
On proper and smooth schemes over Z

December 5, 2019

Haoyang Guo

Abstract

In this expository article, we follow Fontaine’s work [Fo2] and prove a result for the coho-
mology of a proper and smooth schemes over Z.

1 Introduction

Our main theorem is the following.

Theorem 1.0.1 ([Fo2], Theorem 1). Let X be a proper and smooth scheme over Q that has good
reduction everywhere. Then we have

Hj(X,ΩiX/Q) = 0, if i, j ∈ N, i 6= j, and i+ j ≤ 3.

Corollary 1.0.2. There is not proper and smooth scheme X over Z with the sheaf of differential
Ω1
X/Z being free (for instance, Abelian scheme over Z). And there exists no Calabi-Yau scheme of

relative dimension ≤ 3 over Z (for instance, K3 surface).

Proof. Assume X is a scheme over Z with Ω1
X/Z
∼= OdX . Then we have

H0(X,Ω1
X/Z) = H0(X,OX)d 6= 0,

a contradiction to the Theorem 1.0.1.

Here recall that a Calabi-Yau scheme X over Z is defined as a smooth proper scheme over Z
such that Ω

dim(X)
X/Z

∼= OX and

Hi(X,OX) = 0, 1 ≤ i ≤ dim(X)− 1.

The goal of this short note is to prove the Theorem 1.0.1, following [Fo2].

2 Proof of the Main theorem

For each prime number p, we fix an embedding of Q in Qp. Let G be the absolute Galois group

Gal(Q/Q), and Gp be the decomposition group of p in G, isomorphic to the local Galois group
Gal(Qp/Qp).

2.1 Decomposition of the Galois representations

First we reduce the main theorem to the following result about global Galois representations:
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Proposition 2.1.1. Let V be a finitely dimensional continuous representation of G = Gal(Q/Q)
over Q7. Assume V is unramified at any prime ` 6= 7 and is crystalline at 7, with its Hodge-Tate
weights at 7 contained in {0, 1, 2, 3}. Then there exists a G-equivariant filtration of subrepresenta-
tions

0 ⊂ V3 ⊂ V2 ⊂ V1 ⊂ V0 = V,

such that
Vi/Vi+1

∼= Q7(i)ni ,

where Q7(i) is the G-representation given by the i-th Tate twist on the one-dimensional vector space
Q7 with trivial action.

Proof of the Theorem 1.0.1. Let X be a proper smooth scheme over Q that has good reduction
everywhere. Consider the G-representation V = Hn

ét(XQ,Q7)(3) for n ≤ 3, which is a finitely
dimensional vector space over Q7. Then by the assumption that X has good reduction everywhere,
V is unramified at any prime ` 6= 7 and it crystalline at 7. Besides, since n ≤ 3, by the Hodge-Tate
decomposition V has Hodge-Tate weights inside [0, 3]. So by the Proposition 2.1.1, V admits a Galois
equivariant filtration with factors being direct sums of cyclotomoc characters of weight 0, 1, 2, 3.

Now by the Weil Conjecture for 7-adic cohomology of proper smooth variety over the finite
field F` (and the smooth base change theorem for 7-adic cohomology to compare the cohomology
before/after the reduction of X mod `), the eigenvalues of the mod-` Frobenius operator on the 7-adic
cohomology Hn

ét(XQ,Q7) is an algebraic number of absolute value `
n
2 for any ` 6= 7. In particular,

since the Proposition 2.1.1 implies that V is the consecutive extension of cyclotomic characters, the
absolute value of the Frobenius implies that

Hn
ét(XQ,Q7) =

{
0, 2 - n;

Q7(−n2 ), 2|n.

In this way, Hn
ét(XQ,Q7) vanishes when n = 1, 3, and equals to a direct sum of Q7(−1) when n = 2.

So by the Hodge-Tate decomposition for 7-adic cohomology (after the restriction from G to G7), we
get the Theorem 1.0.1.

2.2 Fontaine-Laffaille functor

We then reduce to show the Proposition 2.1.1. Our strategy is to use the Fontaine-Laffaille functor
and discuss the structure of the torsion Galois modules over Z7. The detailed discussion of Fontaine-
Laffaille theory can be found in the their original article [FL]; for a short English survey, see [BM]
Section 3.

We fix the notation in the rest of the article as follows: Let p be a prime number, k be a perfect
field of characteristic p, W = W (k) be the ring the Witt vector, and K = Frac(W ). Let GK be the
Galois group Gal(K/K).

