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Abstract

Spreading out is a standard technique in algebraic geometry. It allows us to prove statements
of geometric nature, say those over a field of characteristic 0 or even complex numbers, to their
analogous results in more general bases like characteristic p. Moreover, it arises many interesting
questions in arithmetic geometry, like the study of integral models. In this talk, we will introduce
the procedure of spreading out and its properties. As an application, we will use the technique
to show the Ax’s theorem, which roughly states that any injective endomorphism of an affine
variety is bijective.

1 Spreading out and basic properties

In this section, we first introduce what is spreading out. Here most of the results come from follow
the [EGA IV], section 8.8.

We first give a simple example to illustrate what we are talking about.

Example 1.1. (a) Let f : A1
C → A1

C be a C-morphism of affine line. Then it is given by φ : C[x]→
C[x], with φ(x) = anx

n + · · ·+ a0 being the polynomial with coefficients in C. Now if we take
the Z sub-algebra R of C generated by a0, . . . , an, then the ring is the quotient of Z[t0, . . . , tn],
which is a finitely generated (presented) Noetherian Z-algebra. And note that by taking the
morphism φ0 : R[x]→ R[x], sending x onto anx

n + · · · a0 ∈ R[x], then the C-homomorphism is
the base change of φ0 along R→ C. In other words, the morphism f : A1

C → A1
C is defined in a

finitely generated Z-subalgebra of C, in the sense that f is the base change of f0 : A1
S0
→ A1

S0

along Spec(C)→ Spec(R).

Moreover, if we take the collection of all f.g. Z-subalgebras Ri of C containing R, then we have

C =
⋃
i

Ri = lim−→
i∈I

Ri.

And if we take fi be the morphism A1
Si
→ A1

Si
given by sending x to the same polynomial

above, where Si = Spec(Ri), then we have

f = lim←−
i∈I

fi,

in the sense that for each pair of i, j with inclusion Ri → Rj , the morphism fi over Si is
compatible with fj over Sj , which makes it possible to define such an inverse limit.

Intuitively, this means that for whatever results hold geometrically (over C), they should come
from more general statements over a much smaller model.

(b) Let A be a commutative ring, and p is a prime ideal of A, then

Ap = lim−→
f /∈p

Af ,
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and in terms of schemes we have
S = lim←−

f /∈p

Spec(Af ),

which roughly means that a local phenomenon should also appear near that point.

Now we give the formal statement and properties of spreading out. Let S0 be a scheme, I be
an index set, with {Si, i ∈ I} being a projective system of S0-schemes such that for each i, Si is
the spectrum of quasi-coherent OS0

-algebra. Then uij : Sj → Si is affine for j ≥ i, which is thus
quasi-compact and separated. And under the situation, by taking the spectrum of R := lim−→i∈I

Ri,

we get the S = Spec(R), which is the projective limit of {Si, i ∈ I} in the category of S0-schemes.
The reader could always assume S0 and Si are affine in the whole article to make life easier.

Suppose there are two collections of schemes {Xi, I}, {Yi, I}, such that Xi and Yi are Si-
schemes, with

Xj = Xi ×Si
Sj , YJ = Yi ×Si

Sj , j ≥ i.

Then we could take the fiber product to get X := Xi×Si
S and Y := Yi×Si

S, which are projective
limits of those two collections in the category of S0-schemes. Besides, by the compatibility of two
systems, there is a canonical map given as

HomSi
(Xi, Yi) −→ HomS(X,Y ),

which is given by pullback along S → Si and compatible with respect to i ∈ I. So we have the map
from the direct limit:

e : lim−→
i∈I

HomSi
(Xi, Yi) −→ HomS(X,Y ).

Here is our first result:

Theorem 1.2 ([EGA IV], 8.8.2). (a) Suppose Xi are quasi-compact, and Yi are locally of finite
type over Si, then the map e given above is injective. If furthermore Xi are quasi-separated,
and Yi are locally of finite presentation over Si, then the map

e : lim−→
i∈I

HomSi
(Xi, Yi) −→ HomS(X,Y )

is bijective.

(b) Suppose S0 is quasi-compact and quasi-separated (which is true when Si are affine). Then for
any X of finitely presentation over S, there exists some i ∈ I together with a finitely presented
Si-scheme Xi, such that we have an S-isomorphism

X → Xi ×Si
S.

Let’s give some propositions of this result. If you read carefully about Hartshorne, you must
noticed that he mostly restrict his discussion for noetherian cases. But many statements actually true
in more general framework, say locally of finite presentation. In other words, we could ”eliminate
the noetherian hypothesis”:

Proposition 1.3 ([EGA IV], 8.9.1). Suppose A is a ring, X is an A-scheme, then TFAE:

(a) X is finitely presented over A;

(b) There exists a noetherian ring A0 and a f.g. scheme X0 over A0, together with a homomor-
phism A0 → A, such that

X ∼= X0 ×A0 A.

