F-finite modules

March 26, 2018

Haoyang Guo

Abstract

This is the note for the talk on F-modules in the winter semester, 2018. We follow the section 3 in the Lyubeznik's paper Ly

We fix R to be a Noetherian regular ring of characteristic $p>0$. In this note, we will prove the finite length property and the existence of minimal root for F -finite modules, under some condition on R.

1 Finite length

Here is our first theorem
Theorem 1.1 ($(\overline{L y}, 3.2)$. Assume R is furthermore finitely generated over a Noetherian regular ring of characteristic p. Let \mathscr{M} be a F-finite module over R. Then it is of finite length in the category F_{R} - mod.

We separate the proof into several parts:

Proof.

Step 1 We first reduce to the case that $R=R_{1}\left[x_{1}, \ldots, x_{n}\right]$ is a polynomial ring over a Noetherian regular ring R_{1}.
Proposition 1.2 (Ly, 3.1). Let B be a finitely generated regular ring of characteristic p such that $B \rightarrow R$ is surjective with the kernel I. Let $Z=\operatorname{Spec}(R)$ be the closed subscheme of $X=\operatorname{Spec}(B)$. Then there is an one-to-one correspondence between F_{B}-mod with support in Z and F_{R}-mod, such that the F_{B}-finite modules with support in Z corresponds to F_{R}-finite modules.

Remark 1.3. For the proposition given above, there is a naive way of working from a $F_{B^{-}}$ modules with support in Z to a F_{R}-modules, by taking the submodule killed by I directly, which is exactly $\operatorname{Hom}_{B}(R, \mathscr{M})$. It is a F_{R}-module, since there exists a B-linear map from $\operatorname{Hom}_{B}(R, \mathscr{M})$ to $F_{B}\left(\operatorname{Hom}_{B}(R, \mathscr{M})\right.$ for the exactness of F_{B}. And by quotient $B^{\prime} \rightarrow R^{\prime}=B / I$, we get a R-linear map $\operatorname{Hom}_{B}(R, \mathscr{M}) \rightarrow F_{R}\left(\operatorname{Hom}_{B}(R, \mathscr{M})\right)$, whose limit is a F_{R}-module. Besides, this construction carries through F_{R}-finiteness (which is obvious once we know the proof above, since the difference is just a twist of ω). And under the assumption that R and B are regular, the R-linear map before taking the limit is already isomorphic.
However, to find out the opposite direction, namely given a F_{R}-module \mathscr{N} we need to find a F_{B}-module \mathscr{M} such that

$$
\mathscr{N}=\operatorname{Hom}_{B}(R, \mathscr{M})
$$

This is not very clear: say if we start with $B=k\left[x_{i}\right]$ and $R=B / f$ for an irreducible polynomial f such that R is regular. We choose \mathscr{N} equal R itself. Then we need an B-module such that $B / f=\operatorname{Hom}_{B}(B / f, \mathscr{M})=\mathscr{M}[f]$. If we look at $F_{B}(R)$, which is isomorphic to $B / I^{[p]}=B / f^{p}$,
then to give a B-linear map from R to $F_{B}(R)$, we need to specify an element in $B / I^{[p]}$ that is killed by I, which is equivalent to the annihilator of I in $B / I^{[p]}$. So this suggest us to look at the structure of annihilator and think about possible construction, making everything is B-linear.

Proof. The tricky part is to construct the correspondence, where we need the use of the annihilator of I in $B / I^{[p]}$.
We first give the following claim:
Claim 1.4. Let $r=\operatorname{codim}_{X}(Z)$. Then we have

$$
A n n_{B / I^{[p]}}(I)=\omega^{\otimes p-1}
$$

where ω is the invertible sheaf $\wedge^{r} I / I^{2}$ over Z.
Since R and B are regular, Z is of complete intersection and the ideal I / I^{2} is invertible over Z, locally of rank r. Assume I is locally generated by f_{1}, \ldots, f_{r} in B. Then the annihilator of I in $B / I^{[p]}$ is locally generated by $\prod_{i=1}^{r} f_{i}^{p-1}$, such that the base-changing coefficient over $B / I^{[p]}$ is det^{p-1}, which is exactly the gluing datum for ω^{p-1}. Thus we get the above Claim.