Filtered Dieudonné module Recall that a filtered Dieudonné module M over W of weights [0, r]
is given by an W -module M together with the following datum:

(i) There exists a decreasing filtration of W -modules

M = Fil0M ⊃ Fil1M ⊃ · · · ⊃ FilrM.

(ii) For each 0 ≤ i ≤ r, there exists a σ-semi-linear morphism

ϕi : FiliM →M,

such that on Fili+1M we have ϕi(x) = pϕi+1(x).
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A morphism between two filtered Dieudonné module is an W -linear map that preserves the filtration
and commutes with ϕi.

We denote by MF
[0,r]
W to the category of filtered Dieudonné module over W of weights [0, r],

and let MF
[0,r]
W,f be the full subcategory of MF

[0,r]
W consisting of those filtered modules of finite length

over W that satisfies the following condition∑
0≤i≤r

ϕi(FiliM) = M.

Here we note that MF
[0,r]
W,f is an abelian category.

Fontaine-Laffaille functor Recall that the ring Acris is defined as the p-adic completion of the
divided power envelope of Ainf at the ideal ker(θ) = (ξ), where θ : Ainf → OCp

is the canonical

surjection and ξ = [ε]−1
ϕ−1([ε])−1 is the element in Ainf . Here ε is the element (1, ζp, ζp2 , . . .) in O[Cp

.

The ring Acris is a subring of the de Rham period ring B+
dR = lim←−Ainf [

1
p ]/ξm. It is equipped

with a ϕ action, mapping ξ into the ideal pAcris. Besides, the filtration of the de Rham period ring
induces a canonical filtration on Acris, given by

FiliAcris = Acris ∩ ξiB+
dR.

So we can define the ϕi action on FiliAcris as ϕi = ϕ/pi. This makes Acris a filtered Dieudonné
module, and so is the reduction Acris/p

nAcris for n ∈ N. We notice that by construction, Acris is
equipped with an GK-action that preserves the filtration and commutes with ϕi.

Now we recall the Fontaine-Laffaille functor:

Definition 2.2.1. Let M be an object in MF
[0,r]
W,f . The Fontaine-Laffaille functor FL is is given by

FL(M) := HomMF(M, lim−→Acris/p
nAcris),

which sends M to the category of finite length GK modules over W with GK-action induced by that
on Acris.

Here is one of the main result in the Fontaine-Laffaille theory:

Fact 2.2.2 (Equivalence). [FL] The Fontaine-Laffille functor induces an equivalence of categories

between the category MF
[0,r]
W,f and the category of torsion crystalline representations over Zp with

weights inside [0, r].

Here recall the category of torsion crystalline representations over Zp is the full subcategory of
continuous GK-modules of finite length that is of the form L1/L2, where L2 ⊂ L1 are two Galois
lattices in some crystalline representation V over Qp.

p-adic bound of the different ideal We recall another main result in [Fo2], which we are not
going to prove here:

Theorem 2.2.3. Let r be an integer in the interval (0, p− 1). Let M be an object in MF
[0,r]
W,f that is

killed by p. Suppose U = FL(M) and H is the kernel of the action of GK = Gal(K/K) on U , with

L = K
H

. Then we have
vp(DL/K) < 1 +

r

p− 1
,

where vp is the p-adic valuation on L with vp(p) = 1.

The proof is in the Section 3 in [Fo2], using the upper bounds of vp(DL/K) given in 1.5 of [Fo1].
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2.3 Structure of torsion representations for p = 7 and r = 3

We then study the structure of the torsion crystalline representations for p = 7, that is equipped
with a continuous global action by G = Gal(Q/Q). We let the residue field k be the field F7 in the
above discussion, and thereby we have W = Z7 and K = Q7.

Denote by C to be the category of finite torsion Z7 modules U with a continuous Gal(Q/Q)-
action that is unramified at any prime except possibly at 7. Here C is an abelian category. We let

C[0,3]
crys be the full subcategory of C consisting of those admissible modules U , in the sense that there

exists some M in MF
[0,3]
W,f such that U = FL(M).

Now we begin the discussion of torsion representations.

Lemma 2.3.1 (Triviality). Let

0 −→ U ′ −→ U −→ U ′′ −→ 0

be a short exact sequence in C[0,3]
crys , with G acting trivially on U ′ and U ′′. Then the action of G on

U is trivial.

Proof. By the Fact 2.2.2 and the assumption, there exists a short exact sequence of Filtered Dieudonné
modules

0 −→M ′ −→M −→M ′′ −→ 0, (1)

whose image under the Fontaine-Laffaille functor FL is the one given in the Lemma. Then we have
the following claim about the Galois action and the Filtration:

Claim 2.3.2. For U = FL(M) ∈ C[0,3]
crys , the G7 action on U is unramified if and only if Fil1M = 0.

