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Abstract

This is the note for the talk on F-modules in the winter semester, 2018. We follow the section
3 in the Lyubeznik’s paper [Ly]

We fix R to be a Noetherian regular ring of characteristic p > 0. In this note, we will prove the
finite length property and the existence of minimal root for F-finite modules, under some condition
on R.

1 Finite length

Here is our first theorem

Theorem 1.1 ([Ly], 3.2). Assume R is furthermore finitely generated over a Noetherian regular ring
of characteristic p. Let M be a F -finite module over R. Then it is of finite length in the category
FR −mod.

We separate the proof into several parts:

Proof.

Step 1 We first reduce to the case that R = R1[x1, . . . , xn] is a polynomial ring over a Noetherian
regular ring R1.

Proposition 1.2 ([Ly], 3.1). Let B be a finitely generated regular ring of characteristic p
such that B → R is surjective with the kernel I. Let Z = Spec(R) be the closed subscheme of
X = Spec(B). Then there is an one-to-one correspondence between FB −mod with support in
Z and FR −mod, such that the FB-finite modules with support in Z corresponds to FR-finite
modules.

Remark 1.3. For the proposition given above, there is a naive way of working from a FB-
modules with support in Z to a FR-modules, by taking the submodule killed by I directly,
which is exactly HomB(R,M ). It is a FR-module, since there exists a B-linear map from
HomB(R,M ) to FB(HomB(R,M ) for the exactness of FB . And by quotient B′ → R′ = B/I,
we get a R-linear map HomB(R,M ) → FR(HomB(R,M )), whose limit is a FR-module.
Besides, this construction carries through FR-finiteness (which is obvious once we know the
proof above, since the difference is just a twist of ω). And under the assumption that R and
B are regular, the R-linear map before taking the limit is already isomorphic.

However, to find out the opposite direction, namely given a FR-module N we need to find a
FB-module M such that

N = HomB(R,M ).

This is not very clear: say if we start with B = k[xi] and R = B/f for an irreducible polynomial
f such that R is regular. We choose N equal R itself. Then we need an B-module such that
B/f = HomB(B/f,M ) = M [f ]. If we look at FB(R), which is isomorphic to B/I [p] = B/fp,
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then to give a B-linear map from R to FB(R), we need to specify an element in B/I [p] that
is killed by I, which is equivalent to the annihilator of I in B/I [p]. So this suggest us to look
at the structure of annihilator and think about possible construction, making everything is
B-linear.

Proof. The tricky part is to construct the correspondence, where we need the use of the
annihilator of I in B/I [p].

We first give the following claim:

Claim 1.4. Let r = codimX(Z). Then we have

AnnB/I[p](I) = ω⊗p−1,

where ω is the invertible sheaf ∧rI/I2 over Z.

Since R and B are regular, Z is of complete intersection and the ideal I/I2 is invertible over
Z, locally of rank r. Assume I is locally generated by f1, . . . , fr in B. Then the annihilator
of I in B/I [p] is locally generated by

∏r
i=1 f

p−1
i , such that the base-changing coefficient over

B/I [p] is detp−1, which is exactly the gluing datum for ωp−1. Thus we get the above Claim.

Based on this, we now give the construction as follows:{
FB −mod M with supp(M ) ⊆ Z

}
⇐⇒

{
FR −mod N

}
;

M 7−→ ω ⊗R HomB(R,M );

lim−→Fn
B(ω−1 ⊗R N )←− [ N .

Here we only check the FB and FR structure. Assume M is a FB-module with support in Z.
Then HomB(R,M ) is the submodule of M killed by I, and we get

ω ⊗R HomB(R,M )→ ω ⊗R HomB(R,FB(M ))

= ω ⊗HomB(R,HomB(FB(R), FB(M )))

= ω ⊗HomB(R,FB(HomB(R,M )))

= ω ⊗ (ωp−1 ⊗HomB(R,M ))

= ωp ⊗R HomB(R,M )

= FR(ω ⊗R HomB(R,M )).