Based on this, we now give the construction as follows:

$$
\begin{aligned}
\left\{F_{B}-\bmod \mathscr{M} \text { with } \operatorname{supp}(\mathscr{M}) \subseteq Z\right\} & \Longleftrightarrow\left\{F_{R}-\bmod \mathscr{N}\right\} ; \\
\mathscr{M} & \longmapsto \omega \otimes_{R} \operatorname{Hom}_{B}(R, \mathscr{M}) ; \\
\longrightarrow \longrightarrow \lim _{B}^{n}\left(\omega^{-1} \otimes_{R} \mathscr{N}\right) & \longleftrightarrow \mathscr{N} .
\end{aligned}
$$

Here we only check the F_{B} and F_{R} structure. Assume \mathscr{M} is a F_{B}-module with support in Z. Then $\operatorname{Hom}_{B}(R, \mathscr{M})$ is the submodule of \mathscr{M} killed by I, and we get

$$
\begin{aligned}
\omega \otimes_{R} \operatorname{Hom}_{B}(R, \mathscr{M}) & \rightarrow \omega \otimes_{R} \operatorname{Hom}_{B}\left(R, F_{B}(\mathscr{M})\right) \\
& =\omega \otimes \operatorname{Hom}_{B}\left(R, \operatorname{Hom}_{B}\left(F_{B}(R), F_{B}(\mathscr{M})\right)\right) \\
& =\omega \otimes \operatorname{Hom}_{B}\left(R, F_{B}\left(\operatorname{Hom}_{B}(R, \mathscr{M})\right)\right) \\
& =\omega \otimes\left(\omega^{p-1} \otimes \operatorname{Hom}_{B}(R, \mathscr{M})\right) \\
& =\omega^{p} \otimes_{R} \operatorname{Hom}_{B}(R, \mathscr{M}) \\
& =F_{R}\left(\omega \otimes_{R} \operatorname{Hom}_{B}(R, \mathscr{M})\right)
\end{aligned}
$$

On the other hand, for a F_{R}-module \mathscr{N}, we have

$$
\begin{aligned}
\omega^{-1} \otimes_{R} \mathscr{N} & \rightarrow \omega^{p-1} \otimes_{R} \omega^{-p} \otimes F_{R}(\mathscr{N}) \\
& =\omega^{p-1} \otimes_{R} F_{R}\left(\omega^{-1} \otimes \mathscr{N}\right) \\
& =\omega^{p-1} \otimes_{B} B^{\prime} \otimes_{B}\left(\omega^{-1} \otimes \mathscr{N}\right) \\
& \rightarrow B / I^{[p]} \otimes_{B} B^{\prime} \otimes_{B}\left(\omega^{-1} \otimes \mathscr{N}\right) \\
& =F_{B}\left(\omega^{-1} \otimes \mathscr{N}\right)
\end{aligned}
$$

Step 2 Then we reduce to the case that R is local complete. Consider the ring $R_{2}\left[t_{0}, \ldots, t_{n}\right]$, and the multiplication subset consisting of elements not in $\left(m, t_{0}, \ldots, t_{n}\right)$. We then define an embedding of R into $\widetilde{R}=\left(S^{-1} R_{2}\right)\left[t_{0}^{-1}\right]$, mapping x_{i} onto t_{i} / t_{0}. Then we make the following claim:

Claim 1.5. The map $R \rightarrow \widetilde{R}$ is faithfully flat.

Granting the Claim, by the faithful flatness, a sequence of F_{R}-modules satisfies d.c.c. if and only if its pullback along the map satisfies d.c.c. So by the fact that \widetilde{R} is a localization of the local ring $S^{-1} R_{2}$, we could assume R itself is local. And since R is noetherian, where the completion is also faithfully flat, by taking the pullback we could assume R is a complete regular local ring.
The claim is not hard.
Step 3 At last, we consider the modules over the local complete ring. We denote by M to be a root of \mathscr{M} over R. Let $N_{1} \supset N_{2} \supset \cdots$ be a descending sequence of submodules of M such that

$$
N_{i}=M \cap F\left(N_{i}\right)
$$

which corresponds to F-submodule of \mathscr{M} (see Ly 2.6). We let N be $\cap_{i} N_{i}$. Then the goal is to prove that there exists some i such that $N=N_{i}$.
We first note that by

$$
M \cap F(N)=M \cap F\left(\cap_{i} N_{i}\right) \subseteq M \cap F\left(N_{i}\right)=N_{i}
$$

we have $M \cap F(N) \subseteq \cap_{i} N_{i}=N$. And the condition becomes as follows:

$$
\left\{\begin{array}{l}
N=\cap N_{i} \\
N_{i} \subseteq M \cap F\left(N_{i}\right) \\
M \cap F(N) \subseteq N
\end{array}\right.
$$

