
Several approaches to the Grothendieck Duality

Haoyang Guo

Abstract

This is an expository article on Grothendieck duality, and serves as an extended note for the
talk in the Condensed Mathematics Seminar, at the University of Michigan, on Nov 7, 2019. We
explain the main ideas of the duality, give an application in birational geometry, and introduce
four different approaches to the duality, following Hartshorne [Har66], Neeman [Nee96], Deligne
[Del], and the condensed math of Clausen-Scholze in [Sch19] separately.
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1 Statements of the Grothendieck duality

Fix a field k. Unless specifically mentioned in the note, all of the schemes are assumed to be finite
type over k. In particular they are all quasi-compact and quasi-separated.

1.1 Statements

We first state the duality. Let S be a scheme. Recall that DQcoh(S) is the full subcategory of the
derived category of sheaves over S, where objects have quasi-coherent cohomology. When S is a finite
type scheme, the natural functor from the derived category of quasi-coherent sheaves DQcoh(S) to
DQcoh(S) is an equivalence, and is functorial with respect S under the derived direct image.

Theorem 1.1.1 (Grothendieck Duality). Let f : X → Y be a separated map of finite type schemes
over k. Then we have the following
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(i) The derived direct image Rf∗ : DQcoh(X)→ DQcoh(Y ) admits a right adjoint f ! : DQcoh(Y )→
DQcoh(X). Moreover, for any K ∈ DQcoh(X), L ∈ DQcoh(Y ), the counit map Rf∗f

! → id
induces the following natural quasi-isomorphism in DQcoh(Y ):

Rf∗RHomX(K, f !L) −→ RHomY (Rf∗K,L).

Moreover, both Rf∗ and f ! can be restricted to the bounded below derived subcategories, which
also forms an adjoint pair. (cf. [Nee96], 6.3)

(ii) Assume f is proper and of finite Tor-dimension, then for any L ∈ DQcoh(Y ), we have a natural
quasi-isomorphism

f !L = f !OY ⊗L
OY

Lf∗L.

Moreover, both Rf∗ and f ! can be restricted to upper-bounded/lower-bounded/bounded derived
category of coherent cohomology. (cf. [Nee18], 2.14, 5.13)

More explicitly, in the Theorem 1.1.1 (i) above, given a map K → f !L in DQcoh(X), we can
apply the functor Rf∗ and get

Rf∗K → Rf∗f
!L→ L,

where the latter is the counit natural transformation Rf∗f
! → id. So we get a map from Rf∗K → L.

This induces a map in the derived category

Rf∗RHomX(K, f !L) −→ RHomY (Rf∗K,L).

A upshot is the composition law:

Proposition 1.1.2. Let f : X → Z be the composition of maps g : X → Y and h : Y → Z of finite
type k-schemes. Then we have a natural isomorphism

f ! = g!h!.

Proof. This follows from the uniqueness of the right adjoint.

Under the assumption of f being proper and finite Tor-dimension, we call f !OY the dualizing
complex of f , and is sometimes denoted by ω•f . Moreover, in a slightly better case when f : X → Y
is a Cohen-Macaulay morphism, the dualizing complex is in fact a cohomological twist of a quasi-
coherent sheaf.

Theorem 1.1.3 (Dualizing sheaf). Let f : X → Y be a morphism of finite type schemes over k.
Assume X is connected. Then we have the following:

(a) If f is Cohen-Macaulay, then there exists a coherent sheaf ωf over X such that

f !OY = ωf [n],

for some integer n ∈ N. If the map f is of purely relative dimension d, then n is equal to d.

(b) If f is furthermore a smooth morphism, then we have

f !OY = Ωn
X/Y [n],

where n = dim(X)− dim(Y ).

When Y = Spec(k) and f : X → Y is the structure map, we use ωX to denote the coherent
sheaf ωf in the above situation.

Remark 1.1.4 ([Sta], Tag 0C0Z). As a complement of the Theorem 1.1.3, (a), for a proper morphism
f : X → Y , in fact we have the following equivalent conditions:

(i) The morphism f is Cohen-Macaulay at x ∈ X.
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(ii) The dualizing complex f !OY has a unique quasi-coherent cohomology sheaf in a Zariski neigh-
borhood of x.

Remark 1.1.5. Note that as both f∗ and the tensor product functor are left adjoint functors, when
f ! is equal to Lf∗(−)⊗L f !OY , the upper shriek functor commutes with arbitrary colimits. In fact
it is proved in [Nee96] 5.4 that for a morphism of schemes f : X → Y such that Y is quasi-compact
and separated, and Rf∗ admits the right adjoint f !, the following are equivalent:

(i) There exists a natural isomorphism of functors DQcoh(X)→ DQcoh(Y )

f !L −→ Lf∗L⊗L
OX

f !OY .

(ii) The upper-shriek functor f ! commutes with any coproducts (colimits).

1.2 Serre Duality

Historically speaking, Grothendieck duality is designed to generalize the Serre duality for coherent
sheaves over projective varieties to a broader collection of schemes and derived objects. We use the
duality theorems above to illustrate how to recover the classical Serre duality of projective spaces
as follows (cf. [Har77], III section 7).

Consider the case when Y = Spec(k), and X = Pn be the projective space of dimension n over
k. Then by the Theorem 1.1.3, (b), we know the dualizing complex f !OY = ωPn [n], which the sheaf
ωPn is equal to the line bundle OPn(−n − 1), by taking the top wedge product at the Euler exact
sequence

0 −→ Ω1
Pn/k −→ OPn(−1)n+1 −→ OPn −→ 0.

We apply the Grothendieck duality 1.1.1 at f : Pn → Spec(k), with K = F being any coherent sheaf
over Pn. Then we get the following functorial quasi-isomorphism

RHomk(F , ωPn [n]) −→ RHomk(RΓ(Pn,F), k).

We twist both sides by cohomological degree [−n] and get

RHomk(F , ωPn) −→ RHomk(RΓ(Pn,F)[n], k).

Note that the functor Homk(−, k) is exact on finite dimensional vector spaces, while Pn is proper
smooth over k. So by taking the i-th cohomology of the above quasi-isomorphism, we get an
isomorphism of k-vector spaces:

Exti(F , ωPn) −→ Hn−i(Pn,F)′.

