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Abstract

In this expository article, we discuss the rigidity, the autoduality, and the deformation of a
family of elliptic curves, as in [KM], Chapter 2. In particular, we prove the Serre-Tate theorem,
following the one given by Drinfeld in the Section 1 of [Katz].
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1 Abel’s Theorem

Let S be an arbitrary scheme. An elliptic curve E/S is a proper smooth scheme E over S together
with a section 0 : S → E, such that each fiber is a geometrically connected genus one curve.

Recall that the relative Picard functor Pic0 assigned any S-scheme T to the group given by

Pic0(E ×S T )/f∗Pic(T ),

where the Pic0(E×ST ) is the group of isomorphic classes of line bundles over E×ST that is fiberwise
degree 0 over T , and f : ET → T is the structure morphism. It is known that the functor Pic0 is
representable by a proper smooth group scheme of relative dimension one over S, but we will not
assume this in our article.

For each section (S-valued point of E) P ∈ E(S), we denote by I(P ) to be the ideal sheaf of
P : S → E, and I(P )−1 the effective line bundle associated to P .

We start by recalling the Abel’s Theorem, which assigning the (unique) group structure to a
family of genus one curve over a scheme.

Theorem 1.0.1 (Abel). There exists a unique structure of commutative group scheme on E/S such
that for any S-scheme T , and any three points P,Q,R in E(T ), we have P +Q = R if and only if
there exists an invertible sheaf L0 on T and an isomorphism of invertible sheaves on ET

I(P )−1 ⊗ I(Q)−1 ⊗ I(0) ∼= I(R)−1 ⊗ f∗L0.

In other words, the map

E(T ) −→ Pic0(ET );

P 7−→ I(P )−1 ⊗ I(0)
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induces the unique group structure on E/S.

Assuming the isomorphism of the map E(T ) → Pic0(ET ) above, we then deduct the repre-
sentability of the Picard scheme of the elliptice curve in this case; or in another words, the autodu-
ality of E/S.

Corollary 1.0.2. The relative Picard functor Pic0 associated to the elliptic curve E/S on the
category of schemes over S is representable by E/S itself. Moreover, the pullback functor associated
to a S-homomorphism f : E → E′ induces a dual homomorphism f t : E′ → E.

We use the notation Pic0E/S to denote the Picard scheme of E over S. Then the above result

give an isomorphism of S-group schemes between E and Pic0E/S .

2 Rigidity

We then focus on the rigidity of elliptic curves, that is of mixed characteristic setting.
We start by the triviality of deformations of the zero homomorphism.

Lemma 2.0.1. Let R be a ring, I an ideal of R, p a prime number, such that the ideal (I, p) is
nilpotent in R. Let f : E1 → E2 is a R-homomorphism of elliptic curves. Assume f ≡ 0 mod I.
Then the map f itself is 0.

Proof. We first assume the ideal (pI, I2) vanishes in R. Since the multiplication by p map [p] is
fppf surjective, it suffices to show the composition f ◦ [p] is zero.

Consider the following diagram

E1

f◦[p] // E2

Spf(R[[X]])

OO

// Spf(R[[X]])

OO

where the bottom map is the induced morphism of formal groups at zeros. Here the morphism of
the formal group has the form

X 7−→ pX + higher terms ∈ (pX,X2).

We then notice that the image of X is contained in the ideal IOE2
. To see this, we base change

the diagram above along Spec(R/I)→ Spec(R). Then by the assumption f0 : E1/I → E2/I factors
through the zero map. In particular, the map of formal groups associated to f0 takes the local
coordinates X to zero in R/I. So the image of X in R[[X]] is contained in the ideal I.

In this way, the map of formal groups associated to f ◦ [p] takes X to the ideal (pI, I2), which
vanishes under the assumption. So the map of the formal group factors through the zero map
Spec(R)→ Spf(R[[X]]). Thus by the dominance of the map Spf(R[[X]])→ E1 (resp E2), the image
of E1 along the homomorphism f ◦ [p] in E2 is contained in the closure of the zero. Hence we get
the conclusion.