On the other hand, for a FR-module N , we have

ω−1 ⊗R N → ωp−1 ⊗R ω
−p ⊗ FR(N )

= ωp−1 ⊗R FR(ω−1 ⊗N )

= ωp−1 ⊗B B′ ⊗B (ω−1 ⊗N )

→ B/I [p] ⊗B B′ ⊗B (ω−1 ⊗N )

= FB(ω−1 ⊗N ).

Step 2 Then we reduce to the case that R is local complete. Consider the ring R2[t0, . . . , tn] , and
the multiplication subset consisting of elements not in (m, t0, . . . , tn). We then define an

embedding of R into R̃ = (S−1R2)[t−10 ], mapping xi onto ti/t0. Then we make the following
claim:

Claim 1.5. The map R→ R̃ is faithfully flat.
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Granting the Claim, by the faithful flatness, a sequence of FR-modules satisfies d.c.c. if and
only if its pullback along the map satisfies d.c.c. So by the fact that R̃ is a localization of
the local ring S−1R2, we could assume R itself is local. And since R is noetherian, where
the completion is also faithfully flat, by taking the pullback we could assume R is a complete
regular local ring.

The claim is not hard.

Step 3 At last, we consider the modules over the local complete ring. We denote by M to be a root
of M over R. Let N1 ⊃ N2 ⊃ · · · be a descending sequence of submodules of M such that

Ni = M ∩ F (Ni),

which corresponds to F -submodule of M (see [Ly] 2.6). We let N be ∩iNi. Then the goal is
to prove that there exists some i such that N = Ni.

We first note that by

M ∩ F (N) = M ∩ F (∩iNi) ⊆M ∩ F (Ni) = Ni,

we have M ∩ F (N) ⊆ ∩iNi = N . And the condition becomes as follows:
N = ∩Ni;

Ni ⊆M ∩ F (Ni);

M ∩ F (N) ⊆ N.

Then we use the following observation derived from Nakayama’s Lemma, together with Artin-
Rees Lemma

Lemma 1.6 ([Ly], 3.3). Let {Ni, i ∈ I} be a collection of submodules of M over a complete
Noetherian local ring R, such that M is finitely generated, and the collection is closed under
finite intersection. Then for each s ∈ N, there exists some i such that

Ni ⊂ N +msM.

By the assumption and the lemma, for each s > 0, there exists some i such that

Ni = M ∩ F (Ni) ⊆M ∩ F (N +msM) ⊆M ∩ (F (N) +mpsF (M)),

Due to the Artin-Rees Lemma, there exists some r > 0, such that for any t > r, we have

M ∩ (F (N) +mtF (M)) ⊆M ∩ F (N) +mt−rM.

So if there is no Ni equaling to N , we could then pick a s large enough, together with Ni such
that {

Ni ⊆ N +msM ;

Ni * N +ms+1M.

Then from the long inclusion of Ni above and the Artin-Rees Lemma, we know that

Ni ⊆M ∩ (F (N) +mpsF (M)) ⊆M ∩ (F ) +mps−rM,

which contradicts to our assumption when s+ 1 ≤ ps− r, i.e. s is large enough. So
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2 Minimal root

In this section, we prove the existence of the minimal root. Here is our statement:

Theorem 2.1 ([Ly], 3.5). Let R be a complete regular local ring of characteristics p. Then any
F -finite module M has a minimal root, in the sense that any root of M contains it as a submodule.

Proof.

Step 1 We first try to construct the one. Define θ to be the structure map θ : M → F (M ), and let
M be a root of M . Recall that for a submodule N of M , it is a root of some F -submodule of
M if and only if

N ⊆ θ−1(F (N)),

equivalently it means the map N →M → F (M) factors through F (N)→ F (M).

We then observe that under the map θ : M → F (M), it may be possible to replace M by a
submodule N such that

M //

""

F (M)

F (N)

;;

Besides, once the above condition holds, by taking the inclusion we naturally get

N → F (N)

compatible with θ such that N is a smaller root than M . And since we want a minimal object,
we want N to be as small as possible. Our strategy here is iterating the above process so that
we could filter M by a series of sub-roots, and show that it will stabilizes to some step so that
any root of M contains it.