Granting the Claim, since the G-action on U ′ and U ′′ are trivial, in particular the G7 action
are unramified, we know both Fil1M ′ and Fil1M ′′ vanish. So from the exactness of (1) above we
get Fil1M = 0, which implies that the G action on U is unramified at 7. But by assumption the

G-action on U ∈ C[0,3]
crys is also unramified at all the primes p that is not at 7. So the action of G on

U is unramified everywhere, which leads to the triviality (Here we note that the kernel of this action
correspond to a field extension of Q unramified everywhere, which is Q itself).

The next Lemma describe the simple object in C[0,3]
crys , which is the one of the places we need

p = 7.

Lemma 2.3.3 (Simple objects). Up to isomorphism, the only simple objects in C[0,3]
crys are F7(i) for

i = 0, 1, 2, 3.

Proof. Let U be a simple object in C[0,3]
crys , which is a finite dimensional F7 vector space with a

continuous G-action, unramified everywhere except possibly at 7. Let H be the kernel of this action

of G on U , and let E = QH , F = E(ζ7), n′ = [F : Q(ζ7)], n = 6n′ = [F : Q]. We also let H ′ be the
Gal(Q/E). Then notice that since Gal(Q/Q(ζ7)) is the kernel of the cyclotomic character of G on

F7(1), the subgroup H ′ is in fact the kernel of the G-action on V = U ⊕ F7(1) ∈ C[0,3]
crys .

Now by applying the Theorem 2.2.3 on V , we get

1

n
v7(δF/Q) =

1

n
v7(NF/Q(DF/Q))

= v7(DF/Q)

< 1 +
r

7− 1

≤ 1 +
3

6
.

Note that from the assumption of U ∈ C[0,3]
crys , the G-action on V is ramified only at 7. This suggests

that the extension F/Q is ramified only at 7, with the discriminant δF/Q being a power of 7. So we
get

|δF/Q|
1
n < 71+ 3

6 .
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In this way, by using the bounds of degree in terms of discriminant (Odlyzko-Poitou-Serre), we get
n ≤ 208.

We then make the following claim:

Claim 2.3.4. The extension F/Q is only tamely ramified at 7.

Granting the Claim, since the higher ramification subgroup Gi of Gal(F/Q) for i ≥ 1 is trivial,
by the [Se] Chap IV, Section 1, Proposition 4, we have

|δF/Q|
1
n = 7

∑
i=0(#Gi−1)

n = 7
#G1−1

n = 7
n−1
n < 7.

In particular, by the same method for the bounds of degree as above, we get n ≤ 10. But notice
that n = 6n′ for n′ ≥ 1, so we get n′ = 1 and F = Q(ζ7), which suggests that the action of G on
the finite dimensional F7 vector space U factors though (Z/7Z)∗. In this way, by the simpleness of

U , it must be of the form F7(i) for 0 ≤ i ≤ 6. And since U is in C[0,3]
crys , we get 0 ≤ i ≤ 3.

At last, we prove the Claim:

Proof of the Claim. If F/Q is not tamely ramified, since n ≤ 208 and 6|n, the wild ramified subgroup
N at 7 is of order 7, which by Sylow’s theory is the unique order 7 subgroup in Gal(F/Q). We take
F ′ to be FN , and let n′′ be [F ′ : Q(ζ7)], then we have

n′ = 7n′′.

Note that since F ′ is tamely ramified over Q, by the same method as above we have [F ′ : Q] =
6n′′ ≤ 10. In particular, this suggests that n′′ = 1, F ′ = Q(ζ7) and F/Q is of degree 42. But note
that by taking the eigenvector of the order 7 element of G in U , and by the simpleness of U , the G
action on U will factor though the order 6 quotient group, which contradicts that F/Q is of order
42. So we are done.

Remark 2.3.5. As pointed out by Fontaine (Exercise), the above proof in fact shows the following:

For any object U ∈ C[0,3]
crys that is F7-linear and corresponds to a field extension E/Q, the action of

G factors through a subgroup of Gal(E(ζ7)/Q), where the order of the latter divides 42.

Remark 2.3.6. It is not impossible to use other (concrete) prime numbers instead of 7; for whatever
prime we choose, the difference will be how good the bound of degree is, and how complicated the
discussion of modular representations of the finite Galois group is (as in the Claim).

The next Lemma describe the Ext group for F7-linear objects in C[0,3]
crys .

