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Abstract

This is the note for the talk on the integral Hodge conjecture for 3-folds, in the Preprint
Seminar at the University of Michigan, on December 6, 2019. In this talk, we follow the
paper [Tot19] by Burt Totaro and sketch the proof of the integral Hodge conjecture for smooth
projective complex 3-folds X of Kodaira dimension zero with h0(KX) > 0.

1 Statement and examples

1.1 Conjecture and main results

We first state the statement of the main results.

Integral Hodge conjecture Let X be a smooth complex projective varieties. Recall that the

Chow ring CH(X) = ⊕dim(X)
r=0 CHr(X) of X is defined as the graded ring, where CHr(X) is generated

by finite Z-linear combinations of closed subvarieties of codimension r in X. There exists a natural
cycle map from CHr(X) to the singular cohomology H2r(X,Z) of X(C).

On the other hand, the singular cohomology of complex coefficients is computed by a functorial
E1-spectral sequence

Ei,j
1 = Hj(X,Ωi

X) =⇒ Hi+j(X,C).

This is called the Hodge-de Rham spectral sequence, and is degenerated at its E1-page.
To relate the algebraic structure and the analytic structure together, we can take the Hom(−,C)

at the integral singular cohomology, and get a map from the Chow group to the direct sum of Hodge
cohomologies. It is a classical result of Hodge theory that the image of CHi(X) is inside of the
intersection

H2i(X,Z) ∩Hi(X,Ωi
X).

The image of a k-dimensional subvariety Z under the cycle map can be interpreted as taking the
integration of a given multi-differential form over Z. Here the right side is defined as the intersection
of the image of H2i(X,Z) and Hi(X,Ωi

X) inside of H2i(X,C), and elements there are called Hodge
classes. We will use Hi,j(X) to abbreviate the Hodge cohomology Hj(X,Ωi

X).
The integral Hodge conjecture states that every Hodge class is algebraic. Precisely, we have:

Conjecture 1.1.1 (Integral Hodge conjecture). Let X be a smooth projective complex variety. Then
the cycle map induces a surjection

CHr(X) −→ H2r(X,Z) ∩Hr,r(X),

for every 0 ≤ r ≤ dim(X).
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If we replace the coefficient Z by the field Q of rational numbers, we get the Hodge conjecture.
The integral Hodge conjecture is true for the cases when r = 1, which is the so-called Lefschetz

(1,1) theorem and can be proved using the exponential sequence (assuming we know the image falls
into H1,1.) This in particular implies that the integral Hodge conjecture is true for dim(X) ≤ 2.
For 3-folds, the Hodge conjecture is proved to be true by the hard Lefschets theorem relating
the codimension 2 cycles and codimension 1 cycles. However, Kollár showed that the integral
Hodge conjecture fails for some smooth hypersurfaces in P4. Voisin showed that the integral Hodge
conjecture is true for Kodaira dimension −∞. In the case when the Kodaira dimension is zero,
Vosin showed that the integral Hodge conjecture holds for those 3-folds that have trivial canonical
bundles and first Betti numbers are zero. Moreover, Grabowski proved the case of abelian 3-folds.
See the beginning of the [Tot19] for references of these results.

In this article, we follow Totaro [Tot19] and give an improvement of Voisin and Grabowski’s
results, showing that the integral Hodge conjecture holds for 3-fold of Kodaira dimension zero with
h0(X,KX) > 0. Precisely, we have:

Theorem 1.1.2 ([Tot19], 4.1). Let X be smooth projective complex variety of dimension 3, such
that its Kodaira dimension is zero, and dim H0(X,KX) > 0. Then the integral Hodge conjecture
holds for X.

