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Abstract

This is the lecture notes for the mini-course during June 11-15, 2018 at University of Michi-
gan, about the crystalline cohomology. In this mini-course, we will give an overview about
crystalline theory. We first give a mild introduction about the motivation and main results of
crystalline cohomology, without anything technical. Then we start by looking at algebraic and
geometric basics around the crystalline theory. We prove the comparison theorem between crys-
talline cohomology and de Rham cohomology, following Bhatt and de Jong [BdJ12]. After that,
we turn to the study of the de Rham-Witt complex, a powerful tool in crystalline cohomology.
At last, we apply our theory to several questions about rational points in arithmetic geometry.1
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1 Introduction

1.1 Motivations

Crystalline cohomology was invented by Grothendieck in 1966 , in order to find a ”good” p-adic
cohomology theory, to fill in the gap at p in the families of `-adic étale cohomology, and to refine
the notion of the de Rham cohomology in positive characteristic. It was started by Grothendieck’s
lectures at IHES in 1966 ([Gro68]), where he outlined the program, and was worked out by Berthelot
in his thesis ([Ber74])

To motivate the story, we first look at some known cohomology theory at that time.

1The note is supposed to be in its final version right now, due to the lack of time of the author. And the author
is responsible for whatever errors in this note. But comments are always welcome!
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`-adic cohomology Let k = Fq be a finite field of characteristic p, and ` 6= p be a prime number.
For a smooth projective and geometrically connected scheme X over k, one of the most important
numerical invariance of X is its zeta-function, defined by counting-points

ζX(t) = exp(

∞∑
n=1

|X(Fqn)|
n

tn) =
∏

x∈|X(k)|

1

1− tdeg x
.

It is clear from the second expression that ζX(t) is a power series of t. But it is the great result by
Weil, Dwork, Grothendieck, Deligne and others that ζX(t) is actually a rational function, satisfying a
functional equation, with zeros being of specific absolute values. This is the famous Weil Conjecture.

So how did people prove this? Motivated by singular cohomology for complex varieties, Weil
suggested that the conjecture should follow ”formally” from the existence of certain cohomology
theory for varieties over finite fields, where the Lefschetz’s fixed points theorem, Poincaré duality
and other properties were supposed to hold. In this way, we can study the points-counting by looking
at the Frobenius action. Then Grothendieck and Michael Artin managed to produce the `-adic étale
cohomology, which satisfies very good properties just like singular cohomology.

Precisely, the `-adic cohomology is a Weil cohomology theory, in the sense that it is a con-
travariant functor H∗ on the category of smooth projective varieties over k to the category of graded
algebras over a field Q` of characteristic 0, satisfying the following properties:

(i) Finiteness: dim Hi(X) is finite.

(ii) Vanishing: Hi(X) = 0 when i < 0 or i > 2 dim(X).

(iii) Poincaré duality: isomorphism between Hi(X) and H2 dim(X)−i(X).

(iv) Trace map: isomorphism H2 dim(X)(X)→ Q`.

(v) Künneth formula: H∗(X)⊗H∗(Y )→ H∗(X × Y ).

(vi) Cycle map: Zi(X)→ H2i(X), compatible with intersections and cup product.

(vii) Weak Lefschetz Theorem.

(viii) Hard Lefschetz Theorem.

Moreover, when X comes from a smooth projective scheme over a finitely generated Z-subalgebra R
inside of C, there exists a comparison theorem between `-adic cohomology and singular cohomology,
given by

H∗(Xk,ét,Z`) = H∗sing(X
an,Z)⊗ Z`.

Here we note that the comparison does not kill the torsion; namely the `-torsion information of the
singular cohomology of Xan is covered by H∗(X,Z`).

However, things become quite different when ` = p. In fact, almost non of the above properties
hold for p-adic étale cohomology of varieties in characteristic p. So it is natural to ask if there is
a ”good” p-adic cohomology theory that can satisfies the above properties. Moreover, since `-adic
cohomology only encodes the Betti numbers and `-torsion, there is no way to read any information
about p-torsion from the `-adic theory above. Thus, this motivates the need to find those ”lost”
p-torsion information.

De Rham cohomology, and infinitesimal theory When X is a smooth projective variety over
C, it is well-known that H∗(Xan,C) is a good cohomology theory. And there exists a comparison
between singular cohomology and algebraic de Rham cohomology, given by

H∗(Xan,C) = H∗(Xan,Ω•X/C) = H∗(X,ΩX/C),

where the first equality follows from the Poincaré’s Lemma, and the second the GAGA.
For a variety over k of positive characteristic, in order to find a p-adic cohomology theory, it is

natural to consider its lifting over Zp and look at the de Rham cohomology. Then there are several
questions arise accordingly:
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(a) Does every smooth proper variety over k admits a smooth proper lifting X̃ over Zp?

(b) If so, is the de Rham cohomology H∗(X̃,Ω•
X̃/Zp

) independent of liftings?

(c) Is there a canonical way to define those cohomology without referring to the liftings?

If those answers are yes, we will have a good p-adic cohomology theory. (though at that time
it was already known that such a lifting may not exist, even when X is smooth projective over k
([Mum61]).) The way Grothendieck attacks those questions was to consider all possible infinitesimal
local liftings, which then turns to a Grothendieck topology, called infinitesimal site. Precisely, for
a variety X over C, let X/Cinf be the category of all pairs (U, T ), where U ⊂ X is an open subset,
and U → T is a closed nilpotent immersion, namely they have the same underlying topological space
such that OT → OU is quotient by a nilpotent ideal. And the topology is given by Zariski-covering;
i.e. (Ui, Ti) is a covering of (U, T ), if Ti → T is a Zariski covering. A sheaf F on X/Cinf is given by a
collection of Zariski sheaves FT over T for each (U, T ), such that for any map f : (U, T )→ (U ′, T ′),
it induces a morphism f∗FT ′ → FT . If every induced map f∗FT ′ → FT is an isomorphism, we call
F a crystal.