(c) The A0 in the Part (b) above can be improved by a f.g. Z-algebra.

Another proposition is about ”generic flatness”
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Proposition 1.4 ([EGA IV], 8.9.4). Suppose Y is an integral scheme, u : X → Y is finite type
and locally of finitely presented. Let F be a quasi-coherent and finitely presented OX-module (see
[EGA I] Chap 0, section 5 for definitions). Then there exists an non-empty open subset U ⊂ Y such
that F|u−1(U) is flat over U .

Now here is our Theorem of Spreading out, which essentially tells us what spreading out can
do for us:

Theorem 1.5 ([EGA IV], 8.10.5). Suppose S0 is quasi-compact, Xi and Yi are finitely presented
over Si, together with an Si-morphism fi : Xi → Yi. Denote by f to be the induced S-morphism
X → Y . Let P be any of the following properties:

(i) isomorphism;

(ii) monomorphism;

(iii) immersion/closed immersion/open immersion;

(iv) separated;

(v) surjective;

(vi) radial (universally injective);

(vii) affine;

(viii) quasi-affine;

(ix) finite;

(x) quasi-finite;

(xi) proper.

Then f satisfies P if and only if there exists some j ≥ i, such that fj satisfies P . Moreover,
if S0 is quasi-separated, the statement is true for the following additional properties

(xii) projective;

(xiii) quasi-projective.

Here is a one direct application of the property (xi), which is known as finitely presented version
of the Chow’s Lemma:

Proposition 1.6 ([EGA IV], 8.10.5.1). Suppose A is an ring, X and Y are two A-schemes of finitely
presentation, together with a separated A-morphism f : X → Y . Then there exists some A-scheme
X ′ with the following commutative diagram

X ′

h

  
g

��
X

f
// Y,

where h is quasi-projective, and g is surjective and projective.

There are also some direct applications to quasi-finite morphisms, which we refer the reader to
the [EGA IV], 8.11.
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2 Application: Ax-Grothendieck’s Theorem

Here we give a standard application of spreading out, which is known as Ax-Grothendieck’s theorem,
about injectivity and bijectivity of endomorphisms.

Theorem 2.1 (Ax-Grothendieck, [EGA IV] 10.4.11). Let k be an algebraically closed field, and X
is finite type over k. Then any universally injective k-endormorphism of X is bijective.

Lemma 2.2. Let k be an algebraically closed field, and f : X → Y be a k-morphism between two
k-schemes of finite type. Then f is injective if and only if it is universally injective.

Corollary 2.3. Any injective morphism between two algebraic varieties over k = k is bijective.

Remark 2.4. 1. If f above is moreover monomorphism, (i.e. it is unramified), then it is in fact
an automorphism. See [EGA IV], 17.9.6.

2. This is in fact a very geometric statement, which somehow can be regarded as a generalization
of the following theorem in complex analysis:

For an entire function on C, it is surjective if it is injective.

Now we prove the Ax-Grothendieck’s theorem.

Proof. Take S0 = Spec(Z). Consider the inductive system of all finitely generated Z subalgebras
Ri of k, indexed by i ∈ I such that i ≤ j if and only if Ri ⊆ Rj . Then Si = Spec(Ri) becomes
a projective system in the categories of S0-schemes such that S = Spec(k) is its limit. Since S0

is quasi-separated and quasi-compact, by the First Theorem 1.2, (b), there exists some Xi finitely
presented over Si, such that

X = Xi ×Si
S.

Together with Part (a) and by changing a larger i, we may assume that f is induced by an Si-
endomorphism

fi : Xi −→ Xi.

Besides, by the Lemma 2.2 above, f : X → X is radicial, so from the Theorem of spreading out 1.5,
(vi), we could replace i by a larger one such that fi is also universally injective.

Now again by the Theorem of spreading out 1.5, (v), to show that f is surjective, it suffices to
show that fi is surjective. And we make the following claim:

Claim 2.5 (Claim 1). The map fi is surjective if and only if it is surjective on closed points.

Since the surjectivity is a local question, we may assume that Xi = Spec(Ai) (hence X) is
affine. And due to the Claim, we only need to show that for each closed point x = m ⊂ Max(Ai),
its preimage is nonempty.

Recall that right now Xi = Spec(Ai) is a finitely presented affine scheme over Si = Spec(Ri),
where Ri is a f.g. Z-algebra. Then we can make the following claim:

Claim 2.6 (Claim 2). The intersection n of the maximal ideal m with Ri is also maximal, which
concludes a prime integer in Z.