Here we note that as mentioned after the Theorem 1.1.1, the above isomorphism is induced
from the counit transformation Rf∗f

! → id. More explicitly, given a map ρ : [\]F → {!‖ = ωP\ [\],
we can apply Rf∗ = RΓ(Pn,−) to its cohomological twist and get the composition

RΓ(Pn,F) −→ RΓ(Pn, ωPn) −→ k[−n],

whose n-th cohomology is
Hn(Pn,F) −→ Hn(Pn,ΩPn/k) −→ k.

It can be showed that the last map above is an isomorphism, and thus we get a perfect pairing:

HomPn(F , ωPn)×Hn(Pn,F) −→ Hn(Pn, ωPn) = k,

which is exactly the trace map in the classical setting.
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2 Application in birational geometry: a criterion for the ra-
tional singularity

Here we provides an application of the Grothendieck duality to the birational geometry, on the
criterion of the rational singularities in characteristic 0. We mostly follow the short paper by Kovács
[Kov00]

2.1 Statement

The statement is the following.

Theorem 2.1.1 ([Kov00], Theorem 1). Let Y f : X → Y be a morphism of finite type separated
schemes over C, and let ρ : OY → Rf∗OX be the canonical map of structure sheaves. Assume Y
is normal, X has rational singularities, and there exists a map ρ′ : Rf∗OX → OY in the derived
category DCoh(X) such that the composition ρ′ ◦ρ is a quasi-isomorphism of OY itself. Then Y also
has rational singularities.

Corollary 2.1.2. The quotient singularity is rational.

Remark 2.1.3. The condition for X being rational singular is not hard to achieve: By the resolution
of singularities in characteristic 0, given a variety Y over C, we can always find a finite composition
of blowups such that the composition X → Y is birational with X being smooth, hence satisfies the
assumption that X has rational singularities.

Remark 2.1.4. Here the existence of ρ′ : Rf∗OX → OY should be considered as the existence of
the trace operator in the relative situations.

2.2 Proof of the criterion

We first recall the Grauert-Riemenschneider vanishing theorem.

Theorem 2.2.1 (Grauert-Riemenschneider). Let f : X ′ → X be a resolution of singularities of a
finite type scheme X over C. Then we have the vanishing of the higher direct image

Rif∗ωX′ = 0, ∀i > 0.

Note that the Grauer-Riemenschneider vanishing implies the following observation.

Lemma 2.2.2. Let X be a normal separated Cohen-Macaulay scheme of finite type over C, and
let φ : X ′ → X be a resolution of singularities of X. Assume φ∗ωX′ = ωX . Then X has rational
singularities.

Proof. We first notice that under the assumption, the Grauert-Riemenschneider vanishing implies
that

ω•X = Rφ∗ω
•
X′ .

By applying twice the duality theorem, we have

OX
∼= RHomX(ω•X , ω

•
X)

= RHomX(Rφ∗ω
•
X′ , ω

•
X)

= Rφ∗HomX′(ω
•
X′ , f

!ω•X)

= Rφ∗HomX′(ω
•
X′ , ω

•
X′)

∼= Rφ∗OX′ .

So we are done.

Now we can prove the Theorem 2.1.1.
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Proof of the Theorem 2.1.1. We first notice that by using the resolution of singularities and the
definition of the rational singularity, we may replace X by a resolution of singularities of Y . So we
assume the map f : X → Y is a resolution of singularities.

By the Lemma 2.2.2, it suffices to show that Y is Cohen-Macaulay and ω•Y = f∗ωX .
We apply the duality functor RHomY (−, ω•Y ) to the maps

OY −→ Rf∗OX −→ OY ,

and get
ω•Y −→ Rf∗ω

•
X −→ ω•Y ,

where the middle term follows from the duality theorem 1.1.1. As the composition ρ′ ◦ ρ is a
quasi-isomorphism, the above induces an injection

Hi(ω•Y ) −→ Rf i∗ω
•
X .

As X is smooth over C, the dualizing complex ω•X is equal to ωX [d] for d = dim(X). By the Grauert-
Riemenschnerder vanishing 2.2.1, Rf i∗ω

•
X = Rf i+d

∗ ωX = 0 for i > −d. So the above injection implies
that ω•Y lives in cohomological degree ≤ −d. However, it can be shown that the dualizing complex ω•Y
always lives in degree [−d,+∞).1 Hence the dualizing complex is a sheaf living in the cohomological
degree −d, and thus Y is Cohen-Macaulay.

At last, after a cohomological twist and the Grauet-Riemenschneider vanishing, we are left to
check the equality of ωY → f∗ωX , or the injection of the section map f∗ωX → ωY . We first notice
that since f is a resolution of singularities, the injection above becomes the equality on the regular
locus. The whole equality follows from the fact that for a CM scheme Y , the dualizing sheaf ωY is
reflexive, and hence those two are equal.2

3 Hartshorne’s approach: explicit study on dualizing com-
plexes

Here we mentioned Hartshorne’s approach on the Grothendieck duality, by studying the dualizing
complexes.

Dualizing complexes Let f : X → Y be a morphism of finite type schemes over k. Assume Rf∗
admits a right adjoint f ! such that it commutes with colimits. Then by the Remark 1.1.5, we know f !

can be written as the derived tensor product with the dualizing complexes f !OY . This suggests that
in many situations the study of the duality is essentially about the study of the dualizing complex.

We then note that in the case of projective spaces X = Pn and Y = Spec(k), the dualizing com-
plex f !k = ωPn [n] produces an anti-equivalence of the bounded coherent derived category Db

Coh(X),
by

K 7−→ RHomPn(K, f !k).

This suggests a study of broader classes of objects in the derived category as follows:

Definition 3.0.1 ([Har66], Chap V, Section 2). Let X be a finite type scheme over k, and C• ∈
D+

Coh(X) be a bounded below complex of coherent cohomology. We call C• a dualizing complex if it
satisfies the following conditions

(i) The complex C• has finite injective dimension.