At last, to deal with the general setting, we only notice that we can form the following filtration
of ideals

I(0) = I; I(1) := (pI, I2); . . . ; I(n+1) = (pI(n), (I(n))2); . . . .

Then by induction we can reduce to the formal setting.

Theorem 2.0.2 (Rigidity). Let f : E1 → E2 be a S-homomorphism of elliptic curves over S. Then
Zariski locally on S, either f = 0 or f is an isogeny, i.e. is finite and locally free.

Proof. Since everything is of finitely presented over S, by the spreading-out technique we may assume
S = Spec(R) for R a finite type algebra over Z.
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By the general theory of Hilbert functors, for any two projective schemes X,Y over S, the
functor

HomS(X,Y )

is representable by a separated S-scheme, which is a countable disjoint union of projective schemes
over S. Besides, given any two S-morphism f, g : X → Y , by taking the diagonal inside the self
fiber product, the locus for f = g is a closed subscheme in S.

Now we apply this to X = E1 and Y = E2. Then the locus for f = 0 is a closed subscheme Z
of S. It then suffices to show that Z is stable under the generalization, which then implies that Z
is open. This is done by taking the direct limit in the Lemma 2.0.1.

At last, over the complement of the zero locus, the map f is fiberwise a homomorphism of
elliptic curves over a field that is non-vanishing, which is finite and flat. The map f itself is proper,
which combines the above implies that f is finite. So the game is complete by the fiberwise criterion
of the flatness for flat schemes of finite presentation over the base, as [Sta] Tag 039E.

Here we provides two applications with the use of the rigidity.
It is known that a map f : X → Y of projective smooth varieties over a field will induce a

homomorphism of their Picard groups, by pulling back the the degree zero line bundles. In the
case when f is a morphism of elliptic curves, the autoduality (namely the isomorphism between
elliptic curves and their relative Picard schemes) lead to the observation that any morphism is a
homomorphism of group schemes. Precisely, we have

Theorem 2.0.3 (Autoduality). Let E/S be an elliptic curve. Then the group structure given by
the Abel’s Theorem 1.0.1 is the unique structure of S-group scheme on E/S, for which the section
0 : S → E is the origin.

Moreover, any S-morphism of schemes between two elliptic curves f : E → E′ over S with
f(0) = 0 is a S-group homomorphism.

Proof. For the first part, a S-group structure K : E ×S E → E induces an S-automorphism

fP : E → E; Q 7→ K(P,Q)− P.

Since E → S is a fppf covering, by the base change of E/S along E → S, it suffices to show that
fP − id : EE → EE is equal to zero. This then follows from the Rigidity Theorem 2.0.2, and the
observation that on the zero section E × 0, fP − id vanishes.

For the second part, by spreading out and taking a small enough open subset, we may assume
S = Spec(A) for A a finite type Z-algebra. Then a fppf covering given by the produce of complete
local rings at every closed points allows thus to reduce to A is an artin local ring with residue field
k, which is of characteristic p > 0.

We then discuss two possible cases, where the special fiber f0 : E × k → E × k′ is either equals
to 0 or not. In the first case, it is not hard to see that f factors through E′[pn] → E′, where the
former is an affine scheme over S. As E is proper over S, the morphism E → E′[pn] is controlled
by a ring morphism of global sections, and thus f is constant. For the second case, the fiberwise
criterion of flatness [Sta] 039E implies that f is flat; and it is finite since it is proper with finite
fibers. So f is locally free of degree N for some N ∈ N. The Abel’s Theorem 1.0.1 produces a
homomorphism f t : E′ → E from the map of Picard groups. We can show that the composition
f t ◦ f is the multiplication by N , and the map

fP : E → E′; Q 7→ f(P +Q)− f(P )− f(Q)

is constant, taking values in ker(f t), which is finite and flat. So fP = 0.