This topology somehow is suitable for all of those three questions above: every local nilpotent
immersion can be regarded as a local infinitesimal lifting, and the value of sheaves on this topology
are compatible with all possible transition maps between liftings, such that transitions induce iso-
morphisms when working at crystals. And the cohomology over this site is expected: when X/C is
smooth proper, Grothendieck [Gro68] proved that

H∗(X/Cinf ,OX/C) ∼= H∗(X,Ω•X/C).

More generally when X → Y is a closed immersion such that Y is smooth, we have

H∗(X/Cinf ,OX/C) ∼= H∗(Ŷ , Ω̂•Y/C),

where Ŷ is the formal completion of Y along X. We note here that the isomorphism tells us
that we can compute the infinitesimal cohomology by formal liftings, but the cohomology group is
independent of liftings we choose! This is partially motivated by the comparison between C-singular
cohomology and algebraic de Rham cohomology: the analytification Xan encodes the ”differential”
or ”infinitesimal” geometry of the space, which locally can be regarded as a limit of all possible
infinitesimal neighborhoods.

Now it is natural to apply this to when X is a variety over a field of positive characteristic. But
there are still a minor issue about integration: in the complex coefficients, the comparison between
infinitesimal cohomology and de Rham cohomology essentially follows from the Poincaré’s Lemma,
which fails in characteristic p:

Example 1.2. Let X0 = Spec(k) be a point. Assume we k = C, and consider its closed immersion

X → A1
C = Y . We look at the de Rham cohomology of the formal completion Ŷ of Y along X.

Then since it is affine, by the vanishing of higher coherent cohomology, the de Rham cohomology
H∗dR(X/k) is computed by the complex

0 // C[[t]]
d // C[[t]]dt // 0.

Since each tndt can be integrated to tn−1

n , we know Hi
dR(Ŷ/X) is 0 except i = 0, which is k. This is

exactly the same as Hi
dR(Ŷ/C), for the X → Y = Spec(C) being the trivial closed immersion.

Now let us look at when k = Fp, and we consider the closed immersion X → A1
Zp

= Y . The

formal completion of Y along X is is Spf(Zp{t}), where Zp{t} = Zp[t]∨ is the ring of convergent
power series over Zp. And the de Rham cohomology is computed by

0 // Zp{t}
d // Zp{t}dt // 0.
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However, the H1 is infinitely generated: there exists no element in Zp{t} whose derivation is tp−1dt.

And obviously this is different from Hi
dR(Ŷ/X) for X → Y = Spec(Zp) being the natural closed

immersion.

If we look in more detail about the failure of the integration, then we find that we need elements
of the form tn

n! (n-th integration of t). So what if we add those elements to the lifting? Consider the

ring Zp〈t〉, which is the p-adic completion of Zp[t][ t
n

n! , n]. Then the derivation d : Zp〈t〉 → Zp〈t〉dt is

surjective, since each derivative
∑
n=0 an

tn

n!dt can be written as d(
∑
n=0 an

tn+1

(n+1)! ). So the de Rham

cohomology Hi
dR(Zp〈t〉/Zp) becomes what we expect.

We look in more detail about such an adjustment we made. In order to make the de Rham
complex exact, instead of taking the completion along the closed immersion X → Y directly, we
also add those elements which are of the form an

n! for a belonging to the defining ideal of X in Y ,
which makes it possible to integrate the differential. This is exactly the adjustment we need in order
to deal with the mix-characteristic situation, and the elements we add form a new multiplicative
structure, called divided power structure (PD-structure in short). In this way, in order to allow
the integration for the case we care, Grothendieck’s idea was to add such a structure into the
definition of infinitesimal sites: instead of looking at all possible nilpotent extensions, we look at all
of those that are equipped with a PD structure on the defining ideal. And the new topology is called
crystalline site, where the cohomology of this site is called crystalline cohomology. This marks
the start of the whole story.

1.3 Foundational results

We then collect some results for crystalline cohomology of smooth proper varieties over k of charac-
teristic p. Here we follows mostly the survey by Illusie [Ill94].

Let k be a perfect field of characteristic p. Denote by Wn to be n-th ring of Witt vectors of k,
and W = lim←−Wn. Let K be the fraction field of W .

For a scheme X over k and for each n ∈ N, we can associate a (truncated) crystalline site
X/Wncrys to it. The object of X/Wncrys are pairs (U, T ), where U is an open subset of X, and T is
a Wn-scheme with a nilpotent closed immersion i : U → T such that the defining ideal of U in T has
a PD-structure. The covering are given locally by Zariski covering, namely {(Ui, Ti)} is a covering
of (U, T ) if Ti → T is a Zariski covering.

On the site X/Wncrys, we can define the structure sheaf OX/Wn
, such that for each (U, T ) the

section on it is O(T ). Then the n− th crystalline cohomology is defined as

H∗(X/Wncrys,OX/Wn
).

And for different n, the above group form an inverse system, and the crystalline cohomology of X
is defined as

H∗(X/W crys) := lim←−
n

H∗(X/Wncrys,OX/Wn
).

This is a graded W -module depending functorially on X/k.
Now let us look at its good properties.

Weil cohomology Let C be the category of proper smooth varieties over k. For each X ∈ C,
Hi(X/W crys) is of finite type over W , which vanishes when i > 2 dim(X). When X is projective
(Katz-Messing [KM74]), or admits a proper smooth lifting over W , we have

rankW Hi(X/W crys) = dimQ`
Hi(Xk,ét,Q`),

for ` 6= p. And when restricted to the subcategory of projective smooth varieties, the functor

X 7−→ K ⊗W H∗(X/W crys)

is a Weil cohomology theory. This started from Berthelot’s thesis [Ber74], and was achieved after
many people’s work.
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As a consequence of the formalism, when k = Fpa is a finite field, we get a cohomological
expression for the zata function of X/k:

ζX(t) =
∏

0≤i≤2d

det(1− F a∗t | Hi(X/W crys)⊗K)(−1)i+1

.

And when X/k is projective, by Katz-Messing [KM74], from the Weil conjecture the crystalline
characteristic polynomial coincide with `-adic ones. In particular, they have the integer coefficients.