1This can be tested locally, which follows from the Proposition 3.0.5 and the Proposition 3.0.6 in the next section.
2More precisely, it can be showed as follows: let i : Yreg → Y be the open immersion of the regular locus of

Y , whose complement is of codimension at least 2 by assumption. Then the fact ωY is reflexive on Y implies that
ωY = i∗ωYreg . On the other hand, since X → Y is a resolution of singularity, the preimage of Yreg along f is
isomorphic to Yreg . Furthermore, the open immersion j : Yreg → X induces an injection ωX → j∗ωYreg . Thus by
taking the direct image along f , we get an injection f∗ωX → f∗j∗ωYreg = i∗ωYreg = ωY .
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(ii) The natural map
OX −→ RHomX(C•, C•)

is a quasi-isomorphism.

Here we note that as each of the above conditions are local conditions, being a dualizing complex
can also be checked locally.

The following observation judges the name of the dualizing complex:

Proposition 3.0.2 ([Har66], Chap V, Proposition 2.1). Let X be a finite type scheme over k, and
C• a dualizing complex. Then any object K ∈ DCoh(X) is reflexive with respect to C•. Namely, the
following canonical map is a quasi-isomorphism

K −→ RHomX(RHomX(K,C•), C•).

Here are some examples of dualizing complexes

Example 3.0.3. Let X = Spec(k), then the image of k[n] for any integer n ∈ Z in DCoh(X) is a
dualizing complex.

Example 3.0.4. Let X = Pn be the projective space over k. Then for any line bundle L and any
integer n ∈ Z, the object L[n] is a dualizing complex in DCoh(X). Here the only non-formal thing
to check is the finite injective dimensionality. In fact, over a given regular noetherian scheme X of
finite Krull dimension, any coherent sheaf F has finite injective dimension.

As an upshot, for the structure map f : Pn → Spec(k), the upper shriek f !k = ωPn [n], which is
a cohomological twist of the line bundle ωPn = OPn(−n− 1), is a dualizing complex in the sense of
Definition 3.0.1.

To construct a dualizing complex, we make use of the following two observations.

Proposition 3.0.5 ([Har66], Chap V, 2.4). Let f : X → Y be a finite morphism between two
finite type schemes over k, and let C• be a dualizing complex of Y . Then the complex f [C• :=
RHomY (f∗OX , C

•) ∈ DCoh(X) is a dualizing complex of X.

Proposition 3.0.6 ([Har66], Chap V, 8.3). Let f : X → Y be a smooth morphism between two
finite type schemes over k, and let C• be a dualizing complex of Y . Then the complex f#C• :=
f∗C• ⊗L ωX/Y [m] for m = dim(X)− dim(Y ) is a dualizing complex.

The above two results allow us to give a very explicit way of constructing dualizing complexes
in many situations.

Example 3.0.7. Let X = Spec(A) for A a finite types algebra over k. Then by the Noetherian’s
normalization theorem we can find a subalgebra A0 of X such that A is finite over A0, and A0 is
isomorphic to a polynomial ring over k. Take Y = Spec(A0), and let g : X → Y and h : Y → Spec(k)
be the canonical morphisms. Then the object

g#h[(k)

is a dualizing complex of X.

In fact, the dualizing complex is unique up to a twist. More precisely, we have

Theorem 3.0.8 (Uniqueness; [Har66], Chap V, 3.1). Let X be a connected finite type scheme over
k, C• be a dualizing complex and E• be another lower-bounded complex in D+

Coh(X). Then E• is a
dualizing complex of X if and only if there exists a line bundle L on X and an integer n ∈ Z, such
that

E• ∼= C• ⊗ L[n].
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Digestions The above discussion about the existence and the uniqueness of the dualizing com-
plexes suggest that we can define the upper shriek functor in the following way. Let f : X → Y be
a map of finite type schemes over k, and let C• be a dualizing complexes. Then we define a functor
f ! : DQcoh(Y )→ DQcoh(X) as follows:

L 7−→ Lf∗L⊗L
OX

f !C•.

This approach is good for several reasons.

• From the construction, we can see that both the dualizing complexes and the upper shriek
functor are very explicit and can be computable in many cases.

• Moreover, it is clear that this construction is a local construction, and is compatible when
passing to a localization.

However, the main drawback of the approach is that the functor f ! constructed this way cannot
be expected to be a right adjoint of any known functors like Rf∗ anymore. As mentioned in the
Remark 1.1.5, the right adjoint of Rf∗ can be written as a tensor product with a dualizing complex
only when the right adjoint preserves the colimits. In fact, it is shown in [Nee18] 2.14 that for a
proper morphism f : X → Y , the right adjoint of Rf∗ preserves the colimits if and only if f is of
finite Tor dimension.

4 Neeman’s approach: Brown’s representable theorem

We then provides an abstract approach given by Neeman [Nee96], using the Brown’s representable
theorem. We will see soon that the existence of the right adjoint f ! of the derived push-forward Rf∗
follows from easily from a very general result.

We first recall the following definition for a triangulated category of being compactly generated.3

Definition 4.0.1. Let T be a triangulated category. We call it is compactly generated if T admits
arbitrary small coproducts, and there exists a small set of compact objects T in T , such that the
vanishing of an object L ∈ T can be checked by T :

Hom(K,L) = 0, ∀K ∈ T =⇒ L = 0.

Example 4.0.2. Let X be a finite type scheme over the field k. Then the derived category DQcoh(X)
of quasi-coherent cohomologies admits small coproducts, by taking the direct sum of complexes term-
wisely.

Moreover, DQcoh(X) is compactly generated. When X is affine, the generating set T can be
the collection {OX [n], n ∈ Z}, as

HomDQcoh(X)(OX [n], L) = HomDQcoh(X)(OX , L[−n]) = H−n(X,L).

The similar method applies to the case when X is projective. The general situation needs the fact
about the compact generatedness of the derived category with supports, which we refer the reader
to [Nee96], 2.5 and 2.6.

The Brown’s representable theorem as follows.

Theorem 4.0.3 (Brown representability; [Nee96], 3.1). Let T be a compactly generated triangulated
category, and let F : T op → Ab be an exact functor (namely it takes distinguished triangles into
long exact sequence). Suppose F commutes with small coproduct. Then F is representable.

Proposition 4.0.4. Let f : X → Y be a map of finite type schemes over k, and L be an complex
in DQcoh(Y ). Then the contravariant functor from DQcoh(X) to Ab

K 7−→ HomDQcoh(Y )(Rf∗K,L)

is representable. In particular, the derived direct image Rf∗ admits a right adjoint.
3The reader who is not familiar with the triangulated category may just assume it is the derived category D(A)

of a ring A or D(X) for a scheme X.
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Proof. We applies the Brown’s representability 4.0.3 to the setting T = DQcoh(X) and the functor

DQcoh(X) 3 K 7−→ HomDQcoh(Y )(Rf∗K,L).

