R;Zp)

which is given by applying π∗ at the map in the Theorem 5.1.1. So by induction, the cofiber sequence
in the Theorem 5.1.1 breaks into the following short exact sequence

0 −→ πi−2THH(A;Zp) −→ πiTHH(A;Zp) −→ π∗HH(A/R;Zp) −→ 0.

In this way, starting from i = 0, it follows from the induction again that the map of algebras below
is an isomorphism

Ω̂∗A/R ⊗R π∗THH(R;Zp) −→ π∗THH(A;Zp).

So we are done.

A quick upshot is the computation of each homotopy group of THH(A;Zp).
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Corollary 5.1.3 ([BMS2], Corollary 6.10). Let R be a perfectoid ring. Then the functor THH(−;Zp)
from the category of p-complete R-algebras admits a complete descending multiplicative N-indexed
filtration such that the n-th graded piece is naturally isomorphic to the following direct sum:⊕

0≤i≤n
n−i even

L ∧i L̂−/R[n].

Proof. This follows from the left Kan extension of the Postnikov filtration for quasi-smooth R-
algebras in the Theorem 5.1.2, where we use the fact that THH commutes with sifted colimits of
R-algebras, and the left Kan extension of the n-th Postnikov filtration is still n-connective.

5.2 THH of QRSP rings

Now we compute the THH of quasi-regular semi-perfectoid ring, following the Section 7.1 in [BMS2].
First we recall the definition of the quasi-regular semi-prefectoid rings.

Definition 5.2.1. A commutative ring A is called quasi-syntomic if is satisfies the following two
conditions

• The ring A is classically p-complete with bounded p-torsion.

• The cotangent complex LA/Z is of p-complete Tor amplitude [−1, 0]; namely the object LA/Z⊗LZ
Z/p ∈ D(Z/p) is of Tor amplitude [−1, 0].

The ring A is called quasi-regular semi-perfectoid if it is quasi-syntomic and admits a surjection
from the a perfectoid ring.

Here we notice that the condition of A being QRSP implies that A/p has surjective Frobenius.
Now we can state the first result about THH(A;Zp) for A being QRSP.

Theorem 5.2.2 ([BMS2], Theorem 7.1). Let R be a perfectoid ring, and let A be a QRSP algebra

over R. Denote by M to be the ordinary A-module π1L̂A/R, which is p-completely flat over A (i.e.
M is of p-complete Tor amplitude [0, 0]).

(i) The THH(A;Zp) is concentrated in homological non-negative even degrees.

(ii) The multiplication-by-u-map for u ∈ π2THH(R;Zp) is injective from π2i−2THH(A;Zp) to
π2iTHH(A;Zp). This produces a natural finite increasing filtration on π2iTHH(A;Zp) by the
following sequence

π2iTHH(A;Zp) ⊃ u · π2i−2THH(A;Zp) ⊃ u2 · π2i−4THH(A;Zp) ⊃ · · · ⊃ ui · π0THH(A;Zp),

where the j-th graded piece is ui−j ·ΓjA(M). In particular, the homotopy group π2iTHH(A;Zp)
is p-completely flat over A.

Proof. The first item can be deduced directly from the Corollary 5.1.3, as each L ∧i L̂A/Z quasi-
isomorphic to the ΓiAM [i] in the cohomological degree i.

For the second item, we use the distinguished triangle in the Theorem 5.1.1, to get

THH(A;Zp)[2]
u // THH(A;Zp) // HH(A/R;Zp).

Applying the HKR spectral sequence (Theorem 1.2.3), we know it degenerates at the E2-page with
HH(A/R;Zp) lives in the even degrees, such that

π2iHH(A/R;Zp) ∼= πi(L ∧i L̂A/R) = ΓiAM.

So the above distinguished triangle with the vanishing of THH(A/R;Zp) at odd degrees produces
the following short exact sequence

0 // π2i−2THH(A;Zp)[2]
u // π2iTHH(A;Zp) // π2iHH(A/R;Zp) = ΓiAM

// 0.

So we are done.
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The next result concerns the TC− and TP of a QRSP ring over a perfectoid base.

Theorem 5.2.3 ([BMS2], Theorem 7.2). Let R be a perfectoid ring, and A a QRSP algebra over
R.

(i) The homotopy fixed point spectral sequence for TC−(A;Zp) (resp. Tate spectra sequence for
TP(A;Zp)) degenerates and TC−(A;Zp) (resp. TP(A;ZP )) lives in homological even degrees.
Moreover, the canonical map π∗TC−(A;Zp) → π∗TP(A;Zp) is injective, and is an isomor-
phism for all non-positive degrees.