Integral Tate conjecture As an application, we follow the Section 6 in [Tot19] and proves the
integral Tate conjecture for 3-folds in characteristic 0. Let k be a finitely generated field (over Q or
Fp), and let X be a smooth projective variety over k. Recall that there exists a natural cycle map
from CHi(X) to the `-adic étale cohomology

CHi(X) −→ H2i(Xks ,Z`(i)),

whose image is contained in the Z`-submodule of Gal(ks/k)-invariant elements. As the target is of
Z`-linear, the map above factors through CHi(X)→ CHi(X)⊗Z`. Then the integral Tate conjecture
states as follows:

Conjecture 1.1.3 (Integral Tate conjecture). Let X be a smooth projective variety over the finitely
generated field k. Then the cycle map

CHi(X)⊗ Z` −→ H2i(Xks ,Z`(i))
Gal(ks/k)

is surjective for any integer i.

We are going to use the Theorem 1.1.2 to show the following:

Theorem 1.1.4. Let X be a smooth projective 3-fold over a finitely generated field k of characteristic
0. Assume either X is rational connected, or it has Kodaira dimension zero with h0(X,KX) > 0.
Then the integral Tate conjecture holds for X.

1.2 Examples

We give two examples where we now know the integral Hodge conjecture holds.

Example 1.2.1. Let S be a K3 surface, and let E be an elliptic curve. Assume G is a finite group
acting on S symplecticly, namely its induced action on H0(S,KS) = C is trivial. The examples of
symplectic actions on S can be found in [Mu88]. Assume G is abelian and can be generated by two
elements. Fix an embedding of G into E. Then we can define an action of G on the product S ×E,
where the action on the second component is given by translation. This is a free action, and we can
form the quotient X = (S×E)/G. Then we claim that X is a smooth projective 3-folds with trivial
canonical bundle KX , and H1(X,OX) 6= 0, in particular it satisfies the condition in the Theorem
1.1.2. Thus the integral Hodge conjecture holds for X.

To show KX is trivial, we notice that the product S × E has trivial canonical bundle, and its
sections can be formed by taking the product of canonical forms of S and E separately. Moreover
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as the action of G on canonical forms of S and E are trivial, the action of G on H0(S × E,KS×E)
is also the identity, and any canonical form of X is G-invariant. In this way, by taking the étale
descent for the covering S × E → X, we get a canonical form on X that vanishes nowhere. This
shows that the line bundle KX is trivial.

To show the nontriviality of H1(X,OX), we use the projection map X → E/G onto an elliptic
curve and notice that it has a section. So the H1(X,OX) 6= 0 follows from H1(E/G,OE/G) = C.

Example 1.2.2. Another example is the quotient of abelian 3-folds.
Take A an abelian surface, E an elliptic curve, and G a finite abelian group of at most two

generators. We embed G into A and E separately and consider the action of G on A×E. Then the
quotient X := (A × E)/G satisfies the condition of the Theorem 1.1.2. The proof is similar to the
last example, and notice that as the translation leaves the canonical form of A invariant.

This can be generalized to more abelian group G of at most two generators, whose action on A
is symplectc and faithful.

2 Sketch of the proof

In this section, we sketch the proof of the main theorem 1.1.2.

Proof of the Theorem 1.1.2. Let Y be the minimal model ofX (whose existence was proved by Mori),
which is a projective 3-fold that has terminal singularity.1 It comes with a birational map X 99K Y ,
and the canonical bundle KY of Y is nef (which means it is numerically effective). Moreover, by
assumption, we have h0(Y,KY ) > 0, thus it is equal to one as the Kodaira dimension (the maximal
dimension among images of the rational maps defined by pluricanonical forms) is equal to zero.

We first notice that by the Lefschetz (1,1) theorem, the integral Hodge conjecture for codimension-
1 Hodge classes is true. So it is left to consider the codimension-2 case. In the following, we use
Poincaré duality and consider the image of CH1(X) into H2(X,Z) ∩H1,1(X). By a result of Voisin
([Voi07], Lemma 15), the integral Hodge conjecture for codimension-2 cycles are birational invari-
ants. So by taking a resolution of singularity of the image for the rational map X 99K Y , we may
assume X → Y is a birational morphism, such that the exceptional locus E =

∐
Ei in X is a dis-

joint union of snc divisors. Then since Y has terminal singularity, Y is nonsingular in codimension
≤ 2 and has isolated singularities of dimension zero ([Deb01] 7.17). So the map X → Y is given
by contracting identifying each divisor Ei onto a point, and by the Excision Theorem in algebraic
topology, we get a long exact sequence of homologies

· · · −→ ⊕H2(Ei,Z) −→ H2(X,Z) −→ H2(Y,Z) −→ · · · .