The only thing we need to check is the compatibility with the coproducts, which we have:

Claim 4.0.5. Let f : X → Y be a separated morphism of from a quasi-compact separated scheme
X to a scheme Y . Then Rf∗ commutes with coproducts.

Proof of the Claim. Let Ki be a collection of objects in DQcoh(X) over a small index category. Then
we need to check the following natural map is a quasi-isomorphism∐

i

Rf∗Ki −→ Rf∗(
∐
i

Ki).

As this is a local statement over Y , it suffices to assume Y is affine.
By assumption of the quasi-compactness and separatedness of X, we may write X as the union

of finite affine open subsets X = ∪nj=1Uj , with intersection of any two Uj being affine. We induction
on the number n of affine open pieces. When n = 1, since f is an affine morphism in this case, the
functor Rf∗ = f∗ is just the forgetful functor of chain complexes, which commutes with coproducts.
For general n, let V = ∪nj=2Uj be the union. We then note that since both V and U1 ∩ V are
union of n − 1 open affine pieces (the latter follows from the separatedness), by induction the
derived push-forward of f restricted to both of open subsets satisfies the condition. Thus the get
the whole X = U ∪ V , it suffices to use Mayer-Vietories sequence, namely the hypercovering of X
by U ∩ V → U

∐
V → X, and the distinguished triangle associated to this.

Remark 4.0.6. The the Brown’s representability only shows that for each individual L, we can
define an object f !L. This a priori does not imply the map L 7→ f !L is functorial. However,
pointed by Emanuel Reinecke, the functoriality could follow from that the Yoneda embedding is fully
faithful, as a given map L→ L′ will induce a natural transformation of functors Hom(Rf∗(−), L)→
Hom(Rf∗(−), L′).

By the uniqueness of the right adjoint, the functor we get is exactly the f ! in the Duality
theorem 1.1.1. So for any K ∈ DQcoh(X) and L ∈ DQcoh(Y ), we have the following functorial
isomorphism of abelian groups

HomDQcoh(X)(K, f
!L) −→ HomDQcoh(Y )(Rf∗K,L),

induced from the counit map Rf∗f
! → id. Moreover, by taking the K-injective resolution of K

(sorry for the abuse of notation) and change L by L[n] for n ∈ Z, we get the natural map

RHomDQcoh(X)(K, f
!L) −→ RHomDQcoh(Y )(Rf∗K,L),

which is a quasi-isomorphism by checking each Ext group and use the isomorphism above (for a
twist of L). Hence we get the (non-sheafifed) version of the Grothendieck duality.

5 Deligne’s approach: Ind and pro objects

At last, we give another abstract approach to duality introduced by Deligne (cf. [Del]), and consider
the ind objects and pro objects of derived coherent category.

Let A be an abelian category. Following the definition in [Del], we define the category of
pro-systems in A, denoted by proA, to be the category where objects are pro-systems over a small
category. For the derived category DCoh(X) of coherent cohomologies, we define the full subcategory
proDb

Coh(X) of the pro-system derived category proDCoh(X), to be the pro-system of objects K =
“ lim←− ”Ki in DCoh(X), such that the cohomological degrees of Ki are uniformly bounded.
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Let f : X → Y be a map of finite type schemes over k. When f is proper, it is shown by
Verdier that the Rf∗ has a right adjoint f !, which is exactly the one in the Duality theorem 1.1.1.
For the general f , since by Nagata’s compactification theorem f can be written as a composition
of open immersion followed by a proper map, Deligne’s idea is to construct the derived version
for the cohomology with proper support f!, which serves as a generalization of Rf∗ in the proper
case. When f is an open immersion, the lower shriek functor is the left adjoint to the pullback
f∗ : D+

Qcoh(Y )→ D+
Qcoh(X). However, to define this functor that can serves as the left adjoint, one

has to enter the pro-system in order to realize the limit of colimit of hom groups

f! : proDb
Coh(X) −→ proDb

Coh(Y ).

Its construction is given as follows:

Construction 5.0.1. Let X and X ′ be two finite type schemes over k, and a map g : X → X be
an open immersion, with J the defining ideal of the complement X\X in X. Let F be a coherent

sheaf over X. Pick any coherent sheaf F̃ over X such that g∗F̃ = F . Then we can form the pro
system “ lim←− ”J nF̃ . It can shown that the pro system “ lim←− ”J nF̃ is independent of choices of lifting

F̃ . So we get a functor
Coh(X) −→ proCoh(X).

This induces a derived functor
Db

Coh(X) −→ proDb
Coh(X),

and by passing to the pro systems of the source, we get

g! : proDb
Coh(X) −→ proDb

Coh(X).

In the case of open immersion, this lower shriek functor g! can be also regarded as a derived
pro version of the extension by zero. The following result observed by Deligne judges the claim.

Proposition 5.0.2 ([Del], Proposition 4). Let g : X → X be an open immersion, J the defining
ideal for the complement X\X. Assume F is a coherent sheaf over X, and G is a quasi-coherent
sheaf over X. Then we have the following functorial equality

HomX(F , g∗G) = HomX(“ lim←− ”J nF̃ ,G).

Here to make sense of the above two Hom groups, we need the following observation.

Proposition 5.0.3 ([Del], Proposition 2). Let X be a quasi-compact quasi-separated scheme. Then
the category indCoh(X) of ind systems of coherent sheaves over X is naturally equivalent to the
category Qcoh(X) of quasi-coherent sheaves over X.

The Proposition makes it clear that in the Hom groups above, the target on both sides can be
written as ind systems “ lim−→ ”Gi and “ lim−→ ”g∗Gi separately. So the Hom groups are computed by

HomX(F , g∗G) = lim−→
i

HomX(F , g∗Gi);

HomX(“ lim←− ”J nF̃ ,G) = lim−→
n

lim−→
i

HomX(J nF̃ ,Gi).