(ii) The homotopy fixed point spectral sequence for TC−(A;Zp) induces a complete descending

N-indexed Nygaard filtration N≥?�̂A over �̂A := π0TC−(A;Zp). The graded piece N i�̂A is
naturally isomorphic to the π2iTHH(A;Zp).

Here the Nygaard filtration N≥i�̂A can be identified with the image of the injective multiplication-
by-vi-map for vi ∈ π−2iTHH(R;Zp) in �̂A = π0TC−(A;Zp):

π2iTC−(A;Zp)
·vi // π0TC−(A;Zp)

(iii) The cyclotomic Frobenius ϕhS
1

from TC− to TP induces an endomorphism

ϕ : �̂A −→ �̂A.

Moreover, the image of N≥i�̂A is contained in ϕ(ξ)i�̂A.

(iv) There is a natural isomorphism of R-algebras

�̂A/ξ → d̂R
an

A/R,

where d̂R
an

A/R is the (Hodge-completed) p-completed derived de Rham complex of A over R,

which is an ordinary ring in this case. Moreover, �̂A is ξ-torsion free.

Proof. The first two items are clear from the spectral sequences.
The item (iii) follows from the observation that TC−(A;Zp) is a module over TC−(R;Zp), and

the effect of the multiplication by vi maps on the homotopy fixed point spectral sequence.
At last, the quotient identity �̂A/ξ is given by the applying π0 at the distinguished triangle for

TP as in Theorem 5.1.1

TP(A;Zp)[2]
ξ·σ // TP(A;Zp) // HP−(A/R;Zp).

Here we use the fact that for A being QRSP over R, we have a natural isomorphism

π0HP−(A/R;Zp) ∼= d̂R
an

A/R,

as in [BMS2, Proposition 5.15]. The ξ-torsionfreeness follows from the vanishing of π1HP(A/R;Zp)
as πoddHH(A/R;Zp) = 0 (by the HKR filtration).

Here we want to remark that the ring �̂A is in fact the (Nygaard completed) prismatic coho-
mology of A over R, which is developed in broader generalities in Bhatt-Scholze [BS]. We at the
end of this subsection provide a picture illustrating various filtrations on the prismatic cohomology
as below.
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5.3 Special case in characteristic p

At last, we give an explicit description for various constructions of �̂A, for A being a QRSP ring in
positive characteristic. We will not give any proof here, but refer the reader to [BMS2, Section 8]
for details.

We fix the ring A to be a QRSP ring in characteristic p throughout the subsection.

The ring Acris(A) We first introduce the ring Acris(A) together with three filtrations on it.

Definition 5.3.1. Let A be a QRSP ring in characteristic p be as above.

(i) The ordinary ring Acris(A) is defined as the p-adic completion of the pd-envelope DW (A[)(ker θ),

where A[ is the perfect ring given by the inverse limit perfection lim←−
x 7→xp

A, and the map θ :

W (A[) → A is the canonical surjection. The ring Acris(A) is naturally equipped with the
Frobenius endomorphism φ be the functoriality of the construction.8

(ii) The Nygaarad filtration N≥iAcris(A) is the descending filtration defined by the p-adic com-
pleted ideal of Acris(A)

N≥iAcris(A) := {x ∈ Acris(A) | φ(x) ∈ piAcris(A)}∧.

The i-th graded piece for the Nygaard filtration, which is an Fp-vector space, is denoted as

N iAcris(A), and the Nygaard completed ring is denoted as Âcris(A).

8Precisely, the endomorphism φ on Acris(A) is given by the functoriality of the Witt ring functor the following
commutative diagram of Frobenius

A[ x 7→xp //

��

A[

��
A

x 7→xp // A,

where the vertical maps are the natural projection maps from the N-indexed limit onto the first entry.
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(iii) The divided power filtration of Acris(A) is the descending filtration defined by the p-completed
ideal generated by the subset

{x[j] = “
xj

j!
” | x ∈ ker(θ : W (A[)→ A), j ≥ i}.

(iv) The conjugate filtration Filconjn Acris(A) is the ascending filtration on Acris(A) is defined by the

W (A[)-submodules of Acris(A) generated (over W (A[) by a
[m1]
1 · · · a[ms]s , where ai ∈ ker(θ :

W (A[)→ A) and
∑

1≤i≤smi < (n+ 1)p.