Another application is the following, due to Hasse.

Proposition 2.0.4. Let f : E → E′ be a homomorphism of elliptic curves over a connected base S,
and let f t be its dual (Corollary 1.0.2). Then we have

f t ◦ f =

{
0, if f = 0;

[N ], if f is an isogeny of degree N.
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Proof. The proof is identical to the proof of the first part of the Theorem 2.0.3, where we use the
rigidity to show that f t ◦ f − [N ] is zero.

Corollary 2.0.5. Let f : E → E′ be a homomorphism of S-elliptic curves.

(i) If f is an isogeny of degree N , then so is f t, and f tt = f .

(ii) Given another S-homomorphism g, we have

(f + g)t = f t + gt.

(iii) For any integer N ∈ Z, we have [N ]t = [N ].

(iv) There exists an integer Tr(f) (which we call the trace of f , such that

f + f t = [Tr(f)].

Proof. (i) We recall that the degree is multiplicative, which combines with the Proposition 2.0.4
gives the first part. The second part can be done by looking at the composition f ◦ f t ◦ f ,
using the fact that any isogeny is fppf surjective.

(ii) Following Hasse, we may regard f, g, f + g as E-valued points of E′. So after the base change,
it suffices to prove that for P,Q ∈ E(S), and L a line bundle over E′, we have the equality on
S

P ∗L ⊗Q∗L ∼= (P +Q)∗L ⊗ 0∗L.

The statement is invariant after a base change of a line bundle from S, so we may assume
L = I(R)−1 ⊗ I(0). The rest leaves to the reader.

(iii) By the fppf surjectivity of isogenies.

(iv) Consider deg(1 + f).

The next result connects the deg(f) and Tr(f) together, by the characteristic polynomial of the
given homomorphism

Proposition 2.0.6. Let f : E → E′ be a S-homomorphism of elliptic curves over a connected base.

(i) Inside End(E), the homomorphism f satisfies

X2 − [Tr(f)]X + [deg(f)] = 0.

(ii) We have the equality
Tr(f)2 ≤ 4 deg(f).

Proof. The part two comes from the density of Q in R, and the computation of a composition with
the dual that for any n, n ∈ Z, we have

(n−mf)(n−mf t) = deg(n−mf) ≥ 0.

Corollary 2.0.7. If E is an elliptic curve over a finite field Fq, then we have

|#E(Fq)− (q + 1)| ≤ 2
√
q.

Proof. Notice that
#E(Fq) = deg(1− F ) = (1− F )(1− F t),

where F is the Frobenius of Fq. The rest follows from the inequality in the Proposition 2.0.6 above.
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3 Rigidity of level structures

We use the previous results to deduct the rigidity of the level structure.

Corollary 3.0.1. Let ε : E → E be an automorphism of an elliptic curve over a connected base S.
Then ε satisfies the following equation

X2 − Tr(ε)X + 1 = 0,

with Tr(ε) equals to 0,±1,±2.

We first deduct the rigidity of Γ(N)-level structure.

Proposition 3.0.2 (Rigidity of Γ(N)-level structure). Let ε : E → E be an automorphism of an
elliptic curve over a connected base S. Let N ≥ 2 be an integer. Suppose ε induces the identity on
the sub group scheme E[N ]. Then we have

(i) If N ≥ 3, then ε = id.

(ii) If N = 2, then ε = ±1.

Proof. Since ε is the identity on E[N ], the homomorphism ε− id factors through [N ], namely

ε− id = [N ] ◦ f,

for some endomorphism f of E/S. So we have

[N2 · deg(f)] = (εt − id)(ε− id)

= [deg(ε)]− [Tr(ε)] + id

= 2 id−[Tr(ε)].

This implies that
N2 deg(f) = 2− Tr(ε).