Lemma 2.3.7 (Extension). In C[0,3]
crys , except when i = 0 and j = 3, any F7-linear extension of F7(i)

by F7(j) is split.

Proof. We discuss the relation of i and j.

• If i = j, by twisting −i if needed, we reduce to the case in Lemma 2.3.1.

• Assume i > j, and let U = FL(M) be an extension of F7(i) by F7(j). Let Mi and Mj be
the preimage of F7(i) and F7(j) under the Fontaine-Laffaille functor FL. Then since i > j,
by the relation between the Hodge-Tate weights of torsion crystalline representations and the
filtration of filtered Dieudonné modules, the filtration of M is given by

M = Fil0M = · · · = FiljM ) Filj+1M = · · · = FiliM ) Fili+1M = 0.

In particular, the embedding of FiliM ⊂ M induces a section of the projection M −→ M ′′,
which makes M splits. So after applying the Fontaine-Fallaille functor, we see U splits as
representation of G7 (Note that a priori not the whole G). However, note that the G7-action
on F7(i) ⊕ F7(j) has kernel living inside Gal(Q/Q(ζ7)) ⊂ G, while the G action on U is
unramified at all the other primes. In this way, if U is nonsplit as an G-representation, we
get a degree 7 extension of Q(ζ7) (see the Remark 2.3.5) that is unramified everywhere, which
does not exist. So we are done.
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• Assume i < j, U is nonsplit, and up to a twist we may assume i = 0. Then the matrix form
of the G action has the form (

χj ∗
1

)
.

By the non-splitness of the representation, the image of G in this subgroup of GL2(F7) contains
an element of order 7.

We let H be the kernel of this action, E = QH , and F = E(ζ7). Then as in the Remark 2.3.5,
the field extension F/Q(ζ7) is of order 7 and unramified at every prime except at 7. This
implies that the extension F/Q(ζ7) is wildly ramified, and F/Q is totally ramified at 7 and
unramified at all the other prime numbers. We then make the following claim:

Claim 2.3.8. The lower ramification index of order 7 elements in Gal(F/Q) is exactly equal
to j.

Granting this, the norm of the discriminant δF/Q satisfies

|δF/Q|
1
42 = 7

1·(42−7)+(j+1)·6
42 = 7

41+6j
42 .

If j ≤ 2, then the above value is smaller than 11.66, which by the upper bound of the degree
using Odlyzko-Poitou-Serre method implies

[F : Q] ≤ 28,

contradicting to equality [F : Q] = 42. So we are done.

Corollary 2.3.9. In the category C[0,3]
crys , the extension group Ext1

C[0,3]crys
(F7(i),F7(j)) is trivial unless

the following possible situations:

• When i = 0 and j = 3.

• When i = j, where the only nontrivial extension is Z/72(i).

Proof. We first assume i 6= j, Then the only possible nonsplit F7-linear extension is given by the
Lemma 2.3.7. If U is not killed by 7, then as an abelian group it is isomorphic to Z/72e, which is

cyclic. We take U ′ to be the subrepresentation generated by 7e, then in the category C[0,3]
crys we have

0 −→ U ′ −→ U −→ U/U ′ −→ 0,

where both U ′ and U/U ′ are F7-linear. Note that since the multiplication by 7 commutes with the
G-action, U ′ and U/U ′ are isomorphic. In particular the Jordan-Hölder factors of U are two copies
of isomorphic simple objects, which contradicts to the assumption of i 6= j.

At last, when i = j, by twisting (−i) this reduces to the extension of F7 by F7 in the category
of abelian groups, where the only nonsplit extension is Z/72.

Our next Lemma describe the decomposition of the F7-linear object in C[0,3]
crys , under a assumption

of its Jordan-Hölder factors:

Lemma 2.3.10 (Decomposition). Assume U is an object in C[0,3]
crys that has no quotient isomorphic

to F7. Then U can be written as

U =

3⊕
i=1

Ni(i),

where Ni are torsion Z7-modules with trivial G-action.

Proof. We first notice the following two observations:
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Claim 2.3.11. Any cyclic object in C[0,3]
crys that has no quotient isomorphic to F7 is isomorphic to

Z/7n(i) for some n ∈ N and i = 1, 2, 3.

Claim 2.3.12. Any indecomposable object U ∈ C[0,3]
crys that has no quotient isomorphic to F7 is

cyclic, i.e. as an G-module it can be generated by one element in U .