Then to make the submodule N we get above as small as possible, we need the following claim:

Claim 2.2. The collection of submodules N of M such that

θ : M ⊆ F (N)

has a unique minimal object, given by the intersection of all of those modules.

Granting the Claim, we proceed as follows: Let M1 be the minimal module given in the Claim,
and inductively let Mi be the minimal submodule of M such that

Mi−1 ⊆ F (Mi).

Then we get a descending sequence

M1 ⊇M2 ⊇ · · · .

We will show that the intersection is what we want in the following.

Step 2 We then show that for each root N ⊆ M , there exists some i such that N contains Mi.Note
that by definition of how we choose those Mj , in order for Mi ⊆ N , it is equivalent to the
condition that

Mi−1 ⊂ F (N)

under the structure map θ. And by proceed it to the bottom, it is equivalent to the condition
that

M = M0 ⊂ F i(N).
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But note that since N is a root of M , we have

M = lim−→
i

F i(N) =
⋃
i

F i(N).

So by the noetherian condition of M , we see there exists some i such that

M ⊆ F i(N),

and thus Mi ⊆ N .

Step 3 From the above discussion, if we show that the sequence Mi stabilizes, then since every root
N ⊆ M of M contains some Mi, the stabilized object will be contained in all of those roots,
and we are done. (Here we note that the intersection of two roots is also a root, which follows
from the exactness of F . So it suffices to talk about roots inside M .)

To show the stability, we use the thing we have before. Let N be the intersection of Mi. Then
we note that by construction above, we have

Mi ⊆Mi−1 ⊆ F (Mi), Mi ⊆M0 = M,

i.e. Mi ⊆M ∩ F (Mi). On the other hand, by the noetherian condition, for each s ∈ N, there
exists some i such that

Mi ⊆ N +msM,

and by taking the F functor, we have

N ⊂ ∩iF (Mi) ⊆ ∩sF (N +msM) = F (N),

i.e. N ⊆ F (N), and N is a root of F -submodule N of M .

Now we need the induction on the length `(M ). When `(M ) = 1, M is simple, either N = 0
or N = M . If it is 0, then N itself is trivial, satisfies

M ∩ F (N) ⊆ N = 0.

Thus by the last step discussion of the proof of the first theorem 1.1 (cf [Ly], 3.4), we see there
exists some i such that Mi = N = 0, a contradiction to the construction. Hence N = M ,
and N is the minimal root of M .

Next we assume the result is true for lower lengths. We take the exact sequence associated
with some simple F -submodules of M , get

0 −→M ′ −→M −→M ′′ −→ 0.

Then the intersection with M ′ (image in M ′′) of Mi are roots of M ′ (M ′′). By the same
discussion as above, M ′ ∩Mi stabilizes. So by the induction and quotient by M ′, we see the
image of Mi in M ′′ also stabilizes. Hence the original sequence stops at some i, and we get
the result.

Remark 2.3. I came up with a slightly different but more natural proof. The idea is to take the
intersection of all of the root of M , and show that it is also a root, of M .

Let S be the collection of all roots of M , and let N be the intersection of all of the roots. Then
we apply the Zorn’s lemma to S. Here for each decreasing sequence under inclusions, we use the
discussion given in the Step 3 of the original proof, to show that it stabilizes at some finite step.
Then we get a minimal element N ′, which is also a root of M .

At last, note that since N ′ ∩M ⊆M is also a root of M for any given root M (because of the
exactness of F , and the exactness of the following

0 −→ N ′ ∩M −→ N ′ ⊕M −→M .

), by the choice of N ′, we see N ′ ∩M = N ′, and N ′ = N .
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Remark 2.4. The above proof is almost correct, except for the formalism. Namely the use of
inclusions in the Step 1 and Step 2 are not precise, since by passing to the image of some module in
F i(N), the compatible way is to use the map given by the pullback of θ along several powers of F .
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