In the case (i), since N ≥ 3, by the Corollary 3.0.1 we have Tr(ε) = 2. Take this back to the
equation in Corollary 3.0.1, we see ε=id.

In the case (ii), when f = 0 we have Tr(ε), and when deg(f) = 1 we have Tr(ε) = −2. Take
these back to the equation as above we get ε = ± id.

The next result is the rigidity of the Γ1(N)-level structure.

Proposition 3.0.3 (Rigidity of Γ1(N)-level structure). Let ε : E → E be an S-automorphism of
E/S, where S is connected. Let N ≥ 4 be an integer and G ⊂ E a closed subgroup scheme which is
finite and locally free of rank N over S. If ε induces an identity on G, then either ε = id, or N = 4,
G = E[2], and ε = − id.

Proof. As the proof of the last Proposition, we see when N ≥ 5, ε has to be the identity. When
N = 4 and 2 − Tr(ε) = 0 or 4, so the only case when ε is not the identity is ε = − id. Under the
latter situation, ε− id = −2 id kills the subgroup G. Thus the rank 4 subgroup G must be the whole
E[2].

Corollary 3.0.4. Let ε : E → E be a S-automorphism over the connected base S. Let N ≥ 4 be
an integer, and G = Z/NZ → E (resp. G = µN ⊂ E) be a closed subgroup of E. If ε induces the
identity on G, then ε = id.

Proof. As above, the only case when ε is not the identity is when G = E[2], which is not isomorphic
to either Z/NZ or µN .
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4 Supersingular elliptic curve

We take some time to discuss the special case when S = Spec(k) for k being an algebraically closed
field in characteristic p > 0.

The first one is about the classification of the Tate module E[p∞].

Theorem 4.0.1. Let k be an algebraically closed field of characteristic p > 0, E/k an elliptic curve.
Then the p-divisible Tate module E[p∞] of E is, up to k-isomorphism, one of the following two:

• µp∞ ×Qp/Zp;

• or the unique 1-parameter formal Lie group over k of height two.

Before the proof of the result, we first recall the following fact.

Fact 4.0.2 (Classification of p-divisible groups). Let k be an algebraically closed field in character-
istic p > 0. Then the category of p-divisible groups are semisimple such that for any pair of coprime
integers r, s ∈ N, there exists a simple object of rank r and height s, up to isomorphism.

We refer the [Dem] Chap IV for detailed discussion.
Now we give the proof of the Theorem 4.0.1.

Proof. The statement is essentially an application of the classification of p-divisible groups over
an algebraically closed field. By the local-étale decomposition of p-divisible groups, any p-divisible
group over an algebraically closed field is the product of a p-divisible commutative Lie group and a
finite number of copies of Qp/Zp. So we at least have

E[p∞] = Ê × (Qp/Zp)a,

for some a ∈ N. Since the multiplication by p map is finite flat of degree p2, we have

height(Ê) + a = 2.

Now we discuss all possible situations. If Ê has height one, then since we are over the alge-
braically closed field, we have

Ê ∼= Ĝm = µp∞ .

If Ê has height two, then by the uniqueness of rank one formal Lie group of any given height (up
to k-isomorphisms), we get the second case. At last, since the multiplication by p can be written
as [p] = F ◦ V , where F is the absolute Frobenius that is purely inseparable, the kernel E[p] has

nontrivial local part. This implies that the height of Ê is at least one. So we are done.

For an elliptic curve over k = k in characteristic p, as in the proof above it is ordinary if its
E[p∞] is isomorphic to the type (i) above, and it is supersingular for the second case. This gives a
criterion of being ordinary/supersingular in terms of the p-divisible group, or the structure of the
subgroup E[p]. The next results show the existence and finiteness of supersingular elliptic curves.

Theorem 4.0.3. In every characteristic p > 0, the second case in the Theorem 4.0.1 occurs, and it
occurs only a finite number of times.

Proof.