We first assume those two Claims. Then the Lemma can be done by induction on the order
of U : When U is of order 7, then it is F7 linear of dimension one, hence equals to some F7(i) for

i = 1, 2, 3. For general U , we can write it in terms of an extension sequence in C[0,3]
crys :

0 −→ U ′ −→ U −→ F7(i) −→ 0, (∗)

for some i 6= 0. Then we notice that U ′ also satisfies the assumption; otherwise by taking an quotient
of U ′ by a sub G-module U ′′, the above sequence can produce the following short sequence

0 −→ Fp(0) −→ U/U ′′ −→ F7(i) −→ 0,

which by the Lemma 2.3.7 is split. So we get a contradiction.
Now we discuss the decomposition of U ′

• Assume U ′ is indecomposable. Then by the Claim above it has the form Z/7n(j) for j 6= 0,
and the sequence (∗) becomes

0 −→ Z/7n(j) −→ U −→ F7(i) −→ 0.

If this sequence splits, then we are done. Otherwise, either i = j and by twisting and the
Lemma 2.3.1 we are done, or i 6= j and U is cyclic, hence the result follows from the above
two Claims.

• If U ′ = U ′1 ⊕ U ′2 is decomposable, then by the induction both U/U ′1 and U/U ′2 satisfies the
Lemma and has the decomposition. Note that U is a submodule of U/U ′1 ⊕ U/U ′2, so we are
done.

Proof of the Claim 2.3.11. Let U be a cyclic object in C[0,3]
crys that has no quotient isomorphic to F7.

We prove by induction on the order of U . If U is of order 7, then it is of dimension one over F7, which
is done by the Lemma 2.3.3. Assume in general. Let U ′ ∼= F7(j) be a simple subobject of U . Then
since the quotient U/U ′ is cyclic without quotient isomorphic to F7, by induction U/U ′ ∼= Z/7m(i)

for some i 6= 0. So we get the following short exact sequence in C[0,3]
crys :

0 −→ F7(j) −→ U −→ Z/7m(i) −→ 0,

with U being cyclic. So by the Corollary 2.3.9 and the exact sequence of Z/7m(i) formed by 7-power
subgroups, the above sequence is nonsplit only when i = j (note that i 6= 0). In this way, by twisting
with (−i), we reduce to a cyclic extension of Z/7m by F7 in the category of abelian groups, which
is done.

Proof of the Claim 2.3.12. We induct on the number of generators in U . If U is cyclic, then this is
the Claim 2.3.11. Assume U has n minimal generators e1, . . . , en. Let U ′ be the subrepresentation
generated by e1, . . . , en−1, and let U ′′ be the one generated by en. By induction, we have U ′ = N(i)
and U ′′ = Z/7m(j), for N being an torsion Z7-module. Besides, since el are minimal, the intersection
U ′ ∩ U ′′ are nontrivial subrepresentation of both U ′ and U ′′. In this way, since the Jordan-Hölder
factors of U ′∩U ′′ contributes to that of both U ′ and U ′′, we see i = j. Hence we are done by Lemma
2.3.1.
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2.4 Proof of the Proposition 2.1.1

At last, we finish the proof of the Proposition 2.1.1. We will show the following torsion variant first,
with the use of the tools we developed in the last subsection.

Proposition 2.4.1. Let U = FL(M) be an object in C[0,3]
crys . Then there exists an G-equivariant

filtration of subrepresentations
0 ⊂ U3 ⊂ U2 ⊂ U1 ⊂ U0 = U,

such that Ui/Ui+1
∼= Ni(i) is the i-th Tate twist of a finite Z7 module Ni.

Proof. We prove this by the induction of orders. When #U is 7, it is an F7-linear space of dimension
one, and is done by the Lemma 2.3.3. In general, if U has no quotient isomorphic to F7, then this
is done by the Lemma 2.3.10.

Otherwise, we can get the following short exact sequence in C[0,3]
crys :

0 −→ U ′ −→ U −→ F7 −→ 0. (∗)

By the induction, U ′ admits the required filtration U ′i . So we take the quotient of (∗) by U ′1, and
get

0 −→ U ′/U ′1 −→ U/U ′1 −→ F7 −→ 0.

By assumption, G acts trivially on both U ′/U ′1 and F7. Thus the Lemma 2.3.1 implies that U/U ′1
has trivial action. Hence the filtration

0 ⊂ U ′3 ⊂ U ′2 ⊂ U ′1 ⊂ U0 = U

does the job.

Proof of the Proposition 2.1.1. We take an G-lattice L inside of V and consider the sequ ence given

by L/7nL ∈ C[0,3]
crys . Then the result follows from the above Proposition.
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