Comparison with de Rham cohomology There are two comparison of crystalline cohomology
with de Rham cohomology, one is with that of X/k, another one is with the possible liftings to W .
Let X be in C.

When we look at coefficient Wn with n = 1, the crystalline cohomology coincides with the de
Rham cohomology of X/k, namely

Hi(X/kcrys) = Hi
dR(X/k).

And there exists a universal coefficient formula

0 // Hi(X/W crys)⊗ k // Hi(X/kcrys) // TorW1 (Hi+1(X/W crys), k) // 0.

Suppose X has a proper smooth lifting Z over W . Then we have a canonical isomorphism

Hi(X/W crys)
∼= Hi

dR(Z/W ).

In particular, the de Rham cohomology of Z/W only depends on its special fiber over k. This
answers exactly the second question given before, which asked if the de Rham cohomology of liftings
would depend on the choice.

Frobenius and F−crystal One of the most important feature is the Frobenius action on crys-
talline cohomology. Let X be in C. By the functoriality of X/k, the absolute Frobenius induces an
action σ-linear map

φ : H∗(X/W crys)→ H∗(X/W crys),

where σ is the F action on the Witt vector. This map is an isogeny, i.e. φ⊗Q is an isomorphism,
so it induces a F − crystal structure (Hi(X/W crys)/torsion, φ). It is a finitely generated W module
together with a σ-linear action, such that its base change to Q is isomorphic. The F-crystal encodes
many arithmetic structure. When i = 1 and the cohomology is torsion free, (H1(X/W crys), φ)
is the Dieudonné module of the p-divisible group of the Albanese variety Alb(X). Moreover, by
classification result, it can be decomposed as a direct sum of W [T ]/(Tm− pn), where n

m is called its
slope. And we can get a Newton polygon based on the eigenvalues and their multiplicities. One of
the central theorem about Newton polygon was Katz conjecture, which asked the relative position
about Newton polygon and Hodge polygon, where the latter is given by the hodge numbers of X/k.
It was proved by Mazur and Ogus separately that ”Newton is above Hodge”. On the other hand,
the Newton polygon plays an very important role in many modular problems of characteristic p,
say that of curves, abelian varieties, K3 surfaces, and smooth complete intersections. In some sense,
it generalizes the usual concept of ”ordinary” and ”supersingular” of an elliptic curve in positive
characteristic, and gives a stratification of moduli.

2 Pd-structure and pd-algebra

In this section, we give a quick review about the pd-structure and pd-algebras.
Intuitively, pd-structure is introduced as an abstract version of elements with factorial denom-

inators. It is defined as a collection of maps on a given ideal, satisfying whatever xn

n! should satisfy:
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Definition 2.1. Let A be a ring, and I be a A ideal. We say a collection of maps {γn : I → I, n ∈ N}
is a pd− structure of I if it satisfies:

• For x ∈ I, γ0(x) = 1, γ1(x) = x, γi(x) ∈ I if i ≥ 1.

• For x, t ∈ I, γn(x+ y) =
∑n
i=0 γi(x)γn−i(y).

• For a ∈ A, x ∈ I, γn(ax) = anγn(x).

• For x ∈ I, γn(x)γm(x) =
(
n+m
n

)
γn+m(x).

• For x ∈ I, γp(γq(x)) = Cp,qγpq(x), where Cp,q = (pq)!
p!(q!)p ∈ N.

We call the pair (A, I, γ) a pd-structure, and A is a pd− algebra.

Here are some basic examples:

Example 2.2. For any Q-algebra A and any ideal I, there exists unique pd-structure of I, given by

γn(x) =
xn

n!
.

Example 2.3. For a finite extension K/Qp, the pair (OK , (πK)) has a pd-structure (unique) if and

only if the ramification index satisfies eK/Qp
≤ p− 1. Under the condition, the element

πn
K

n! belongs
to OK for any n ∈ N.

We will not discuss the pd-structure itself in detail, just mention one of the property we need
here.

Proposition 2.4 ([Sta], 07H1). Let (A, I, γ) be a pd algebra, and f : A → B be a ring homomor-
phism. Then the pd-structure extends to (B, IB) (unique if so) when we have any of the following
conditions:

• IB = 0;

• I is principal;

• f is flat.

Corollary 2.5. The pd-structure can be globalized to the general schemes and its closed subschemes.

One of the most important constructions is the pd-envelope. The idea of the pd-envelope is to
add the pd-structure on the given ideal that preserves the original one. It is the pd-algebra satisfying
a universal property among pd-algebras:

Theorem 2.6. Let (A, I, γ) be an pd-algebra, B be an A algebra, and J be an ideal of B. Then
there exists a unique pd-algebra (D, J, γ′), with a morphism (B, J) → (D, J), compatible with the
pd-structure on A, such that for any morphism of pairs (B, J)→ (C,K, δ) compatible with (A, I, δ),
there exists a unique pd-homomorphism (D, J, γ′)→ (C,K, δ).

(D, J, γ′)

∃!

��

(B, J)

99

%%

(A, I, γ)

ee

xx
(C,K, δ) .

It is called the pd− envelope of Spec(B/J) in Spec(B).
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Sketch of the construction. (1) Let M = J+IB. Consider the graded B-algebra Λ, such that Λ0 =
B, and Λ1 = M , and Λn is the free B module generated by the symbols [x1]r1 · · · [xs]rs , x ∈M ,
such that

∑
rj = n. To endow it with a pd-structure, we quotient the ring by the ideal

generated by all of the axioms of pd-structure above, assuming [ ]n is the supposed pd-structure
on the ideal M . So we get the quotient ring ΓB(M), such that (ΓB(M),Γ+

B(M), [ ]) is a pd-
algebra.

(2) We quotient the ring ΓB(J + IB) by the ideal generated by:{
γn(a)− [a]n, a ∈ I, n ∈ N;

x− [x]1, x ∈ J + IB.

Let D be the quotient ring, and J be the image of Γ+
B(J + IB).