Then we use the following observation derived from Nakayama's Lemma, together with ArtinRees Lemma

Lemma 1.6 (Ly , 3.3). Let $\left\{N_{i}, i \in I\right\}$ be a collection of submodules of M over a complete Noetherian local ring R, such that M is finitely generated, and the collection is closed under finite intersection. Then for each $s \in \mathbb{N}$, there exists some i such that

$$
N_{i} \subset N+m^{s} M
$$

By the assumption and the lemma, for each $s>0$, there exists some i such that

$$
N_{i}=M \cap F\left(N_{i}\right) \subseteq M \cap F\left(N+m^{s} M\right) \subseteq M \cap\left(F(N)+m^{p s} F(M)\right)
$$

Due to the Artin-Rees Lemma, there exists some $r>0$, such that for any $t>r$, we have

$$
M \cap\left(F(N)+m^{t} F(M)\right) \subseteq M \cap F(N)+m^{t-r} M
$$

So if there is no N_{i} equaling to N, we could then pick a s large enough, together with N_{i} such that

$$
\left\{\begin{array}{l}
N_{i} \subseteq N+m^{s} M \\
N_{i} \nsubseteq N+m^{s+1} M
\end{array}\right.
$$

Then from the long inclusion of N_{i} above and the Artin-Rees Lemma, we know that

$$
N_{i} \subseteq M \cap\left(F(N)+m^{p s} F(M)\right) \subseteq M \cap(F)+m^{p s-r} M,
$$

which contradicts to our assumption when $s+1 \leq p s-r$, i.e. s is large enough. So

2 Minimal root

In this section, we prove the existence of the minimal root. Here is our statement:
Theorem 2.1 ($\overline{\mathrm{Ly}}, 3.5$). Let R be a complete regular local ring of characteristics p. Then any F-finite module \mathscr{M} has a minimal root, in the sense that any root of \mathscr{M} contains it as a submodule.

Proof.
Step 1 We first try to construct the one. Define θ to be the structure map $\theta: \mathscr{M} \rightarrow F(\mathscr{M})$, and let M be a root of \mathscr{M}. Recall that for a submodule N of M, it is a root of some F-submodule of \mathscr{M} if and only if

$$
N \subseteq \theta^{-1}(F(N)),
$$

equivalently it means the map $N \rightarrow M \rightarrow F(M)$ factors through $F(N) \rightarrow F(M)$.
We then observe that under the map $\theta: M \rightarrow F(M)$, it may be possible to replace M by a submodule N such that

Besides, once the above condition holds, by taking the inclusion we naturally get

$$
N \rightarrow F(N)
$$

compatible with θ such that N is a smaller root than M. And since we want a minimal object, we want N to be as small as possible. Our strategy here is iterating the above process so that we could filter M by a series of sub-roots, and show that it will stabilizes to some step so that any root of \mathscr{M} contains it.
Then to make the submodule N we get above as small as possible, we need the following claim:
Claim 2.2. The collection of submodules N of M such that

$$
\theta: M \subseteq F(N)
$$

has a unique minimal object, given by the intersection of all of those modules.
Granting the Claim, we proceed as follows: Let M_{1} be the minimal module given in the Claim, and inductively let M_{i} be the minimal submodule of M such that

$$
M_{i-1} \subseteq F\left(M_{i}\right)
$$

Then we get a descending sequence

$$
M_{1} \supseteq M_{2} \supseteq \cdots .
$$

We will show that the intersection is what we want in the following.
Step 2 We then show that for each root $N \subseteq M$, there exists some i such that N contains M_{i}. Note that by definition of how we choose those M_{j}, in order for $M_{i} \subseteq N$, it is equivalent to the condition that

$$
M_{i-1} \subset F(N)
$$

under the structure map θ. And by proceed it to the bottom, it is equivalent to the condition that

$$
M=M_{0} \subset F^{i}(N)
$$

But note that since N is a root of \mathscr{M}, we have

$$
\mathscr{M}=\underset{i}{\lim _{\rightarrow}} F^{i}(N)=\bigcup_{i} F^{i}(N)
$$