The above gives the construction of the cohomology of proper support for an open immersion.
This allows us to define the cohomology of proper support for general morphism f = h ◦ g : X → Y
that is compactifiable, by taking Rf! : proDb

Coh(X) → proDb
Coh(Y ) as g! ◦ Rh∗. We also define the

upper shriek functor Rf ! to be h! ◦ g∗, where h! is the right adjoint of Rh∗ for the proper map h
as in the Theorem 1.1.1. We note that this Rf ! is different from the functor f ! for general f in the
Theorem 1.1.1. However, the construction provides us a duality theorem involving the pro systems
and ind systems of coherent derived categories, as follows:
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Theorem 5.0.4 (Theorem 2, [Del]). Let f : X → Y be a compactifiable morphism between two
finite type schemes over k. Then the functor f! : proDb

Coh(X) → proDb
Coh(Y ) is a “left adjoint”

of the functor Rf ! : D+
Qcoh(Y ) → D+

Qcoh(X), in the sense that for a pro system K = “ lim←− ”Ki ∈
proDb

Coh(X) and an ind system L = “ lim−→ ”Lj ∈ D+
Qcoh(Y ) for Lj ∈ D+

Coh(Y ), we have the natural
equality

lim−→
i

lim−→
j

HomDCoh(X)(Ki, Rf
!Lj) = lim−→

i

lim−→
j

HomDCoh(Y )(f!Ki, Lj).

Remark 5.0.5. In the above Theorem, the construction of the functors f! and Rf ! are in fact not
share the same categorical framework: f! is a functor between the category of pro-objects, while Rf !

is a functor between ind-objects. This actually suggests to find a bigger category that behaves better
in terms of limits and colimits. We will see in the next section that the category of solid modules,
introduced by Clausen-Scholze, actually provides a better framework we want. In particular, we will
see how Deligne’s formalism of f! and Rf ! can be constructed for solid modules, which leads to a
six functor formalism in the coherent setting.

6 Clausen-Scholze’s approach: Condensed mathematics

At the last section, we introduce the approach to the Grothendieck duality via the condensed mathe-
matics, introduced by Clausen-Scholze. We will give the statement of the coherent duality in terms of
condensed modules, and illustrate how this implies the classical Grothendieck duality, for a proper
map of finite type schemes over Z. The only reference currently is the lecture notes [Sch19] by
Scholze.

6.1 Condensed math and discrete topology

We first recall the definition of a condensed set/ring/group.4

Definition 6.1.1. [Sch19, Lecture 1] A condensed set/ring/group F is defined as functor

F : {profinite sets}op −→ Set/Ring/Group,

with the condition F(∅) = ∗, such that it satisfies the following two conditions:

• For any two profinite sets S1, S2, the natural map below is a bijection

F(S1

∐
S2) −→ F(S1)×F(S2).

• For any surjection S′ → S of profinite sets, the following map is a bijection

F(S) −→ {x ∈ F(S′) | p∗1(x) = p∗2(x) ∈ F(S′ ×S S
′)},

where pi are two projection maps from the fiber product S′ ×S S
′.

It can be checked that the above definition is equivalent to the condition of F being a sheaf of
sets/rings/groups over the pro-étale site ∗proét of a single point ∗.

For any topological space/ring/group T , there exists a canonical way to associate a condensed
set/ring/group T to it, by

profinite set S 7−→ Mapcont(S, T ).

This functor is always faithful, and is full when restricted to the subcategory of compactly generated
topological spaces. Here we recall that a space X is compactly generated if a map X → Y to a
topological space Y is continuous if and only if the composition S → X → Y is continuous, for any

4Here we follow the convention of [Sch19] and fix a cardinality κ large enough with certain conditions, in order to
prevent any possible set-theoretic issue. All of the constructions below is no larger than the given cardinality κ.
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profinite set S and any continuous map S → X. Examples of compactly generated spaces include
discrete spaces and profinite sets.

The above functor admits a left adjoint

F 7−→ F(∗)Top,

where F(∗)Top is the topological space defined over the set F(∗) with the quotient topology given
from ∐

profinite S→F

S −→ F(∗).

Here each map S → F(∗) is given by taking the set of sections of the morphism S → F at the point
∗, and the disjoint union

∐
profinite S→F S is equipped with the disjoint union topology (the finest

one such that each S →
∐
S is continuous). So the set F(∗)Top has the topology such that any a

subset U ∈ F(∗)Top is open if and only if its preimage in S is open, for any map S → F(∗) given by
a section s ∈ F(S).

The condensed mathematics is invented to produce a good framework to do algebra that comes
with a topology. In fact, the category Cond(Ab) of condensed abelian groups forms a very good
abelian category.

Theorem 6.1.2. [Sch19, Theorem 2.2] The category Cond(Ab) of condensed abelian groups is an
abelian category that satisfies Grothendieck axioms (AB3), (AB4), (AB5), (AB6), (AB3∗), (AB4∗).

In the case when T has the discrete topology, any continuous map (as a section in T (S)) from
a profinite set S to T will factor through a quotient of S onto a finite set, and the preimage of any
subset along s : S → T is open in S. This in particular implies that the space T (∗)Top also has the
discrete topology on the underlying set T .

When A is a discrete ring or group, the topological group A(∗)Top is the same as A with the
discrete topology. Moreover, we have the following:

Proposition 6.1.3. The functor A→ A is a fully faithful embedding from the category of discrete
abelian groups to the category of condensed abelian groups that preserves filtered colimits. It admits
a left adjoint F 7→ F(∗)Top, such that the composition A 7→ A 7→ A(∗)Top is the identity.

Proof. Let A = colimiAi be a filtered colimit of discrete abelian groups. Then for any profinite set
S and any continuous map s : S → A, it factors through a finite quotient of S. As A is a filtered
colimit, by taking some Ai that contains all finite image we see the map S → A factors through
some S → Ai. Thus we get the bijection

Mapcont(S, colimiMi) = colimiMapcont(S,Mi).

In particular, A→ A preserves filtered colimits.
It now suffices to show that there exists a natural isomorphism of abelian groups:

HomCond(Ab)(A,B) ∼= Hom(A,B),

where A and B are two discrete abelian groups. In fact, it is proved in [Sch19, Proposition 4.2] that
for two Hausdorff abelian groups A and B such that A is compactly generated, we have a natural
isomorphism of condensed abelian groups

Hom(A,B) ∼= Homcont(A,B),

where Homcont(A,B) is the group of continuous homomorphisms with compact-open topology. So
the Proposition we want follows by taking the section of the above isomorphism at ∗.