We denote the ring constructed in the theorem by DB,γ(J). Here are two examples of the
pd-envelope

Example 2.7. 1. Let A be a ring with trivial pd-structure on 0, M be an A-module, B =
SymAM , J = Sym+

AM . Then DB(J) = (ΓB(M),Γ+
B(M)), as the quotient ring of B in the

construction above.

2. Let A = Zp/pn and I = (p), equipped with the canonical p-adic pd-structure δ. Then the
pd-envelope DB,δ(J) for B = A[t], J = [t] is the pd− polynomial ring

A〈t〉 := B[γn(t), t ∈ N]/ ∼= A[γn(t), t ∈ N]/ ∼ .

It should be read as adding all of the divided powers of J to the B. We note that since every
tn can be generated by γn(t), we could instead start with the base A, and add the divided
powers of the t to it.

We still do not discuss so much about it, just to mention several ”extension” properties.

Proposition 2.8. Let (A, I, γ) be a pd-algebra, and let B be an A algebra with J an ideal of B.

(a) Assume we have a surjective pd morphism (A, I, γ)→ (A′, I ′, γ′). Let B′ = B⊗AA′, J ′ = JB′.
Then we have an isomorphism

DB′,γ′(J ′) ∼= DB,γ(J)⊗A A′.

(b) Let B′ be a flat B-algebra, then we have the isomorphism

DB′,γ(JB′) = DB,γ(J)⊗B B′.

As a corollary, the pd-envelope can also be globalized. Here we fix a notation. Let X → Y be a
closed immersion of schemes, and Y → S be a morphism such that S is equipped with a pd-structure
γ We denote by DX,γ(Y ) (or DX(Y ) in short if without confusion) to be the scheme corresponding
to the pd-envelope of X in Y , compatible with γ on S. In other words, DX,γ(Y ) locally is given by
the spectrum of the pd-envelope of OY at the ideal defining X, compatible with that on S.

3 Crystalline geometry

In this section, we define the crystalline site and the crystalline cohomology.
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Grothendieck topology First recall that given a fibered category C, aGrothendieck (pre)topology
on C is an assignment for each X ∈ C a collection of families of morphisms {Xi → X}, called the
covering families, satisfying:

• Identity: id : X → X is a covering;

• Base change: If Y → X is a morphism, and {Ui → X} is a covering of X, then {Y ×X Ui → Y
is a covering of Y .

• Refinement: If {Ui → X, i} is a covering, {Vij → Ui, j} are coverings for each i, then the
composition of morphisms {Vij → X, i, j} is a covering of X.

We call the category together with a Grothendieck topology a site. It was Grothendieck who
observed that in order to define a cohomology theory, what we really need is a category with a
covering as above. The objects in this category serve as open subsets of a topological space, and
those collection of coverings are analogous to an assignment of open base in a topological space (i.e.
how those subsets become open). As an example, when C = Sch is the category of schemes, the
families of all Zariski open coverings on Sch consists of a Grothendieck topology on C. And if we
consider the small category consists of all open subsets of a given scheme X, we get the (small)
Zariski site XZar.

Crystalline site and crystalline topos Now we back to the crystalline theory. Let W =
Spec(Zp), and X be a finite type W -scheme where p is locally nilpotent. We say the closed immersion
X → T is a pd− thickening of X if the defining ideal of X in T has a pd-structure compatible with
the canonical pd-structure (Zp, (p)). Since X is assumed to be locally p-nilpotent, any pd-thickening
is a nil-immersion. This is because locally T = Spec(A) and X = Spec(A/I), such that (A, I, γ) is
a pd-structure, such that pN = 0 in A. So for any x ∈ I, xn = n! · γn(x) ∈ n! · A = 0 for n ≥ pN ,
and the ideal I is nilpotent in A.

Definition 3.1. The crystalline site of X over W , denoted by X/Wcrys, is defined on the category
of all pd-thickenings (U, T ) for U ⊂ X open, such that {(Ui, Ti)→ (U, T )} is a covering if {Ti → T}
is a Zariski covering.

And we call X/Wn,crys the truncated crystalline site, whose objects are pd-thickenings (U, T )
with T being a Wn-scheme, with the same coverings as above.

One of the most important types of ph-thickening are pd-envelopes between locally p-nilpotent
schemes: assume X → Y is a closed immersion of finite type schemes over S = WN . Then the
pd-envelope DX(Y ) of X in Y is an object in X/W crys. We will see that when Y is smooth over S,
such a pd-thickening plays a very important role in calculation, for it covers the final object in the
crystalline site.

It can also be showed that the crystalline site admits finite inverse limits, in particular it admits
finite products. Here we note that for (Ui, Ti, δi) in X/W crys, their product is given by

DU1∩U2,δ1,δ2(T1 × T2).

A sheaf F on X/Wcrys is given by associating an abelian group (or a set) F((U, T )) to each
(U, T ) ∈ X/W crys, such that it is exact with respect to any covering. Equivalently, it can be
described as follows (check it!): For each (U, T ) ∈ X/Wcrys, we assign a Zariski sheaf FT on T , such
that for each morphism f : (U, T )→ (U ′, T ′), we have a map of sheaves on T

f−1FT ′ → FT .

The category of sheaves on the crystalline site is called the crystalline topos. It is easy to check
that the crystalline topos is subcanonical, namely the representable presheaf is actually a sheaf.
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When talking about the functoriality, the crystalline site is too strict to work sometimes. Assume
we have a morphism of W -schemes f : X → Y

X
f //

  

Y

~~
W

.

Then it is natural to ask if this induces a morphism between two crystalline sites X/W crys →
Y/Wcrys. This actually fails in most of times: there is no canonical way to pullback a nilpotent
extension Y → T along X → Y . However, the map does induces a morphism fcrys between
crystalline topos Sh(X/W crys)→ Sh(Y/W crys). Namely we have a natural way to define the adjoint

pair f−1
crys, and fcrys∗, such that f−1

crys commutes with finite limits. It is given as follows: For each
(V, T ) ∈ Y/Wcrys, define the presheaf f−1(V, T ) on X/W crys by

(U, S) 7−→ pd−Homf ((U, S), (V, T )).