Here we have the following observations.

Lemma 2.0.1 ([Tot19], Lemma 3.1). Let X → Y be a resolution of singularity of complex 3-folds
with isolated rational singularities, such that the exceptional divisor D is snc. Then H2(D,Z) is
generated by algebraic 1-cycles on D.

Another result is about the algebraicity of Hodge class on Y , which is the key observation of
the article [Tot19].

Theorem 2.0.2 ([Tot19], Lemma 4.2, Proposition 5.3). Let Y be a terminal projective complex
3-fold with trivial canonical bundle. Then every element in H2(Y,Z) whose image in H2(Y,C) is
contained in H1,1(Y ) is algebraic.

We first deduce the main theorem 1.1.2 from the above two results. Since the singular locus
of Y has only finite many points, every 1-cycle of Y can be lifted to a 1-cycle of X by taking the
closure. In particular, the map of Chow group CH1(X) → CH1(Y ) is surjective. Moreover, the

1Recall that a variety Y has terminal singularity if it is normal, and there exists a positive integer j such that jKY

is a Cartier divisor, with the condition that any j-canonical form of Yreg can be extended to a j-canonical form of Z
with zeros at any exceptional divisor. Here Z is any resolution of singularity of Y . (cf. [Deb01], 7.2)
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Lemma 2.0.1 gives the surjectivity of CH1(Ei) → H2(Ei,Z). So we could extend the above long
exact sequence into the following bigger diagram

⊕CH1(Ei)

����

// CH1(X) // //

��

CH1(Y )

��
· · · // ⊕H2(Ei,Z) // H2(X,Z) // H2(Y,Z) // · · · .

Pick any Hodge class u ∈ H1,1(X) ∩ H2(X,Z). As the image u of u in H2(Y,Z) is mapped into
H1,1(Y ), by the Theorem 2.0.2 we know u is algebraic, coming from some element in CH1(Y ). By
the surjectivity of CH1(X) → CH1(Y ), we can pick an algebraic 1-cycle α ∈ CH1(X) whose image
in H2(Y ) is u. Then the element u−α comes from an element in ⊕H2(Ei,Z), which by the Lemma
2.0.1 is algebraic. As an upshot, the image u− α is algebraic. In this way, since both α and u− α
are algebraic, we see the Hodge class u comes from the Chow group.

The Lemma 2.0.1 is essentially about diagram chasing, with a use of the Hodge structure. We
give the proof as follows.

Proof of the Lemma 2.0.1. Recall that under the assumption that Y has isolated rational singular-
ities, by taking a contractible open neighborhood of singular points of Y and the definition of the
rational singularity, we have

Hi(D,O) = 0, i > 0.

Now let Di be irreducible components of D, and let Di0...ip be the intersection Di0 ∩ · · · ∩Dip .
Then by the assumption of being snc, we have an exact sequence of sheaves

0 −→ OD −→ ⊕ODi −→ ⊕ODij −→ ODijk
−→ 0.

This could be regarded as the map of structure sheaves associated to a topological hypercovering of
D coming from

∐
Di → D. In particular, we get an E1 spectral sequence of cohomology

Ep,q
1 = ⊕Hq(Di0···ip ,O) =⇒ Hp+q(D,O).

On the other hand, by the generalized version of Mayer-Vietories sequence, we get an E1-spectral
sequence of homology

E1
p,q = ⊕Hq(Di0···ip ,Z) =⇒ Hp+q(D,Z).

By taking the functor Hom(−,C), the second functor produces an E1-spectral sequence of C-
coefficient singular cohomology, convergent to Hp+q(D,C).