6.2 Condensed and solid modules

Now we turn to the quasi-coherent theory.
We first introduce the concept of the pre-analytic ring and the analytic ring.

11



Definition 6.2.1. A pre-analytic ring A is a condensed ring A together with a functor

{extremaly disconnected sets} −→ Modcond
A : S 7−→ A[S],

where the category Modcond
A is the category of A-modules in condensed abelian groups, such that the

functor take finite disjoint unions into products, and it is equipped with a natural transformation
S → A[S].

The pre-analytic ring A is called analytic if it satisfies the condition in [Sch19, Definition 7.4].

We will not speak out the explicit definition of the analytic rings; instead, we want to give
several examples of analytic rings and introduce the key properties we need.

Example 6.2.2. (i) Let R be a finite type Z-algebra. Then we can define a pre-analytic ring R�

by the discrete condensed ring R� := R and the functor

S 7−→ R�[S] := lim←−
i

R[Si],

where S = lim←−i
Si is the inverse limit of finite sets Si. It is showed in [Sch19, Theorem 8.1]

that R� is an analytic ring.

(ii) For a map of finite type Z-algebra R → A, we can define a pre-analytic ring (A,R)� by the
discrete condensed ring (A,R)

�
:= A and the functor

S 7−→ R�[S]⊗R A.

By [Sch19, Theorem 8.13] we know (A,R)� is an analytic ring. In the special case when
R = A, by construction we have (A,A)� = A�.

One of the important features of an analytic ring A is that the category Modcond
A is condensed

A-modules admits a well-behaved full subcategory Modcond
A of solid A-modules where we can build

the six functors formalism. The category Modcond
A is defined as the subcategory of M ∈ Modcond

A
such that for all extremally disconnected sets S the following map is an isomorphism

HomA(A[S],M) −→M(S).

The relation between the category Modcond
A and ModAcond is given as follows:

Proposition 6.2.3. [Sch19, Proposition 7.5] Let A be an analytic ring.

(i) The full subcategory Modcond
A of solid A-modules in Modcond

A is an abelian category stable under
all limits, colimits and extensions. The collection of condensed A-modules A[S] for S being
extremally disconnected forms a family of compact projective generators of Modcond

A .

(ii) The inclusion functor Modcond
A ⊂ Modcond

A admits a left adjoint functor (called the solidifica-
tion)

M 7−→M ⊗A A,

which is the unique colimi-preserving extension of the functor A[S] 7→ A[S]. There exists a
unique symmetric monoidal structure ⊗A on Modcond

A such that the solidification functor is
symmetric monoidal.

(iii) The item (i) and (ii) admit a derived version for the fully faithful embedding D(Modcond
A ) →

D(Modcond
A ) of derived ∞-category.

Specify to the case when A = A� for a finite type Z-algebra A, we then have the following
result.
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Proposition 6.2.4. Let R → A be a map of finite type Z-algebras, and let A be the analytic ring
(A,R)�. Then the functor

M 7−→M

is a fully faithful embedding from the category of A-modules to the category of solid A-modules that
preserves filtered colimits. This functor admits a natural left adjoint, by taking the section at the
point ∗

Proof. By the Proposition 6.1.3, the category of A-modules admits a fully faithful embedding into
the category of A-modules by M 7→ M . We take S to be a finite set in the Proposition 6.2.3, then
A[S] = R�[S] ⊗R A is a solid (A,R)�-module. So we have F is a solid A-module for any finite
free A-module F (with discrete topology). This in particular implies that M is solid for any finite
A-module M , for the inclusion Modcond

A ⊂ Modcond
A preserves colimits and any finite A-module is a

cokernel of a map of finite free modules.
We then recall that the functor M → M from discrete abelian groups to condensed abelian

groups preserves filtered colimits (Proposition 6.1.3). So for any discrete A-module M , we may
write it as a filtered colimit M = colimMi of finitely generated A-modules. Then M = colimiMi =
colimiM i is a colimit of solid A-modules, which by Proposition 6.2.3 again is solid. In this way, the
functor

M 7−→M

is a fully faithful embedding from the category of A-modules to the category of solid (A,R)�-modules
that preserves filtered colimits.

As the functorM 7→M from the category of discrete abelian groups to the category of condensed
abelian groups admits a natural left adjoint by taking the section at ∗ (Proposition 6.1.3), the functor

ModA 7−→ Modcond
A , M 7−→M

has the left adjoint by the same formula. So we may compose the inclusion functor Modcond
A ⊂

Modcond
A to get the left adjoint we want.

In the special case when R = A, we get the fully faithful embedding from the category ModA

to the category Modcond
A�

of solid A�-modules.
We then consider the relative situation.

Proposition 6.2.5. [Sch19, Proposition 7.7] Let A → B be a map of analytic rings. Then there
exists a natural symmetric monoidal functor − ⊗A B from the category of solid A-modules to the
category of solid B-modules, such that the following diagram commute

Modcond
A

−⊗AB // Modcond
B

Modcond
A

−⊗AA

OO

−⊗AB// Modcond
B ,

−⊗BB

OO

where the functor −⊗A A : Modcond
A → Modcond

A is the solidification functor (similarly for B).

In the special case when A and B are analytic rings coming from finite type Z-algebras, we have
the following:

Proposition 6.2.6. [Sch19, Theorem 8.13] Let R → S → A be a map of finite type Z-algebras.
Then there exists fully faithful embeddings of categories of solid modules

Modcond
(A,S)�

−→ Modcond
(A,R)�

−→ Modcond
R�

,

where each of them is the forgetful functor. Moreover, each forgetful functor admits a natural left
adjoint by the base extension functors

Modcond
(A,S)�

Modcond
(A,R)�

− ⊗
(A,R)�

(A,S)�

oo Modcond
R�

.

− ⊗
R�

(A,R)�

oo

13



Proof. The Theorem 8.13 in [Sch19] gives the proof for the pair Modcond
(A,S)� // Modcond

(A,R)�

− ⊗
(A,R)�

(A,S)�

oo .

For the pair Modcond
(A,R)� // Modcond

R�

− ⊗
R�

(A,R)�

oo , it suffices to check that the forgetful functor is well

defined. Namely, given a solid (A,R)-module M , the underlying R-module structure on M is solid
over R�.