Existence The existence follows from a classical computation of Hasse invariants. In characteristic 2, the
Fermat curve X3 + Y 3 + Z3 = 0 of degree 3 is supersingular. When p ≥ 3, we consider the
Legendre equation of the ellptic curve,

y2 = x(x− 1)(x− λ).
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The Verschiebung morphism V = F t : E(1) → E is either étale of degree p, or purely insepara-
ble of degree p, where E(1) is the Frobenius twist of E. So by looking at the tangent map of the
V , E is supersingular if and only if the tangent map of V vanishes (Hasse invariant). At last,
the result follows from the fact that in terms of the Legendre equation, the Hasse invariant
is a polynomial in λ of degree p−1

2 . Moreover, it is showed by Igusa that this polynomial has

distinct roots away from 0, 1,∞. Thus there are exactly p−1
2 distinct values of λ for p ≥ 3

where the elliptic curve of the corresponding Legendre equation is supersingular.

Finiteness Though Igusa’s computation already implies the finiteness, here we present a fun proof using
the rigidity of the level structure, as in [KM].

As in the proof of the Theorem 4.0.1, E is supersingular if and only if the E[p] has trivial étale
quotient, or equivalently, the Verschiebung morphism V = F t : E(1) → E is purely inseparable
of degree p. This implies that the kernel of V and the kernel of F (1) : E(1) → E(2) coincides,
and we get an isomorphism

A : E −→ E(2),

which after composing with F fits into the commutative diagram below

E

F 2

!!

[p]

��
E

A
// E(2).

We compose the above maps several times, to get

E

F 2n

""

[pn]

��
E

A(n)
// E(2n).

Now the idea of the proof is to use the rigidity of the Γ(N)-level structure to show that the
for some N ≥ N, the datum E with a Γ(N)-level structure is defined over Fq, or be “fixed” by
a power of Frobenius morphisms.

Let N,n ∈ N such that N ≥ 3 is prime to p, and pn ≡ 1 mod N . Then the N -torsion group
E[N ] is isomorphic to (Z/NZ)2, and we fix such an isomorphism φ : (Z/NZ)2 → E[N ]. Then
y the diagram above, we have

φ(2n) =

F 2n ◦ φ = A(n) ◦ [pn] ◦ φ.

By the choice of N and n, the multiplication by pn is the identity on E[N ], and we get

[pn] ◦ φ = φ.

Thus by composing with the isomorphism A(n) : E → E(2n), the 2n-th Frobenius induces the
isomorphism of pairs

A(2n) : (E, φ) −→ (E(2n), φ(2n)),

where the latter is a Γ(N)-level structure on E(2n). In this way, the rigidity of the Γ(N)-level
structure Proposition 3.0.2 and the Galois descent(!!) implies that (E, φ) is defined over F 2n.
In particular, the elliptic curve E is defined over Fp2n . Thus by the finiteness of choices of
coefficients in the universal Weierstrass equation, we get the finiteness.
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5 Serre-Tate Theorem

The rest of our article devotes to the discussion of the Serre-Tate Theorem, following the Section
2.9 in [KM] and the Section 1 in [Katz].

5.1 The theorem

Let R be a ring, I and ideal of R, and p a prime number, such that (I, p) is nilpotent in R. Assume
E0 is an elliptic curve over R0 = R/I. Then it is natural to ask to the following two questions:

Question 5.1.1. (i) Is there an elliptic curve over R whose reduction mod I equals to E0?

(ii) If so, how to parametrize all of those lifts?

The answer to the first question is positive, which falls into the smoothness of the deformation
space of E0. We are going to focus on the second questions.

The surprising observation of Serre-Tate is that to give a lift of E0, it is equivalent to give a
lift of its Tate groups. Let N ≥ 1 be an integer that is divisible by p. Consider the following three
categories:

• The category A, whose objects are elliptic curves E/Spec(R), with maps beingR-homomorphisms.