So by the noetherian condition of M, we see there exists some i such that

$$
M \subseteq F^{i}(N)
$$

and thus $M_{i} \subseteq N$.
Step 3 From the above discussion, if we show that the sequence M_{i} stabilizes, then since every root $N \subseteq M$ of \mathscr{M} contains some M_{i}, the stabilized object will be contained in all of those roots, and we are done. (Here we note that the intersection of two roots is also a root, which follows from the exactness of F. So it suffices to talk about roots inside M.)
To show the stability, we use the thing we have before. Let N be the intersection of M_{i}. Then we note that by construction above, we have

$$
M_{i} \subseteq M_{i-1} \subseteq F\left(M_{i}\right), \quad M_{i} \subseteq M_{0}=M
$$

i.e. $M_{i} \subseteq M \cap F\left(M_{i}\right)$. On the other hand, by the noetherian condition, for each $s \in \mathbb{N}$, there exists some i such that

$$
M_{i} \subseteq N+m^{s} M
$$

and by taking the F functor, we have

$$
N \subset \cap_{i} F\left(M_{i}\right) \subseteq \cap_{s} F\left(N+m^{s} M\right)=F(N)
$$

i.e. $N \subseteq F(N)$, and N is a root of F-submodule \mathscr{N} of \mathscr{M}.

Now we need the induction on the length $\ell(\mathscr{M})$. When $\ell(\mathscr{M})=1$, \mathscr{M} is simple, either $\mathscr{N}=0$ or $\mathscr{N}=\mathscr{M}$. If it is 0 , then N itself is trivial, satisfies

$$
M \cap F(N) \subseteq N=0
$$

Thus by the last step discussion of the proof of the first theorem 1.1 (cf Ly, 3.4), we see there exists some i such that $M_{i}=N=0$, a contradiction to the construction. Hence $\mathscr{N}=\mathscr{M}$, and N is the minimal root of \mathscr{M}.
Next we assume the result is true for lower lengths. We take the exact sequence associated with some simple F-submodules of \mathscr{M}, get

$$
0 \longrightarrow \mathscr{M}^{\prime} \longrightarrow \mathscr{M} \longrightarrow \mathscr{M}^{\prime \prime} \longrightarrow 0
$$

Then the intersection with \mathscr{M}^{\prime} (image in $\left.\mathscr{M}^{\prime \prime}\right)$ of M_{i} are roots of $\mathscr{M}^{\prime}\left(\mathscr{M}^{\prime \prime}\right)$. By the same discussion as above, $\mathscr{M}^{\prime} \cap M_{i}$ stabilizes. So by the induction and quotient by \mathscr{M}^{\prime}, we see the image of M_{i} in $\mathscr{M}^{\prime \prime}$ also stabilizes. Hence the original sequence stops at some i, and we get the result.

Remark 2.3. I came up with a slightly different but more natural proof. The idea is to take the intersection of all of the root of \mathscr{M}, and show that it is also a root, of \mathscr{M}.

Let \mathcal{S} be the collection of all roots of \mathscr{M}, and let N be the intersection of all of the roots. Then we apply the Zorn's lemma to \mathcal{S}. Here for each decreasing sequence under inclusions, we use the discussion given in the Step 3 of the original proof, to show that it stabilizes at some finite step. Then we get a minimal element N^{\prime}, which is also a root of \mathscr{M}.

At last, note that since $N^{\prime} \cap M \subseteq M$ is also a root of \mathscr{M} for any given root M (because of the exactness of F, and the exactness of the following

$$
0 \longrightarrow N^{\prime} \cap M \longrightarrow N^{\prime} \oplus M \longrightarrow \mathscr{M}
$$

), by the choice of N^{\prime}, we see $N^{\prime} \cap M=N^{\prime}$, and $N^{\prime}=N$.

Remark 2.4. The above proof is almost correct, except for the formalism. Namely the use of inclusions in the Step 1 and Step 2 are not precise, since by passing to the image of some module in $F^{i}(N)$, the compatible way is to use the map given by the pullback of θ along several powers of F.

References

[Ly] G. Lyubeznik. F-modules: applications to local cohomology and D-modules in characteristic $\mathrm{p}>0$