Then it is actually a sheaf on X/W crys. We then define the pushout to be

fcrys∗F(V, T ) := HomSh(X/W crys)
(f−1(V, T ),F).

This is actually a sheaf on Y/Wcrys. On the other hand, we define f−1
crysG to be the sheaf associated

to
(U, S) 7−→ lim−→

U
f //

��

V

��
S // T

G((V, T )).

Morphisms with Zariski sites There are two canonical morphisms connecting X/W crys and
XZar. The first one is the projection morphism

uX/W : X/W crys −→ XZar; u
−1
X/W (U) = (U,U).

The induced morphisms on topoi are given by

uX/W,∗F(U) = Γ(U/Wcrys,F); u∗X/WG((U, T )) = G(U).

Another is its section, given by

iX/W : XZar −→ X/W crys; i
−1
U/W ((U, T )) = U.

And induced morphisms on topoi are given by

iX/W,∗ = u∗X/W ; i∗X/W = uX/W ! : F 7→ FX .

Here we note that since iX/W∗ = u∗X/W has both adjoints, it is exact. Thus the Leray special
sequence of it degenerates.

Crystals Like the scheme theory, we can define a structure sheaf on the crystalline site X/W crys.
Denote by OX/W to be the presheaf given by

OX/W (U, T ) = OT (T ).

Then it is actually a sheaf on X/W crys, called the structure sheaf . This makes X/W crys become a
ringed site, and its topos a ringed topos.
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We could then define a sheaf F on X/W crys to be quasi−coherent if for each (U, T ) ∈ X/W crys,

FT is a quasi-coherent sheaf of OT -module. For example, the sheaf of differential ΩiX/W crys
on

X/W crys is a quasi-coherent sheaf on X/W crys. What we care mostly are a special types of quasi-
coherent sheaves:

Definition 3.2. We call a quasi-coherent sheaf of OX/W -module F a crystal if for each f : (U, T )→
(U ′, T ′) in X/W crys, we have an isomorphisms

f−1OT ⊗O′T F
′
T −→ FT .

Exercise 3.3. Check that OX/W is a crystal.

Example 3.4. A non-trivial example is given by pushout along closed immersions: Let i : Z → X
be a closed immersion of W -schemes. Then we can define a morphism of topos as before.

icrys : Sh(Z/W crys) −→ Sh(X/W crys)

Then it can be showed that icrys∗(OZ/W ) is actually a crystal of OX/W -algebra.

Crystalline cohomology It is by a general nonsense that the category of abelian sheaves on a
site admits enough injectives. In particular, for any abelian sheaf F on X/W crys, we could define
its cohomology

H∗(X/W crys,F).

As a convention, if we does not mention the specific sheaf, we most assume the crystalline cohomology
of X/W crys is given by

H∗(X/W crys,OX/W ).

Our next goal is to study this cohomology group, or more generally the cohomology of crystals on
X/W crys. We will show that they can be computed by using the de Rham complex of pd-envelopes.

4 Crystalline cohomology and de Rham cohomology

In this section, we will introduce the divided power de Rham complex to compute the cohomology
of crystals. In particular, we will compare the de Rham cohomology and crystalline cohomology
when X/k admits a smooth proper lifting to W . Throughout this section, we follow the method by
Bhatt and de Jong [BdJ12].

4.1 Affine case

Let P be a polynomial over Zp, and P → A a surjection of Zp-algebras, such that pN = 0 in A.
Denote by X to be the scheme Spec(A), and Y = Spec(P ). For each n ∈ N, let J (n) be the kernel
of P ⊗Zp

· · · ⊗Zp
P → A (n + 1-copies), and let D(n) be the p-adic completion of the pd-envelope

DP⊗···⊗P (J(n)). Here we use the Roman letters D(n) to denote the formal Spf(D(n)). When n = 0,
D is the completed pd-envelope of A in P . We define ΩiX/W crys

to be the sheaf on X/W crys, whose

restriction on (U, T ) ∈ X/W crys is the quotient of ΩiT/W , by dγn(x) = γn−1(x) ⊗ dx for x being in

the defining ideal of U in OT . Note that ΩiX/W crys
is simply a coherent OX/W -module, not a crystal.

Here is our main theorem in the affine case:

Theorem 4.2. Assume the notation as above. Let F be a crystal on X/W crys, and let M = lim←−e FDe

be its restriction on D. Then we have

RΓ(X/W crys,F) = M →M⊗̂DΩ1
D/W →M⊗̂DΩ2

D/W → · · · .

We now prove it.
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Čech-Alexander complex So how do we compute the cohomology of a sheaf on the Grothendieck
topology X/W crys? In the scheme case, what we often do is to choose some Čech covers and compute
the corresponding complex. Here we play the similar game, except that we will need a generalized
formalism: hypercovers and Čech-Alexander complex.

Lemma 4.3. Under the condition of 4.2, we have

RΓ(X/W crys,F) = M →M⊗̂DD(1)→M⊗̂DD(2)→ · · · .

Proof. We first note that the crystalline site X/W crys can be regarded as the colimit of sites
X/Wecrys: since for each pd-thickening (U, T ), p is locally nilpotent in T , such a pd-thickening
will be an object in X/Wecrys for a large n ≥ N . Thus by the general derived functor theory, we
have

RΓ(X/W crys,F) = R lim
e
RΓ(X/Wecrys,F).

Then we will need some general result about hypercovers: since De cover the final object, the
augmented simplicial object De(•)→ ∗ is a hypercover of the final object in the topos Sh(X/Wecrys),
where De(n) = De ×W · · · ×W De is the n + 1-th product of De in X/Wecrys. So the cohomology

truncated by pe is given by the Čech-Alexander complex, i.e. applying RΓ(−,F) to this hypercover

RΓ(X/Wecrys,F) = RΓ(De,F)→ RΓ(De(1),F)→ RΓ(De(2),F)→ · · ·
= F(De)→ F(De(1))→ F(De(2))→ · · · ,

where the last equality follows from the vanishing of quasi-coherent cohomology on affines. And we
can take this back to our previous formula, and get

RΓ(X/W crys,F) = R lim
e
RΓ(X/Wecrys,F)

= R lim
e

(F(De)→ F(De(1))→ F(De(2))→ · · · ).