Granting the second Claim, the point x is over a closed point s = n ∈ Si, so to show that x is
contained in the image of fi : Xi → Xi, it suffices to show that the morphism fi,s : Xi,s → Xi,s over
the special point s ∈ Si is surjective. And since n contains some integer in Z, the residue field at si
is a finite field Fq.

Now we are almost done: By our choice of i, the map fi is universally injective, which by
definition satisfies that any base change of fi is injective. In particular, by taking the closed fiber
at s, the morphism fi,s is also injective. But note that since Xi,s is a finitely generated scheme over
Fq, its number of Fq points is finite. In this way, the injectivity (which leads to the injectivity on
closed points) implies the surjectivity on closed points. Hence back the first Claim above, we see fi
thus f is surjective.
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Now we finish those Lemmas and Claims.

Proof of the Lemma. We first show that for f : X → Y between two schemes over k = k, it is
injective if and only if injective on closed points. Assume the latter is true; and we assume both X
and Y are reduced. If there exists two points x1, x2 ∈ X mapped onto the same y ∈ Y , then by
replacing Y by the closure of y, and X by the preimage of y, we may assume that xi are generic
points of two irreducible components that are mapped the generic point of the integral variety Y .
Then we may choose an open disconnected subset U = U1

∐
U2 of X, with xi lying in different

connected components Ui Now by the generic flatness of f (1.4), by making U = U1

∐
U2 smaller,

we may assume f |U is flat, thus open. Based on this, since the image f(U1) ∩ f(U2) is a nonempty
open neighborhood of the generic point y ∈ Y , by the Nullstellensatz over k = k, there exist some
closed point y′ ∈ f(U1)∩f(U2); in other words, the preimage of y′ has at least two closed points lying
on two disjoint components, contradicting to our assumption that f is injective on closed points.

Now we prove the universal injectivity. By definition, it suffices to show that for any π : Z → Y ,
the pullback fZ of f along π is injective. Here we notice that by the composition Z → Y → Spec(k),
Z is endowed with a k-structure and becomes a k-scheme, which is also true for the fiber product
X ×Y Z. So by what we just showed before, we only need to check the injectivity on k-points.

We look at the following diagram

Spec(k)
u

��v ((
X ×Y Z

fZ //

��

Z

��
X

f
// Y,

where u, v represent two different closed points such that fZ ◦ u = fZ ◦ v, mapped onto a single
closed point in Z; denoted by z. Then by composing with π : Z → Y and using the commutative
diagram, since f it injective, we see the image of u, v along X ×Y Z → X is also the same, which
is also a closed point in X; denoted by x. In this way, the image of u, v in X × Y Z is lying on
Spec(k(x)⊗k (y)k(z)) = Spec(k), which is also a single closed point. In this way, fZ is injective on
closed points, which is then injective on all the other points. Hence we finish the proof.

Proof of the Claim 1. It is enough to show that for a Si-morphism between two f.g. schemes f :
X → Y , it is surjective if surjective on closed points. Let y ∈ Y be any point. By replacing Y by the
reduced closure of y, and replacing X by the preimage of y, we may assume Y is integral and y is the
generic point. Then y is contained in the image of f is equivalent to say that f is dominant. Besides,
by looking at affine open subsets of generic points, we could assume X = Spec(B), Y = Spec(A).
Then it suffices to show that A→ B is injective.

If not , A→ B factors through A→ A/I → B for some nonzero ideal I. But note that since A
is finitely generated over Ri, it is in fact f.g. over Z, where the latter is a Jacobson ring. Thus A itself
is a Jacobson ring. Notice that for Jacobson ring A, its nil-radical coincides with Jacobson radical,
where the former is nilpotent. So since A is a domain, its Jacobson radical, which is the intersection
of all maximal ideal, is 0. Thus for the non-trivial ideal I, there must exists some maximal ideal m
in A which does not contains I. However, this contradicts the assumption that f is surjective on
closed points, since A→ A/I → B means that the image of Spec(B)→ Spec(A) is lying over V (I),
which does not contain the point m. In this way, we are done.

Proof of the Claim 2. We first reduce to the case that m is a maximal ideal of Ai = Z[x1, . . . , xn].
Then if m∩Z = (0), the map Z→ Ai/m factors through Z→ Q, where the latter then becomes a f.g.
Q-algebra and a field. So the image of xi in Ai/m are all algebraic over Q, where we could extract
their denominators to assume that they are integral over Z[ 1

N ] for a large N . Thus the algebra
A/i/m becomes a f.g. Z[ 1

N ]-module containing Z, which thus has a non-trivial ideal, contradicting
to the assumption that it is a field. Hence m ∩ Z is maximal.
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