We explicitly write down the first E1 spectral sequence of cohomology as follows:

⊕H2(Di,O) // 0 0 0

⊕H1(Di,O)
d1 //

d2

''

⊕H1(Dij ,O) // 0 0

⊕H0(Di,O) // ⊕H0(Dij ,O) // ⊕H0(Dijk,O) // 0.

Here we note that since Dij is of dimension one, the term H2(Dij ,O) = 0. Moreover, since
H2(D,O) = 0 by the rational singularity, we have H2(Di,O) = 0 for any i.

Now we make the following two claims.

Claim 2.0.3. The natural map d1 + d1 : ⊕H1(Di,C)→ ⊕H1(Dij ,C) is surjective.

Claim 2.0.4. The natural map H2(D,C) −→ ⊕H2(Di,C) is injective.
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The two claims need a little bit of Hodge structure and the computation of spectral sequence:
in the first claim we need the decomposition

H1(Di,C) = H1(Di,O)⊕H1(Di,O);

in the second claim we make use of this decomposition and deduce the surjectivity of the map
E0,1

2 (C)→ E0,1
2 (O). We leave the detail as exercises to the reader.

The universal coefficient theorem and the second claim above imply that⊕H2(Di,Q)→ H2(D,Q)
is surjective. On the other hand, as Dijk are points and Dij are smooth projective curves, we have
the torsion-freeness of H0(Dijk,Z),H1(Dij ,Z). We base change them to Q, then the surjectivity
above implies that both H0(Dijk,Z) and H1(Dij ,Z) are zero. In particular, we get the surjection

⊕H2(Di,Z) −→ H2(D,Z).

In this way, by the Lefschetz (1,1) theorem for Di, we get the algebraicity of elements in H2(D,Z).

Sketch of the proof for Theorem 2.0.2. Let L be an ample line bundle on Y , and let S be a smooth
surface as an object in the linear system |L|. By an argument of Goresky and MacPherson, the fact
that Y has lci singularities implies that we have the following surjection of homology groups

H2(S,Z) −→ H2(Y,Z).

Now consider the Hilbert scheme H of smooth surfaces in Y whose homology class in H4(Y,Z) is
the same as that of S (here recall that the cycle map take [S] ∈ CH2(X) into the degree 4 homology
group). By taking a high power of L if necessary, we may assume H to be smooth. 2 Then for
each t ∈ H, we get a surjection H2(St,Z) −→ H2(Y,Z) as a variation of Hodge structure over H.
Moreover, any path in H connecting two points t1 and t2 in H will induces a map of translation
between the Hodge structure H2(St1 ,Z) to the Hodge structure H2(St2 ,Z).

We denote by St0 to be the surface S chosen at the beginning and fix it. Let H2(S,Z)van be the
kernel of the surjection H2(S,Z)→ H2(Y,Z). We use the Poincaré duality to identify H2(S,Z) with
H2(S,Z), and denote by H2(S,Z)van to be the subgroup of H2(S,Z) corresponding to H2(S,Z)van
under the identification. Let H2(S,R)van be the base extension of H2(S,Z)van along Z → R. We
then have the following:

Proposition 2.0.5 ([Tot19], 4.2). Let C be a nonempty contractible cone in H2(S,R)van. Suppose
Y satisfies the following condition

There exists an open contractible neighborhood U of t0 in H, such that any element η in
H2(S,Z)van ∩ C can be translate to a Hodge class for some t ∈ U .

Then every Hodge class of Y of dimension one is algebraic.

The relation of those cohomology groups can be seen as follows:

η ∈ � �
� //

��

H2(S,Z)van

PD∼
��

H2(S,Z)van

��
C �
� // H2(S,R)van.

Proposition 2.0.6 ([Tot19], 5.3). Assume the terminal projective 3-fold Y has trivial canonical
bundle. Then the condition in the Proposition 2.0.5 is satisfied.

As I do not have any insight about those two Propositions, I am not going to say anything here.

2I don’t quite understand this statement.
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3 Application to integral Tate conjecture in characteristic 0

At last, we use the integral Hodge conjecture to prove the integral Tate conjecture of 3-folds X
in characteristic 0, assuming either X is rational connected or is of Kodaira dimension zero with
h0(X,KX) > 0.