Here we want to remark that the conjugate filtration of Acris(A) is multiplicative and exhaustive.
Moreover, it can be showed that after mod p, the n-th conjugate filtration Filconjn Acris(A)/p is

the A[-submodule generated by elements of the form a
[pm1]
1 · · · a[pms]s for ai ∈ ker(S[ → S) and∑

1≤i≤smi ≤ n. See [BMS2, Proposition 8.11] for details.
The main results about the ring Acris(A) is the following.

Theorem 5.3.2 ([BMS2], Theorem 8.14). Let A be a QRSP ring in characteristic p as before.

(i) The ring Acris(A) is p-torsion free.

(ii) The divided Frobenius φi = φ
pi induces an injection

φi : N iAcris(A) −→ Acris(A)/p,

whose image is Filconji (Acris(A))/p, for i ≥ 0.

(iii) The images of the Nygaard filtration N≥iAcris(A) and the divided power filtration Acris(A)[≥i]

under the composition of the inclusion maps and the mod p reduction Acris(A) → Acris(A)/p
coincide.

(iv) The induced endomorphism of φ on Acris(A)/p is the absolute Frobeius of Acris(A)/p; namely
it maps x to xp in Acris(A)/p.

We use the following example to illustrate the structure in a concrete way.

Example 5.3.3. Consider the Fp-algebra A = Fp[T
1
p∞ ]/T , which is QRSP. The inverse limit

perfection A[ is the perfectoid algebra Fp〈T [
1
p∞ 〉, which is given by the T -adic completion of F[T [

1
p∞ ].

We denote by u to be the Teichmüller lift of the elemebt T [ = (T, T
1
p , · · · ) ∈ A[. Then the Witt

vector ring W (A[) is the (p, u)-adic completion of the ring Zp[u
1
p∞ ]. The canonical surjection map

θ : W (A[)→ A sends un = [T []n onto the element Tn ∈ A, and has kernel (p, u).
Then we consider the Acris(A). By the Definition 5.3.1, we know the Acris(A) is the p-adic

completion of the divided power envelope

DW (A[)(p, u).

So by the basic properties of the divided power envelope over a p-adic ring, we get

Acris(A) = (W (A[)[
ui

i!
, i ∈ N])∧

= (Zp[u
1
p∞ ; u[i] =

ui

i!
, i ∈ N])∧.

Here the completion is the p-adic completion, and the ring Acris(A) is u-complete automatically as
the element ui = u[i] · i! is p-adically convergent to zero when i goes to ∞ (as an exercise, check the
statement is true!). By the description, it is clear that the ring Acris(A) is p-torsion free. Moreover,
the endomorphism φ, induced from the absolute Frobenius of A[, sends un onto unp for n ∈ Z[ 1p ]

and u[i] = ui

i!
onto uip

i! = u[ip] · (ip)!i! for i ∈ N, where the element (ip)!
i! is equal to pi · v for a unit

23



v in Zp. This makes it clear that the endomorphism coincides with the absolute Frobenius on the
quotient ring Acris(A)/p, as in the item (iv) of the Theorem 5.3.2.

Now we can compute the various filtrations on Acris(A). By the description above, we could

write down explicitly a Zp-basis of the ring Zp[u
1
p∞ ; u[i], i ∈ N] together with their image under φ.

In particular, we get the Nygaard filtration as the ideal below

N≥iAcris(A) = (pi, pi−1u[1], . . . , u[i], u[i+1], . . .)∧,

whose image in Acris(A)/p under the canonical inclusion map N≥iAcris(A)→ Acris(A) is

(u[i], u[i+1], . . .).

Notice that the i-th divided power filtration is the p-completed ideal

(
pa

a!
· u[b], a+ b ≥ i)∧.

Thus we see the i-th Nygaard filtration is contained in the i-th divided power filtration, and their
images in Acris(A)/p coincide. Moreover, as the image of u[j] under the map φ is equal to pj ·v ·u[jp]
for v ∈ Z×p , the i-th Nygaard graded piece N iAcris(A) is the A[-module generated by

{pi/pi+1, pi−1/piu[1], . . . , u[i]}.

The image of N iAcris(A) under the divided Frobenius φi = φ
pi mod p is

(1, u[p], u[2p], . . . , u[ip]),

which is exactly the i-th conjugate filtration Filconji Acris(A)/p. The injection of φi mod p is clear.
Thus the structure of these three filtrations and their relations under φ do match up with the
expectation in the Theorem 5.3.2.

The use of the ring Acris(A) is to give an explicit way to study the structure of the prismatic

ring �̂A = π0TC−(A;Zp). This is clear via the following result.