• The category BN , whose objects consist of tuples (E0/R0, G, (, ), i), where E0/R0 is an
elliptic curve, G = ∪ν=0G[Nν ] is an N -divisible group over R, (, ) is a compatible family of
alternating autodual pairings (, )Nν on G[Nν ] with

(NP,NQ)Nν−1 = ((P,Q)Nν )N ,

and i is an isomorphism of N -divisible groups over R0 between E0[N∞] and G ⊗R R0 that
carries the canonical pairing eN to (, ) on G. The morphism is defined as morphism of each
term compatible with the relation above.

• The category CN , whose objects are tuples (E0/R0, G, i), where E0/R0 is an elliptic curver,
G/R is an N -divisible group, and i is an R0-isomorphism E0[N∞]→ G⊗R R0 of N -divisible
groups. The morphism is defined as a compatible morphism of pairs.

By the construction, there exists natural functors

A −→ BN −→ CN ,

where the first one send E/R to its reduction together with its N∞-torsion group and the canonical
pairing eN , and the second functor is the forgetful functor. The remarkable fact is the following:

Theorem 5.1.2 (Serre-Tate). The two functors

A −→ BN −→ CN

are all equivalences of categories.

Remark 5.1.3. The theorem can be generalized to abelian schemes of any dimension.

Corollary 5.1.4. For an elliptic curve E over R, up to isomorphism there exists a unique alternating
autodual pairing on E[N ] (or a compatible family of pairing on E[N∞]) that lifts the Weil pairing
of E0[N ] (of E[N∞]), namely the Weil paring eN .

Proof. This follows from the equivalence of the forgetful functor B→ C.
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5.2 Proof of the theorem

At last, we prove the Serre-Tate theorem 5.1.2, following that of Drinfeld in [Katz]. As in [Katz],
we show the result for abelian schemes, not just of dimension one.

We first fix some notations. Let R be a ring, with N an integer such that N kills the ring
R. Let I be an ideal in R with Iν+1 = 0. We denote by R0 to be the quotient ring R/I, and
π : Spec(R0)→ Spec(R) to be the associated closed immersion.

For any functor of abelian groups G on the category AlgR of R algebras, we define the subfunctor
GI by

GI(A) := ker(G(A)→ G(A/IA)).

We let Ĝ to be another subfunctor defined by

Ĝ(A) := ker(G(A)→ G(Ared).

Note that G includes all of the presheaves of abelian groups on the category SchSpec(R). This includes
for example functors of points representable by abelian schemes or their formal Lie groups.

We start with a lemma showing that in some cases the subfunctor GI is torsion.

Lemma 5.2.1. Let G be a functor of commutative formal Lie group over AlgR. Then the subfunctor
GI is killed by Nν .

Proof. The proof is similar to the proof of the Lemma 2.0.1. The idea is to write down the coordi-
nates. Let Xi be the coordinates of G. Since GI is the kernel of the map G(−) → G(− ⊗R R/I),
GI(A) is the subcollection of formal Lie group where each Xi is mapped inside of the ideal I. We
use the multiplication by N , to get

[N ]Xi = NXi + higher terms ∈ (NI, I2) = (I2).

So after applying this ν times, since I2
ν ⊂ Iν+1 = 0, we get the result.

The main ingredient of the proof of the Serre-Tate theorem is the following observation, which
says that up to an isogeny, there exists a canonical lifting for formally smooth abelian group over R.

Lemma 5.2.2. Let H be an formally smooth fppf abelian sheaf over AlgR, such that the subfunctor Ĥ
is locally representable by a formal Lie group. Then there exists a R-homomorphism of fppf abelian
sheaves ι̃(A) : H(A/I) → H(A), such that the composition with the base change map H(A) →
H(A/I) is equal to the multiplication by Nν .

