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Abstract

This is the note for the talk given in Student Algebraic Geometry Seminar in University
of Michigan, at October 25, 2018. We follow Temkin [Tem11] and introduce the basics about
the relative Riemann-Zariski spaces. An as an application, we sketch the proof for Nagata’s
compactification.

1 Definitions and examples

Throughout the article, every scheme is assumed to be quasi-compact and quasi-separated. We first
define the relative Riemann-Zariski space for a morphism f : Y → X of schemes.

Definition 1.1. (a) A Y -modification of X is defined as a scheme X ′ by the following commuta-
tive diagram

Y

��

f ′

~~
X ′

g
// X,

such that g is proper and f ′ is dominant.

(b) The Riemann-Zariski space X = RZY (X) for the morphism f : Y → X is defined as the limit
of all Y -modification X ′ of X, in the category of locally ringed space.

Here we note that the underlying topological space of RZY (X) is lim←−X
′ with the inverse limit

topology, and the (structure) sheaf of rings is OX = lim−→OX′ .
We first look at some examples.

Example 1.2. (a) Let K/k be a field extension, such that k is algebraically closed. We let
Y = Spec(K) and X = Spec(k). Then RZY (X) is given by the limit of all the integral proper
k-schemes whose function field is contained in K. In particular, when K/k is finitely generated,
the transcendental dimension is then finite. So any such Y -modification of X has dimension
no larger than tr. dimk(K).

We look at the following special cases:

• When tr. dimk(K) is 0, i.e. K is equal to k. Then RZY (X) is exactly the scheme Spec(k),
since the only possible integral k scheme of dim 0 is Spec(k) itself, by the assumption
that k = k.

• When tr. dimk(K) = 1, we claim that RZY (X) is the nonsingular projective model of K
over k, which is a scheme. By dimension restriction, any Y -modification X ′ of X is either
of dimension 0, which is X itself, or of dimension 1. When dimk(X ′) is of dimension 1,
its function field coincides with K. So any such X ′ is a proper (projective) k-model of
K. But note that in the category of proper k-models of K, there exists an initial object
X given by the nonsingular projective model of K. Thus the inverse limit is equal to the
nonsingular projective k-schem X , by the surjectivity and the properness for X → X ′.
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• When tr. dimk(K) = 2, Zariski gave a complete classification of points in RZY (X), by
describing all possible valuations of K.

Recall here that to give a projective model of a function field of dimension one, it is equivalent
to find out all of the valuation (rings) of K containing k. It turns out (later) that Riemann-
Zariski spaces can be characterized totally by valuation theory.

(b) Another two examples are related to the non-archimedean geometry.

• Let Y = Spec(Qp) and X = Spec(Zp). Assume X ′ is an Y -modification of X. Then
since f : Y → X is dominant, the proper morphism g′ : X ′ → X is also dominant. In
particular, the preimage of the generic point of X is a proper Qp-scheme dominated by
Qp, which must be Qp itself. So X ′ is an integral proper Zp-scheme with Qp being its
function field. We take any open affine subset Spec(A) of X ′, then A is an ring between
Zp and Qp, which can only be either of them. But notice that by the properness X ′

cannot be Spec(Qp). So X ′ must equal to Spec(Zp), and RZY (X) = Spec(Zp).

• Consider Y = A1
Qp

and X = A1
Zp
. Then any Y -modification X ′ of X is an integral proper

X-scheme.

How do we construct such schemes? Assume X ′ has an affine open subset U = Spec(A)
such that Y → X ′ maps inside of U . Then by the dominance of f ′ and f , we get the
composition of injections

Zp[T ] −→ A −→ Qp[T ].

By the definition of properness, A is finite type over Zp[T ]. So any such affine open subset
is given by a finite type Zp[T ]-subalgebra inside of Qp[T ].

On the other hand, assume we are given a finite type Zp[T ]-subalgebra A in Qp[T ]. Then
we have the surjection Zp[T ][x1, . . . , xn]→ A, with kernel generated by (f1(xi), . . . , fm(xi).
Now we homogenize those functions by replacing each xi as Xi

X0
and multiply each fj by

X
deg(fj)
0 . We get a homogeneous ring B such that B(X0) = A. Now we take the pro-

jective spectrum Proj(B) and let X ′ = Proj(B). Then it is easy to check that X ′ is
an Y -modification of X. (As an basic example, assuming A = Zp[T ][x1]/(x1 − pnT ) for
n ∈ Z, we have B = Zp[T ][X0, X1]/(X1 − pnTX0).)

Remark 1.3. The above construction using homogenization is in called Y -blowup of X,
which is very useful for studying the Riemann-Zariski space when f : Y → X is affine: every
Y -modification of X can be refined by a Y -blowup of X.