Theorem 5.3.4 (Theorem 8.17, [BMS2]). Let A be a QRSP ring in characteristic p. Then there

exists an isomorphism between �̂A and the Nygaard completed ring Âcris(A), identifying their Ny-

gaard filtrations and intertwining the cyclotomic Frobenius ϕ on �̂A with the endomorphism φ on
Âcris. In particular, on the ring �̂A/p the cyclotomic Frobenius ϕ acts as x 7→ xp.

Corollary 5.3.5. The i-th Nygaard filtration on �̂A satisfies the following equality

N≥i�̂A = {x ∈ �̂A | ϕ(x) ∈ pi�̂A}.

Notice that the general inclusion in the last subsection (Theorem 5.2.3, (iii)) only implies the
one side inclusion.

dRW complexes and crystalline cohomology The last paragraph is to relate the previous two
theories, one is the prismatic cohomology �̂A using THH, and another is the explicit construction
of Acris(A), to the classical theory of the de Rham-Witt complexes and the crystalline cohomology,
in characteristic p.

For a smooth Fp-algebra S or more generally a smooth algebraic variety X over Fp, follow-
ing Grothendieck’s idea, Berthelot developed a cohomology theory RΓcris(X,Zp) for X in mixed
characteristic coefficient (namely Zp or integral p-adic rings), aiming to build a `-adic cohomology
for ` equal to p. When X is proper over Fp, the crystalline cohomology behaves quite well and is
a Weil cohomology theory in the technical sense. Moreover, when X admits an integral lift to a
smooth proper scheme X over Zp, the crystalline cohomology is quasi-isomorphic to the de Rham
cohomology of X over Zp; namely the cohomology of the de Rham complex Ω•X /Zp .
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In general, to compute the crystalline cohomology, Illusie constructed a naturally defined actual
complex WΩ•X of sheaves of Zp-modules over X, called the de Rham-Witt complex (dRW complex
in short), whose hypercohomology RΓ(X,WΩ•X) is naturally quasi-isomorphic to the crystalline
cohomology of X over Zp. Moreover, the functoriality of WΩ•X endows itself with a Frobenius action,
and the quotient WΩ•X/p is quasi-isomorphic to the de Rham complex of X/Fp. Furthermore, the
dRW complex bears a natural descending filtration of subcomplexes N≥?WΩ•X , which was first
introduced by Nygaard. The Nygaard filtration reduces to the Hodge filtration on Ω•X/Fp after mod
p.

Following [BMS2, Construction 2.1], we could generalize the dRW complexes together with
its Nygaard filtrations to all simplicial Fp-algebra via the left Kan extension. In particular, given
a QRSP ring A in characterstic p, we can associate it with the derived dRW complex LWΩ•A
together with the derived Nygaard filtration N≥iLWΩ•A. The quotient LWΩ•A/p is naturally quasi-
isomorphic to the de Rham complex dRA/Fp = LΩ•A/Fp , and the reduction of the Nygaard filtration

is the algebraic Hodge filtration for dRA/Fp .
It turns out that the derived dRW complexes is naturally identified with the ring Acris(A) for

a QRSP ring A in characteristic p. Precisely we have the following.

Theorem 5.3.6. Let A be a QRSP ring in characteristic p. Then there exists a functorial Frobenius-
equivariant quasi-isomorphism between the ring Acris(A) and the derived dRW complex LWΩ•A,
identifying their Nygaard filtrations and the mod p conjugate filtrations.

This together with the Theorem 5.3.4 produces a natural isomorphism between the Nygaard

completed de Rham-Witt complex ŴΩ•A and the prismatic cohomology �̂A.
Another quick upshot of the above theorem together with the Theorem 5.3.2 is the isomorphism

between the mod p Nygaard completed ring Âcris(A)/p and the derived de Rham complex dRA/Fp .9

Notice that since the derived de Rham complex satisfies the quasi-syntomic descent (c.f [BMS2,
Section 4-5]), by the p-completeness of WΩ•A we get the quasi-syntomic descent for Acris(A) and
WΩ•A. By taking the Čech nerve associated to a quasi-syntomic covering S → A for A being QRSP,
we can compute the usual crystalline cohomology of a smooth Fp-algebra S via the following cochain
complex

RΓcris(S/Zp) ∼= Acris(Čech(S → A)) = Acris(A) −→ Acris(A⊗S A) −→ Acris(A⊗S A⊗A) −→ · · · ,

which is the totalization of the cosimplicial complex associated to the Čech nerve.
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