At last, we will hope the higher R lime vanishes, so we can reduce the computation to the usual
complex. And for a quasi-coherent OX/W -module F , it is true when satisfies one of the following:

• It is coherent;

• It is a crystal.

Thus under our assumption ,R lime = lime, and we get

RΓ(X/W crys,F) = lim
e

(F(De)→ F(De(1))→ F(De(2))→ · · · )

= lim
e
F(De)→ lim

e
F(De(1))→ lim

e
F(De(2))→ · · ·

= F(D)→ F(D(1))→ F(D(2))→ · · ·
= F(D)→ F(D)⊗̂DD(1)→ F(D)⊗̂DD(2)→ · · · ,

where the last equality follows from the fact that F is a crystal, and F(De(n)) = F(De) ⊗De

De(n).

Connecting the Čech-Alexander with de Rham Since our goal is to compute the cohomology
by the de Rham complex, it is natural to relate the Čech-Alexander complex with the de Rham
complex together. A natural framework is the double complex consists of those two

Mn,m = M⊗̂DΩmD(n)/W

This is a double complex in the first quadrangle such that the first row (m = 0) is the Čech-Alexander
complex

M →M⊗̂DD(1)→M⊗̂DD(2)→ · · · ,
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while the first column (n = 0) is the de Rham complex we want

M →M⊗̂DΩ1
D/W →M⊗̂DΩ2

D/W → · · · .

By the general formalism about the spectral sequence and the double complex, there are two
E1-spectral sequences converging to the cohomology of the total complex

IEn,m1 = Hm(M⊗̂DΩ•D(n)/W ), IIEn,m1 = Hn(M⊗̂DΩmD(•)/W ).

So we will need to know more about those two spectral sequences. Here are two results about the
degeneracy:

Lemma 4.4 (A). For any m > 0, the cosimplicial module M⊗̂DΩmD(•)/W is homotopic to 0.

Lemma 4.5 (B). For any map [0]→ [n], the induced morphism between complexes M⊗̂DΩ•D/W →
M⊗̂DΩ•D(n)/W is a quasi-isomorphism.

By the Lemma A4.4, the spectral sequence IIEn,m1 = Hn(M⊗̂DΩmD(•)/W ) degenerates into

Hn(M⊗̂DD(•)).

On the other hand, by the Lemma B4.5, since the cosimplicial boundary map is given by δn =∑
0≤i≤n(−1)idi, each row in the IEn,m1 becomes

Hm(M0,•)
0 // Hm(M1,•)

1 // Hm(M2,•)
0 // · · · .

Hence its E2 page has 0 for each column except for the degree 0, where it becomes the Hm(M⊗̂DΩ•D/W ).
Thus we are done, granting the above two lemmas.

Proof of the degeneracy lemmas At last, we complete the proof of the above two lemmas.

Proof of the Lemma A. First note that it suffices to show Ω1
D(•)/W that is homotopic to 0. This is

because the complex M⊗̂DΩmD(•)/W is obtained from Ω1
D(•)/W by

(i) m-th wedge product;

(ii) tensor product with M ;

(iii) p-adic completion.

And note that all of those operations preserve the homotopic to 0.
Furthermore, note that the simplicial module Ω1

D(•)/W is produced by

(i) tensor product of the cosimplicial module Ω1
P⊗•+1/W along a morphism of cosimplicial rings

Pn+1 → D(n);

(ii) quotient by the pd-differential relation: dγn(x) = γn−1(x)⊗ dx;

(iii) p-adic completion.

Thus it reduces to show that the cosimplicial module Ω1
P⊗•+1/W is homotopic to 0.

We also observe that since P is a polynomial ring, the differential is a free of finite rank module
over P . So the complex is a direct sum of

A•, An = ⊕ni=0Pei,

where the transition map is given by for f : [n− 1]→ [n], ei 7→ ef(i).
At last, we make the following claim
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Claim 4.6. The cosimplicial module A• is homotopic to 0.

Since the boundary map of the corresponding Moore complex is δn =
∑

0≤i≤n(−1)idi, we
could check the exactness by hand, or use construct a homotopy between identity and 0-map of the
cosimplicial modules A• by

h : A• −→ Hom(∆[1], A•),

given by for αnj : [n]→ [1] with αnj (i) = 0⇔ i < j, hn(ei)(α
n
j ) =

{
ei, α

n
j (i) 6= 0;

0, otherwise.

Or we could do it directly: define h : An → An−1 to be the identity except 0 at en. And we are
done.

Proof of the Lemma B. Again, it reduces to prove that for each f : [0]→ [n], the induced map

ΩD/W → Ω•D(n)/W

is a quasi-isomorphism.
Then we note that since D → D(n) has a section by diagonal, the morphism Ω1

D/W → Ω1
D(n)/W

is injective. And note that the Hodge filtration on Ω•D/W induces a filtration on Ω•D(n)/W , such that
the graded factor is given by

ΩiD/W −→ ΩiD/W ⊗̂DΩ•D(n)/D,

So we reduce to show that the map
D −→ Ω•D(n)/D

is a quasi-isomorphism. This is in fact the pd-Poincaré Lemma for pd-polynomial, which can be
checked explicitly. We refer to [BO78], Theorem 6.13 for detail.

Remark 4.7. The above result is true for general smooth algebra P over Zp, not necessarily
polynomial. The reason follows from the existence of local coordinates: locally any smooth scheme
is étale over affine space. Such a ”framing” will preserve differential along étale base change, and all
the above proof can be applied to the general situation.

4.8 Global case

Now we work toward the global result.
We first give some notation for the global settings. Let X be scheme of finite type over WN ,

and let i : X → Y be a closed immersion such that Y is smooth and finite type over W . Denote by
De to be the pd-envelope of OY /pe → OX , and De be its corresponding scheme. We let D be the
colimit of De, which is the formal scheme over Spf(Zp). Denote by X/W crys to be the crystalline
site of X over W .