2 Valuation spectrum and RZY (X)

In this section, we begin to study the geometry of the Riemann-Zariski space. From the example
above, especially examples about classical RZ spaces, the thing we get at the end become the
collection of valuations of K with some topology. So it is quite natural to ask if there exists a
general way of describing RZY (X) using valuation theory. It turns out that the answer is true, and
we are going to sketch how to give such an identification.

We first define the following two topological spaces. Again assume f : Y → X is a morphism
of (qcqs) schemes.

Definition 2.1. By an Y -valuation over X, we mean the following commutative diagram:

y //

��

Y

f

��
Spec(R) // X,

where y is a point in Y , R is a valuation ring of the residue field k(y), and y → Spec(R) is the
canonical map. We denote it by the pair (y,R) in short.
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We define Spa(Y,X) to be the collection of isomorphism classes of all Y -valuations over X, such
that the topology is generated by image of the form Spa(Y ,X) for

Y //

��

Y

f

��
X // X,

where Y is open in Y , and X is finite type and separated over X. Here we note that Spa(Y ,X) is
in fact a subset of Spa(Y,X), by the valuation criterion.

We then define ValY (X) to be the subset of Spa(Y,X) consisting of all of those minimal (y,R),
in the sense that y → Spec(R)×X Y is a closed immersion. Here we let ValY (X) have the induced
topology.

Now we are going to connect valuation spectra with our Riemann-Zariski spaces.
We first note that by the valuation criterion again, in fact there exists a map from the valuation

spectrum to the Riemann-Zariski spaces: Let (y,R) be any Y -valuation over X. Then for each
Y -modification X ′ of X, by the properness of X ′ → X, the map Spec(R) → X factors through a
unique map from Spec(R) to X ′. In this way, by taking the inverse limit, (y,R) maps to an point
x→ RZY (X), so we get a map

ψ : Spa(Y,X) −→ RZY (X).

In fact, by restricting to the subset ValY (X), we get an homeomorphism:

Theorem 2.2. Assume f : Y → X is an affine morphism. Then the induced map

ψ : ValY (X) −→ RZY (X)

is a homeomorphism.

Surjection and continuity We first show that ψ is surjective. In fact, the map ψ admits a
section.

Proposition 2.3. Assume f is an affine morphism. Then there exists a section λ : RZY (X) →
Spa(Y,X) whose images are in ValY (X).

Proof. Let x = (xi) be a point in RZY (X), where xi is a point in the Y -modification Xi of X. We
denote by fi : Y → Xi to be the corresponding dominant map. To construct such a section, we
look at the inverse of each xi in Y , and take the limit. Consider the localization OY,f−1

i (xi)
of OY

at f−1i (xi). The morphism fi : Y → Xi induces a morphism of rings OXi,xi
→ OY,f−1

i (xi)
, and by

passing to the limit we get a map of rings

OX ,x −→ lim−→
i

OY,f−1
i (xi)

= B∞.

The pair (B∞,OX ,x is not in general a field with its valuation ring; but it is in fact a semi-
valuation, in the sense that B∞ is a local ring with maximal ideal m, such that OX ,x contains m
and OX ,x/m is a valuation ring of B∞/m. Besides, by using the construction for Y -blowup of X by
the affineness of f , the limit lim←− Spec(OXi,xi

) ×Xi
Y =

⋂
Spec(OXi,xi

) is the unique point y in Y .
So from this, we produce a valuation (y,OX ,x/m). At last, to show the minimal condition, i.e. the
map

y −→ Spec(OX ,x)×X Y

is a closed immersion, it suffices to notice that the local ring Spec(OY,y) is given by lim←− Spec(OXi,xi)×Xi

Y , while the product Spec(OX ,x)×X Y is given by lim←− Spec(OXi,xi)×X Y . So by the separatedness
of Xi → X, we get the result.

And to show the continuity, it is suffices to check that Spa(Y,X)→ RZY (X)→ Xi is continu-
ous, which is straightforward.
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Openness and injection To show the openness and injection, we will need to look in more detail
about a special types of Y -modification of X we mentioned before, the Y -blowup of X. The following
is the basic property for Y -blowups of X:

Lemma 2.4. Assuming f is affine. Then the following is true:

(a) The family of Y -blowups of X is filtered. Then Xj is also a Y -blowup of Xi.

(b) Assume X ′ is open in X and Y ′ = X ′ ×X Y . Then any Y ′-blowup of X ′ can be extended to a
Y -blowup of X.

Then we can prove the following fact

Lemma 2.5. Given a quasi-compact open subset U ⊂ ValY (X), there exists a Y -modification X ′ of
X and an open subset U ⊂ X ′, such that U is the preimage of U in ValY (X).