Proof. Let A be any R-algebra. By the formal smoothness of G over R, for any A-valued point
x ∈ G(A/I), there exists a lift of x to an A-valued point y ∈ G(A). We notice that for another such

lift y′, the difference y′− y is contained in the subfunctor GI(A) = ĜI(A). However, by the Lemma
5.2.1, the subfunctor GI is killed by the [Nν ]. In particular, the element Nνy is independent of the
choice of the lift y. This produces a well-defined map

ι : H(A/I) −→ H(A);

x 7−→ Nνy.

Furthermore, it is clear the map is functorial for A ∈ AlgR. Thus we get an R-homomorphism of
abelian sheaves

ι : π∗H −→ H,

which after the reduction mod I is the multiplication by Nν .

The Lemma 5.2.2 allows us to produce a lift for relative situation where the source is N -divisible,
and the target is of the type above. Precisely, we have:

Proposition 5.2.3. Let G and H be two fppf abelian sheaves over AlgR, such that

• The functor G is N -divisible.

9



• The functor H is formally smooth.

• The subfunctor Ĥ is locally representable by a formal Lie group.

Denote by G0 and H0 to be the functors over AlgR0
, defined by the reduction mod I at G and H

separately (i.e. they are the restriction of π∗G and π∗H at the subcategory AlgR0
⊂ AlgR). Then

we have:

(a) Both the groups
HomR−gp(G,H), HomR0−gp(G0, H0),

are N -torsion free.

(b) The reduction mod I map

HomR−gp(G,H) −→ HomR0−gp(G0, H0),

is injective.

(c) For any R0-homomorphism f0 : G0 → H0, there exists a unique R-homomorphism Ñνf , lifting
[Nν ] ◦ f0.

(d) Given an R0-homomorphism f0 : G0 → H0, it can be lifted to an R-homomorphism f : G→ H

if and only if the homomorphism Ñνf kills the subfunctor G[Nν ] := ker([Nν ] : G→ G) of G.

Before the proof, we note that the Proposition applies when G and H are abelian schemes or
their N -divisible groups.

Proof. (a) Since G is N -divisible, the multiplication by N is surjective on G. Note that any
homomorphism commutes with the [N ], so we get the result.

(b) The kernel of the reduction map consists of those R-homomorphisms f : G→ H that factors
through HI → H, which is killed by [Nν ] by the Lemma 5.2.1. So any R-homomorphism in
the kernel will be killed by [Nν ], which by the Part (a) must be trivial.

(c) We apply the Lemma 5.2.2 in the following diagram

G(A) //

��

H(A)

G(A/I) = G0(A/I)
f0 // H(A/I) = H0(A/I),

ι

OO

which is functorial with respect to A ∈ AlgR. We define the dotted map above as Ñνf . Then

by the construction, Ñνf is an R-homomorphism such that the reduction mod I is exactly
[Nν ] ◦ f0. The uniqueness follows from the injection in the Part (b)

(d) Assume there exists a lift f , then the composition [Nν ]◦f lifts [Nν ]◦f0, which by the uniqueness

in the Part (c) is identical to Ñνf . So the map Ñνf = [Nν ] ◦ f kills the Nν-torsion subgroup
G[Nν ].

Conversely, assume Ñνf kills the subgroup G[Nν ]. Then Ñνf induces an R-homomorphism
g : G/G[Nν ]→ H and we have the following commutative diagram

G
Ñνf //

$$

H

G/G[Nν ]

g

::

.
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But notice that since G is N -divisible, the quotient G/G[Nν ] equals to G, and we get g : G→
H. At last, by taking the reduction mod I, the reduction g0 : G0 → H0 satisfies the condition
below

g0 ◦ [Nν ] = f0 ◦ [Nν ],

i.e. [Nν ] ◦ (f0− g0) = 0. In this way, by the N -torsion freeness of HomR0−gp(G0, H0), we have
g0 = f0, and g is a lift of f0.

Now we are able to prove the Serre-Tate Theorem as follows.