We check this by the definition of the solidity. Let S be an extramally disconnected set, and
M a solid (A,R)�-module. Then we have the bijection

Hom(A,R)
�

((A,R)�[S],M) = M(S).

By the construction of the analytic ring (A,R)�, we know (A,R)
�

= A and (A,R)�[S] = R�[S]⊗RA
in the category of condensed abelian groups. So we have

HomA(R�[S]⊗R A,M) = M(S).

But notice that the natural map of condensed R-modules R�[S]→ R�[S]⊗RA induces the following
bijection

HomA(R�[S]⊗R,M) = HomR(R�[S],M).

In this way, we get the bijection

HomR(R�[S],M) = M(S),

and by the definition we see M is a solid R�-module.

Remark 6.2.7. Here we give a remark about the compatibility of the Proposition 6.2.6 with the
discrete modules.

We first note that the forgetful functors in the Proposition 6.2.6 are compatible with the functor
in the Proposition 6.2.4

M 7−→M,

sending a discrete A-module to its associated solid (A,R)�-modules. In short, the forgetful functor
preserves the discrete objects.

On the other hand, given a discrete R-module N , its associated condensed R-module N is a solid
R�-module by the Proposition 6.2.4 (for (R,R)�). We claim that the base extension N⊗R�

(A,R)�,
as a solid (A,R)�-module, is identical to the A-module N ⊗R A (hence is also a solid (A,S)�-module
for any map R→ S → A by the fully faithful embedding in the Proposition 6.2.6).

To compute the base extension, we first notice that by the Proposition 6.2.4 and the Proposition
6.2.3, (ii), for a discrete R-module N the associated solid R�-module N is equal to its solidification
N ⊗R R�. So the diagram in Proposition 6.2.5 implies that the base extension N ⊗R�

(A,R)� is
equal to the (A,R)�-solidification of the A-module N ⊗R A. As the tensor product preserves the
colimits, by writing N as a filtered colimit of finite R-modules (where each of them is a finite colimit
of a pushout diagram of finite free R-modules) we have

N ⊗R A = N ⊗R A,

which is solid over A�. So the (A,S)-solidification is equal to N ⊗R A itself and we get the com-
patibility.

We at last note that we may take the associated derived (∞) functors and get the derived
version of these compatibilities.
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6.3 Global analytic rings

We then generalize the quasi-coherent theory in the last subsection to the global setting, using the
language of adic spaces.

First we recall the definition of adic spaces.

Definition 6.3.1. A discrete adic space is a triple (X,OX , (| · |x)x∈X), where X is a topological
space, OX is a sheaf of rings over X, and (| · |x)x∈X is a collection of equivalences of valuations for
each x ∈ X, such that locally the triple is of the form (Spa(A,A+),OSpa(A,A+), (| · |x)x∈Spa(A,A+)),
for A a discrete ring and A+ an integrally closed subring of A.

Here we recall that for a pair of discrete rings (A,A+), where A+ is integrally closed inside of
A, the space Spa(A,A+) is defined as the space of all equivalences of valuations of A with |f | ≤ 1
for all f ∈ A+. The topology of Spa(A,A+) is the valuation topology defined as in [Sch19, Lecture
9].

For any map of finite type Z-algebra R→ A, we can define an affinoid adic space associated to
the map by

Spa(A, R̃),

where R̃ is the integral closure of R in A. This allows us to associate the pair (A, R̃) (or more
directly the pair (A,R)) the abelian category Modcond

(A,R)�
of solid (A,R)� modules and its derived

∞-category D((A,R)�) := D(Modcond
(A,R)�

). In fact, by taking the colimit for all discrete Huber pairs

of finite type Z-subalgebras, we can define the (derived) category of solid (A,A+)�-modules for any
discrete Huber pair (A,A+).

It is then natural to ask if the category of solid modules can be glued to a global category of
solid modules. Unfortunately, as explained in [Sch19, Lecture 9], the localization behave badly in
the abelian level, and only works well after passing to the derived ∞-level (with all of the natural
functors becoming their derived versions).

We state this gluing result as follows.

Theorem 6.3.2. [Sch19, Theorem 9.8] Let X be a discrete adic space. Then the association taking
any open affinoid subset U = Spa(A,A+) to the derived ∞-category D((A,A+)�) ⊂ D(Modcond

A )
defines a sheaf of ∞-category on X.

We denote this derived ∞-category by D((OX ,O+
X)�) or D(X�) in short.

Here we note that for an inclusion V = Spa(B,B+)→ U = Spa(A,A+) of affinoid open subsets
of X, the transition map

D((A,A+)�) −→ D((B,B+)�)

is the left adjoint to the derived forgetful functor.
In the discrete case, given a map of finite type Z-schemes X → Y , we can also build a discrete

adic space Xad/Y , locally of the form Spa(A, R̃) for open affine subspaces U = Spec(A) of X and
V = Spec(R) of Y separately. When X = Y , we denote by Xad to be the discrete adic space
Xad/X , where locally it is of the form Spa(A,A) with the associated derived ∞-category of solid
A�-modules.

Moreover, by the compatibility in the Remark 6.2.7, the functor sending a discrete A-module
to its associated solid (A,R)-module in the Proposition 6.2.4 admits a global version. Namely for a
map of finite type Z-scheme f : X → Y , denote by Z to be the discrete adic space Xad/Y . We can
then construct two derived ∞-functors:

• The functor
DQcoh(X) −→ D((OZ ,O+

Z )�), F 7−→ F ,

which is the derived global version of the functor from discrete A-modules M to the solid
(A, R̃)�-modules M .

• The functor
D((OZ ,O+

Z )�) −→ D(X),
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which is the sheafified version of the functor sending a solid (A, R̃)�-module N to its derived
section at ∗.

The composition DQcoh(X)→ D((OZ ,O+
Z )�)→ D(X) is the identity functor on objects in DQcoh(X),

as the base extension along an inclusion of affinoid open subsets is compatible with the tensor
product of discrete modules (see the Remark 6.2.7). This in particular shows that the functor
DQcoh(X) → D(Zad

� ) is a fully faithful embedding of derived ∞-category(cf. Corollary 4.9 in
[Sch19]).