Here is our main result

Theorem 4.9. Let F be a crystal over X/W crys, and M be the inverse limit of FDe
. Then

RΓ(X/W crys,F) can be computed by the RΓ(D,−) of the complex

M−→M⊗̂DΩ1
D/W −→M⊗̂DΩ2

D/W −→ · · · .

Proof. Recall that the projection morphism uX/W crys
: X/W crys → XZar induces a morphism on

topos, such that
uX/W crys∗G(U) = Γ(U/Wcrys,G).

We note that the derived functor RΓ(X/W crys,−) is the composition RΓ(XZar,−) ◦RuX/W crys∗, so
we get

RΓ(X/W crys,F) = RΓ(XZar, RuX/W crys∗(F)).

Then we make the following claim:
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Claim 4.10. We have the isomorphism in the derived category:

RuX/W crys∗(F) = RuX/W crys∗(F → F ⊗ Ω1
X/W crys

→ F ⊗ Ω2
X/W crys

→ · · · ),

where the morphism is induced by the truncation at 0.

The claim follows from the vanishing of the cohomology of F ⊗ ΩmX/W crys
for m > 0, which is

true locally by the Lemma 4.3 and the Lemma 4.4 before.
Then we reduce to compute

RΓ(XZar, RuX/W crys∗(F → F ⊗ Ω1
X/W crys

→ F ⊗ Ω2
X/W crys

→ · · · )).

By the Theorem 4.2 and the Remark 4.7, the above becomes M⊗̂DΩ•D/W when X is affine.
Assume X is separated. Then we can cover X be a finite many of affine open subset Ui → X, and
computed by the Čech-complex. Since the intersection between finite many of affine is still affine,
we apply the Theorem 4.2 and get

RΓ(XZar,M⊗̂DΩ•D/W ).

For the general case, since all smooth finite type scheme X over W is quasi-compact and quasi-
separated, we apply the Čech complex again by a refinement to get the required equality.

Corollary 4.11 (Comparison theorem). Assume X admits a smooth proper lifting of X ′ over W .
Then we have

Hi(X/W crys,OX/W ) = Hi
dR(X ′/W ).

In particular, the de Rham cohomology of this lifting depends only on its special fiber X.

Proof. When X admits a lifting X ′, the completed pd-envelope can be the formal completion of X ′

itself. We only note that the complex in the Theorem 4.9, the complex is p-adic completed de Rham
complex, not the usual one. Their equality then follows from the formal function theorem, since X ′

is proper.

Remark 4.12. Pointed in [BdJ12], the proof of the Theorem can be applied to the proof for the
Grothendieck’s infinitesimal cohomology for schemes over C. The only difference is instead of using
the pd-Poincaré Lemma in Lemma 4.5, we will need the Poincaré Lemma for formal completion in
characteristic 0.

5 De Rham-Witt complex

In this section, we will introduce the basic of de Rham-Witt complex. Many of the materials below,
including related discussion, can be found in [Ill11].

Witt vectors We first recall the Witt vectors. Let A be a ring. Denote by W (A) to be the
infinite product set

∏∞
n=0A, indexed by N. It is a priori a set without any structure. For each

r = (r0, r1, r2, · · · ) ∈W (A), we define the element wn(r) for n ∈ N as

wn(r) = rp
n

0 + prp
n−1

1 + · · · pn−1rn−1p + pnrn.

Then we have

Theorem/Definition 5.1. There exists a unique commutative ring structure on W (A), which is
functorial on A, such that the ghost map from W (A) to the infinite product ring AN

W (A) −→ AN;

r = (r0, r1, · · · ) 7−→ (w0(r), w1(r), w2(r), · · · )

is a homomorphism of rings.
We call the ring W (A) with this structure the Witt vectors of A.
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In the ring W (A), 1 = (1, 0, . . .), 0 = (0, 0, . . .). We also have a truncated Witt vectors
Wn(A), given by the first n+ 1 entries of W (A) with the induced ring structure. The addition and
multiplication is given by

r + r′ = (s0(r, r′), s1(r, r′), . . .);

r · r′ = (p0(r, r′), r1(r, r′), . . .).

Here for r = (x0, x1, . . .) and r′(y0, y1, . . .), the first several ghost maps are s0(r, r′) = x0 + y0,

s1(r, r′) = x1 + y1 +
∑

0<i<p
(p
i)
p x

i
0y
p−i
0 ; p0(r, r′) = x0y0, p1(r, r′) = xp0y1 + x1y

p
0 + px1y1.

For the following discussion throughout the note, we consider those W (A) for A being a Fp-
algebra.

There are several important operators on W (A). The very first is the Teichmüller lifting A→
W (A), which is multiplicative (but not additive), given by x 7→ [x] = (x, 0, . . .). We also have
Frobenious and V erschiebung maps:

F : Wn(A) −→Wn−1(A), (a0, . . . , an) 7→ (ap0, . . . , a
p
n−1);

V : Wn−1(A) −→Wn(A), (a0, . . . , an−1) 7→ (0, a0, . . . , an).

Note that since the Frobenius map on Fp-algebras are homomorphism, by the functoriality of W (−),
the Frobenius map F is also a homomorphism of rings. The V is only additive.

Those operators satisfy some basic relations:

FV = V F = p;

V ((Fx)y) = xV (y);

F [x] = [xp].

Here are two important examples.

Example 5.2. 1. When A = k is a perfect field of characteristic p, W (A) is the unique complete
absolute unramified lifting of k, In the sense that it is a p-adically complete, p-torsion free
discrete valuation ring whose maximal ideal is generated by p. This can be extended to all
perfect ring A over Fp, where W (A) is called the (unique) strict p-ring over A. The functor
produce an equivalence of categories

{perfect ring over Fp} ⇐⇒ {strict p− rings}.

In this condition, we could write V = pF−1, which makes sense since W (A) is p-torsion free.

We note here that the Witt vector can be used to construct the untilt of perfectoid algebras.