By those properties above, it suffices to assume Y = Spec(B), X = Spec(A), and U = ValY (X)∩
Spa(Bb, A[a1

b , . . . ,
an

b ]). Then we get the Y -blowup by taking the homogenization. As an upshot,
we get the openness and the injection of ψ:

Corollary 2.6. The map ψ : ValY (X)→ RZY (X) is open and injective.

Here the injectivity is given by pick an U that contains y1 but not y2, and look at the U as the
Lemma above.

Another byproduct is the following property for the Y -blowup

Corollary 2.7. Any Y -modification of X can be dominated by a Y -blowup of X.

Quasi-compactness For the quasi-compactness of ValY , we will need to look in detail about
the relation between ValY (X) and Spa(Y,X). Recall that in a topological space, a point y is a
specialization of η if y is contained in the closure {η}. Then we actually have the following relation,
which illustrate why points in ValY (X) are called ”minimal”:

Lemma 2.8. Assume f is separated. Then any point y ∈ Spa(Y,X) admits a (unique minimal
horizontal) specialization in ValY (X),.

Another thing we need is the quasi-compactness of Spa(Y,X), which is showed by Huber.

Fact 2.9. Assume f is separated. Then Spa(Y,X) is isomorphic to the adic space defined by Huber.
In particular, it is quasi-compact.

Granting those two facts, we can get the quasi-compactness of ψ as follows. Let Uj be any
open covering of ValY (X). Since the topology on ValY (X) is defined as the induced topology from
Spa(Y,X), we can find open subsets U j in Spa(Y,X) restricting to Uj . Then every point in Spa(Y,X)
has a specialization in ValY (X), U j is an open covering of Spa(Y,X). So by the quasi-compactness
of Spa(Y,X), we are done.

3 Compactification

Again, we assume f is separated. In this section, we deal with the Nagata’s compactifaction, together
with the homeomorphism between ValY (X) and RZY (X) under this generality.

We first note that the homeomorphism ψ : ValY (X)→ RZY (X) is true when f is decomposable:
i.e. it can be written as a composition of an affine morphism followed by a proper morphism: when
f is factored as

Y
g // Z

h // X,

where h is proper, by definition we have RZY (Z) ∼= RZY (X).
It then turns out by using the Y -blowup of X, we can actually ”glue” affine morphisms, up to

the identity of RZ spaces:
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Theorem 3.1. Assume f : Y → X is a separated morphism between two qcqs schemes as before.
Then we have

1. There exists a topological base for ValY (X) by affinoid subdomains, which are defined as
ValY ′(X

′) for open affine subscheme Y ′ in Y , and affine scheme X ′ that is finite type and
separeted over X, satisfying an additional condition.

2. The finite union of affinoid subdomains is an open subset of ValY (X) that is of the form
ValY ′(X

′), where Y ′ is open in Y and X ′ is separated over X, such that Y ′ → X ′ is affine.

In particular, by the quasi-compactness of ValY (X), there exists the following

Y ′
i //

g

��

Y

f

��
X ′

h
// X.

where g is affine and i is open immersion, such that ValY ′(X
′) → ValY (X) is a homeomorphism.

Here it is clear that Y ′ must be the whole Y . So by using a stronger version of valuation criterion, we
get the morphism h : X ′ → X is proper. As an upshot, f is a composition of affine and proper map.
In this way,assuming f is finite type, then since a finite type affine morphism is quasi-projective, we
get the following

Corollary 3.2. Assume f is seperated and finite type between two qcqs schemes. Then it can be
factored as a compostion of open immersion and a proper map.

And note that by the homeomorphism for ψ when assuming f is affine, we get

Corollary 3.3. Assume f is seperated between two qcqs schemes. Then the map ψ : ValY (X) →
RZY (X) is a homeomorphism.

Remark 3.4. It is worthwhile to mention that in order to show the Nagata’s compactification, it
suffices to study ValY (X) directly, without introducing RZY (X) and prove the homeomorphism of
ψ. This is because the main ingredients for proving the compactification are the following:

• Basic topological properties of ValY (X) ([Tem11], 3.1), and the topological base of ValY (X)
by affinoid subdomains ([Tem11], 3.3.4).

• Properties of Y -blowups of X when f is affine ([Tem11], 3.4).

• Strong valuation criterion ([Tem11], 3.2).

• Patching of the affineness ([Tem11], 3.5.1).

All of those above does not need the limit interpretation of ValY (X).
However, we still need to notice that without the use of RZY (X) = lim←−i

Xi, we will need to
define the map η : Y → X , together with the meromorphic functions η∗OY in another way, instead
of doing as [Tem11], 3.5.2. And it is still very interesting to see how a pro-scheme, defined as an
inverse limit of schemes, can be described in terms of valuations.
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