Proof of the Theorem 5.1.2. We first notice that it suffices to prove the equivalence for the compo-
sition functor A → CN . This is because the functor BN → CN is the forgetful functor, which is
faithful. SInce A→ CN factors through BN → CN , the equivalence between A and CN implies that
BN → CN is both full and essentially surjective. So we get the equivalence of BN and CN .

We then notice that by writing N as pn ·m for m prime to p, it suffices to show the case for pn,
which follows from the similar observation that the functor CN → Cpn is faithful.

Now we focus on the functor A → CN for N = pn, sending an elliptic curves over R to the
datum (E0/R0, E[N∞], idE[N∞]).

Fully faithfulness Let A and B be two abelian schemes over R. Assume we have an R0-homomorphism f0 :
A0 → B0 and an R-homomorphism of p-divisible groups f [p∞] : A[p∞] → B[p∞], which are
compatible on A0[p∞]. We apply the Proposition 5.2.3 (c) at (G,H) = (A,B), then there

exists an R-homomorphism Ñνf : A → B, lifting [Nν ] ◦ f0. We restrict this homomorphism

to the Tate module A[p∞], then we get an R-homomorphism Ñνf : A[p∞] → B[p∞], lifting
[Nν ] ◦ f0 : A0[p∞] → B0[p∞]. Apply the Proposition 5.2.3 (b) at (G,H) = (A[p∞], B[p∞]),

we see the map Ñνf equals to [Nν ] ◦ f [p∞], which kills the subgroup A[Nν ]. Thus by the
Proposition 5.2.3 (d), we can lift the f0 to an R-homomorphism f : A → B, compatible with
f [p∞]. This proves that the functor A→ B is full.

The faithfulness follows from the Proposition 5.2.3 (a), applying at (G,H) = (A,B).

Essential surjectivity The idea is similar to the proof of the Lemma 5.2.2. Let (A0/R0, G, i) be an object in CN . We
first recall the existence of the lifting.

Fact 5.2.4. For a given abelian scheme A0 over R0, there exists an abelian scheme B over R
lifting A0 along R→ R/I.

This essentially follows from the fact the deformation space of an abelian scheme over a field
k of positive characteristic is formally smooth over W (k). This then induces an isomorphism

α0 : B0 → A0,

which induces a homomorphism of p-divisible groups α0[p∞] : B0[p∞]→ A0[p∞] over R0. We
compose this with the reduction of the isomorphism i : A[p∞]→ G along R→ R/I, to get an
isomorphism

j0 = i0 ◦ α0 : B0[p∞]→ G0.

Again, by the Proposition 5.2.3 at (B[p∞], G), we can get a lift Ñνj of [Nν ] ◦ j0. This is not
necessarily liftable, since B is not always the one lifting the whole datum (A0/R0, G, i). To

adjust this, we notice that the kernel K = ker(Ñνj) is a finite subgroup of B which lifts the
Nν-torsion subgroup of B0.

We then have the following claim

Claim 5.2.5. The subgroup scheme K is flat over Spec(R).

11



As the base change of the homomorphism Ñνj along the zero section Spec(R)→ G, it suffices

to show that the homomorphism Ñνj is flat. But by the fiberwise criterion of the flatness
([Sta] Tag 039E), since the reduction mod I is flat, we get the result.

Now then the finite subgroup scheme K is flat, we can form the quotient abelian scheme
A := B/K. The induced homomorphism g[p∞] : A[p∞] → G by Ñνj is an isomorphism that
lifts j0 : B0[p∞] = B0[p∞]/B0[Nν ] → G, which is isomorphic to i0 by α0. Thus the abelian
scheme A satisfies the condition that the reduction mod I is B0

∼= A0, and its Tate module
A[p∞] is isomorphic to G by g[p∞] : A[p∞] → G, whose reduction is isomorphic to i0. Hence
we are done.

Remark 5.2.6. It is easy to forget the Claim 5.2.5 and consider the quotient B/K directly. However,
such a quotient may not exist as a scheme over Spec(R), when the kernel K is not flat.
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