Furthermore, the map of finite type Z-schemes f : X → Y induces a map of discrete adic spaces

Xad −→ Xad/Y −→ Y ad,

where the first map is an open immersion when f is separated by [Sch19, Proposition 9.6]. This
then produces a natural diagram of adjoint pairs among derived ∞-categories, generalizing the
Proposition 6.2.6 to the global situation:

D(Xad
� )

//
D(X

ad/Y
� )

//oo D(Y ad
� )oo

These are the derived direct image funtors (−)∗ and the derived pullback functors (−)∗ in the solid
settings.

6.4 Coherent duality of solid modules, and its application to classical case

We can now state the coherent duality of solid modules.

Theorem 6.4.1. [Sch19, Theorem 8.13] Let g : X → Y be a separated map of finite type Z-schemes.
Denote by j : Xad → Xad/Y to be the open immersion of discrete adic spaces. Then the derived

pullback functor j∗ : D(X
ad/Y
� )→ D(Xad

b s) admits a left adjoint j!, satisfies

j!j
∗M = M ⊗L

(O
Xad/Y

,O+

Xad/Y
)�

j!(OXad ,O+
Xad)�.

Theorem 6.4.2. [Sch19, Theorem 8.14] Let g : X → Y be a separated map of finite type Z-schemes,
with j : Xad → Xad/Y , h : Xad/Y → Y and f : Xad → Y ad being natural morphisms of discrete adic

spaces. Define f! : D(Xad
� )→ D(Y ad

� ) to be the composition D(Xad
� )

j! // D(X
ad/Y
� )

h∗ // D(Y ad
� ) .

Then we have

(i) The functor f! commutes with all direct sum and satisfies the projection formula

f!(f
∗M ⊗L

(O
Xad ,O+

Xad )�

N) ∼= M ⊗L

(O
Y ad ,O+

Y ad )�

f!N.

The formation of the lower shriek functor is compatible with compositions.

(ii) The functor f! admits a right adjoint f ! that preserves discrete objects, and the formation of the
upper shriek functor is compatible with compositions. Moreover, the object f !(OY ad ,O+

Y ad)� is
a bounded-below complex of discrete coherent sheaves of OX-modules (via F 7→ F).

(iii) Assume g is of finite Tor-dimension. Then f! preserves compact objects, and f ! commutes
with all direct sums. In this case the object f !(OY ad ,O+

Y ad)� is a bounded complex of discrete

coherent sheaves of OX-modules, and the functor f ! can be given by

f !M = f∗M ⊗L

(O
Xad ,O+

Xad )�

f !(OY ad ,O+
Y ad)�.

Furthermore, when f is a complete intersection, the object f !(OY ad ,O+
Y ad)� is locally quasi-

isomorphic to a discrete line bundle concentrated in the same degree.
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As an application, we show how the condensed math implies the classical duality for quasi-
coherent sheaves over schemes.

Proposition 6.4.3 (Classical Grothendieck duality). Let g : X → Y be a proper map of finite type
schemes over Z. Then the derived direct image Rg∗ admits a right adjoint g! on the derived category
of quasi-coherent sheaves, such that g! is the restriction of the functor f ! : D(Y ad

� ) → D(Xad
� ) on

the subcategory of discrete objects, for the map of discrete adic spaces f : Xad → Y ad.

Proof. Let f : Xad → Y ad be the natural morphism of discrete adic spaces, and let K ∈ DQcoh(X)
and L ∈ DQcoh(Y ). Consider the following commutative diagram of derived ∞-category

DQcoh(X)
g∗ //

��

DQcoh(Y )

��

g∗
oo

D(Xad
� )

f∗ //
D(Y ad

� ),
f∗

oo

where every functor is derived and the vertical maps are the fully faithful embedding (constructed
by sending a discrete quasi-coherent sheaf to its associated sheaf of solid Xad

� -modules (resp. Y ad
� -

modules) F 7→ F). Then by the Theorem 6.4.2, we have a canonical isomorphism

RHomD(Xad
�

)(K, f
!L) ∼= RHomD(Y ad

�
)(f!K,L).

As the map of schemes g : X → Y is proper, the induced morphism of adic spaces Xad → Xad/Y

is an isomorphisms ([Sch19, Proposition 9.6]). In particular, by the construction of f! we see f! is
equal to the forgetful functor f∗. So we get

RHomD(Xad
�

)(K, f
!L) ∼= RHomD(Y ad

�
)(f∗K,L). (1)

Moreover, since f ! preserves discrete object (Theorem 6.4.2 (ii)), the restriction of f ! on the full
subcategory DQcoh(Y ) defines a derived functor g! : DQcoh(Y )→ DQcoh(X), and we get

RHomD(Xad
�

)(K, f
!L) ∼= RHomD(Xad

�
)(K, g

!L). (2)

In this way, as the diagram above commutes while the vertical underlying functors are fully faithful,
by combining (1) and (2) above we can identify f∗K as g∗K and obtain a natural quasi-isomorphism
as below

RHomDQcoh(X)(K, g
!L) ∼= RHomDQcoh(Y )(g∗K,L).

Thus we are done.

Remark 6.4.4. The coherent duality in solid modules above have several improvements compared
with the classical theory.

(i) Most important point is that the coherent duality of solid modules provides a six functor
formalism for a map of finite type schemes, not necessarily to be proper. In particular, we
obtain the existence of the “cohomology with compact support” functor f! functor.

(ii) Deligne’s approach to the Grothendieck duality allows us to build the functor Rf ! and f! (cf.
Section 5). However, as in the Theorem 5.0.4 the functor f! is between category of pro-objects
of coherent sheaves, while Rf ! is between the category of ind-objects of coherent sheaves.
Note that the category of solid modules provides a bigger category that contains the colimits
of limits of coherent sheaves (via the functor F 7→ F for a discrete coherent sheaf F). In
particular, we see the objects in Deligne’s approach are in fact embedded into the category of
solid modules. So the condensed math actually provides a better framework where limits and
colimits behave well altogether.
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(iii) In the discussion of Hartshorne’s approach to dualizing complex, we see the construction of
the dualizing complex is not canonical. On the other hand, in the Theorem 6.4.2 we get a
natural discrete object f !(OY ad ,O+

Y ad)� that is bounded-below and has coherent cohomology.
This provides a canonical construction of the dualizing complex.
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