Before we prove the main result, we first relate the Tate conjecture and the integral Tate
conjecture of codimension one together. Here is a quick observation.

Lemma 3.0.1. Let X be a smooth projective varieties over a finitely generated field k. Then the
Tate conejcture of codimension one of X implies its integral Tate conjecture of codimension one.

Proof. Let ` be a prime number invertible in k. Consider the short exact sequence of étale sheaves

0 // µ`n
// Gm

`n //// Gm
// 0.

Its long exact sequence induces a short exact sequence below

0 −→ NS(X)/`n −→ H2(Xks , µ`n) −→ Hom(Z/`n,BrX) −→ 0.

Here we use the fact that the kernel of the surjection Pic(X)→ NS(X) is `-divisible. As X is smooth
projective, its Néron-Severi group is finitely generated, so the inverse limit with respect to n above
gives a short exact sequence

0 −→ NS(X)⊗ Z` −→ H2(Xks , µ`(1)) −→ Hom(Q`/Z`,BrX) −→ 0.

Here we note that the transition maps above are ·`, ·`, and the identity separately. We also notice
that the `-adic Tate group T`(X) = Hom(Q`/Z`,BrX) is `-torsion free.

Now notice that the cycle class map CH1(X) → H2(Xks ,Z`(1)) factors through CH1(X) →
NS(X). So the rational Tate conjecture of codimension zero implies the vanishing of Hom(Z`,BrX)⊗
Q`, which implies the vanishing of Hom(Z`,BrX). So we get the integral Tate conjecture of X.

We then provides a collection of 3-folds that satisfy the Tate conjecture of codimension one.

Proposition 3.0.2. Let X be a smooth projective 3-fold over a finitely generated field k of character-
istic 0. Assume X is either rational connected, or has Kodaira dimension zero with h0(X,KX) > 0.
Then X satisfies the Tate conjecture of codimension one.

At last, we obtain the integral Tate conjecture, and in particular prove the Theorem 1.1.4. We
fix a finitely generated field k of characteristic 0, together with an embedding of k and ks into C.

Proposition 3.0.3. Let X be smooth projective 3-fold over k, such that it satisfies the Tate conjec-
ture of codimension one and integral Hodge conjecture. Then the integral Tate conjecture holds for
X.

Proof. By assumption, it suffices to prove the integral Tate conjecture in codimension 2. Let H be
a very ample line bundle on X that is defined over k. Consider the following diagram

CH1(X)
∪H //

��

CH2(X)

**��
H2(Xks ,Z`(1))Gal(ks/k′) //

��

H4(Xks ,Z`(2))Gal(ks/k′)

��

H4(XC,Z) ∩H2,2(X)oo

H2(Xks ,Q`(1))Gal(ks/k′)
∼
// H4(Xks ,Q`(2))Gal(ks/k′) ,

where the map of Chow groups is given by the intersection with H, which is compatible with the
cup product by its image in `-adic cohomology and is Galois equivariant. Here the Hard Lefschetz
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theorem for rational `-adic cohomology (proved by Deligne in his second paper on Weil’s conjec-
ture) implies that the bottom horizontal map is an isomorphism. Now let u be an element in
H4(Xks ,Z`(2))Gal(ks/k′). By the Hard Lefschetz theorem and the integral Tate conjecture for codi-
mension one, there exists an algebraic 1-cycle v and an positive integer n such that `n · u is equal
to the cup product v ∪H, which is an algebraic class. On the other hand, we can identify u as an
element in H4(XC,Z)⊗ Z` by the abstract isomorphic of Z`-modules

H4(Xks ,Z`(2)) ∼= H4(XC,Z)⊗ Z`.

Notice that the singular cohomology H4(XC,Z) has a direct summand decomposition by the Hodge
structure where the subgroup of the Hodge class is a direct summand by the integral Hodge con-
jecture. In this way, the element `nu is a (Z`-linear combination of) Hodge class implies that the
element u itself is a Hodge class, which is algebraic.3 So we get the result.
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