2. Assume A = Fp[t]. Then there exists an injection of ring Zp[T ]→W (A), mapping T onto the
Teichmüller lifting [t]. The action of F and V induces that on T , such that F (T ) = T p, and

V (T ) = pT
1
p . Denote by E0 to be the subset

∑∞
n=0 V

nZp[T ]. Then we have

WN (Fp[t]) = E0/V N (E0) =
∑
n=0

V nZp[T ]/
∑
n=N

V nZp[T ].

It admits the following decomposition depending on the exponent of T being integral or ratio-
nal:

WN (Fp[t]) =
⊕
n∈N

Zp/pN · Tn ⊕
⊕
n= m

pa ,

p-m

Zp/pN−a · V a(Tm).

The similar holds for Fp[t1, . . . , tr].

One of the important property of the construction of the Witt vector is that it can be globalized:
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Proposition 5.3. Let X be a scheme. Then the presheaf of ring U 7→ Wn(OX(U)) is a sheaf on
X.

The above is true for a general ring on a topos. Here we denote by Wn(X) to be the scheme
with the structure sheaf Wn(OX). We note here that when p is nilpotent in X, VWn(OX) is also
nilpotent in Wn(OX), and the pair

(Wn(OX), V Wn(OX))

has a canonical pd- structure compatible with (Zp, (p)), given by

γm(V x) =
pm−1

m!
V (xm).

Construction and basic properties Now we can introduce the de Rham-Witt complex.
We first give the construction.

Construction 5.4 (Langer-Zink). For a homomorphism A→ B of Fp-algebra, the de Rham Witt
complex of B/A is a projective system of differential graded algebra (dg-algebra):

Wn+1Ω•B/A →WnΩ•B/A → · · · →W1Ω•B/A,

equipped with maps F : Wn+1Ω•B/A → WnΩ•B/A and V : WnΩ•B/A → Wn+1Ω•B/A. It is constructed
as follows:

1. First we quotient the projective system of dg-algebras {Ω•Wn(B)/Wn(A)}n by the ideal generated

by relations corresponding to the canonical pd-structure (Wn(B), V Wn(B), γ):

dγn(V (x))− γn−1(V (x))⊗ dV (x), x ∈Wn−1(B).

We get a projective system of differential graded algebra, denoted by {Ω̃•Wn(B)/Wn(A), n}.

2. Then by the universal property of pd-differential, the operator F on Wn(B) can be extended
to

F : Ω̃•Wn(B)/Wn(A) → Ω̃•Wn−1(B)/Wn−1(A); Fd([x] + V y) = [xp−1]d[x] + dy.

3. We quotient the {Ω̃•Wn(B)/Wn(A), n} by extending the operator V to the differential

V (xdy1 · · · dyr) = V x · dV y1 · · · · · dV yr.

Then the quotient system of dg-algebras is the de Rham-Witt complex {WnΩ•B/A, n}. And we
denote by WΩ•B/A to be the inverse limit lim←−nWnΩ•B/A.

From the construction, we have

Proposition 5.5. 1. The de Rham-Witt complex W•Ω
•
B/A is the initial object in both the cate-

gory of Witt complex and the category of pro− V − complex, in the sense of [Ill11], 4.1.

2. WnΩ0
B/A = Wn(B),∀n.

3. W1Ω•B/A = Ω•B/A.

Here are some basic formulas of the W•Ω
•
B/A.

Proposition 5.6. For operators F, V, d on W•Ω
•
B/A, we have

• dF = pFd;

• Fd[x] = [xp−1]d[x];
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• FdV = d;

• FxFy = F (xy);

• V d = pdV ;

• xV y = V ((Fx) · y);

• FV = p.

Here we note that since the Witt vector can be globalized to schemes, we could also globalize
the de Rham-Witt complex to the general relative setting. Also, by the construction above, the
W•Ω

•
X/S is functorial with respect to X/S. We only mention the quasi-coherence and étale base

change:

Proposition 5.7. Assume S is a Fp-scheme.

1. For any S-scheme X, WnΩiX/S is quasi-coherent over Wn(X).

2. For an étale morphism X → Y of S-schemes, the induced morphism of Witt schemes Wn(X)→
Wn(Y ) is also étale. Moreover, we have the following isomorphism

WnOX ⊗WnOY
WnΩiY/S = WnΩiX/S .

Key computation We then look at the de Rham-Witt complex for affine spaces.
Let A = Fp, and B = Fp[t1, . . . , tr]. Define the complex of integral forms E• to be the subsets

of ω in Ω•

Qp[T
1

p∞
1 ,...,T

1
p∞
r ]/Qp

such that

ω ∈ E• ⇐⇒ ω and dω are integral (have coefficients in Zp).

We then define the action of F and V on E•, by

FTi = T pi , V = pF−1, V (xdy1 . . . dys) = V x · V dy1 · · ·V dys.

Then based on the observation by Deligne, we have

WNΩ•B/A = E•/(V NE• + dV NE•−1).

This can be proved by looking at the grading structure indexed by Z[ 1
p ].

As an example, we look at the case for affine line, i.e. when r = 1. For E0, it is straightforward
to see that for Zp[T ] ∈ E0. Moreover, for p - m, bT

m
pa ∈ E0 if and only if pa|b. So

E0 =
∑

V iZp[T ] =
∑

a>0,p-m

V aTm,

as in the Example 5.2. For E1, since there is no degree 2 differential forms, it is easy to check that

E1 = Zp[T
1

p∞ ]dlog[T ]

= Zp[T ]dT +
∑

a>0,p-m

ZpdV aTm.

From this, due to the observation above, we get

WNΩ0
B/A =

⊕
n∈N

Zp/pN · Tn ⊕
⊕

a>0,m-p

Zp/pN−a · V aTm;

WNΩ1
B/A =

⊕
n∈N+

Zp/pN · Tnd log T ⊕
⊕

a>0,m-p

Zp/pN−a · dV aTm;

WNΩiB/A = 0, i ≥ 2.

Thus we reach the key observation:

Observation 5.8 (Deligne). The de Rham Witt complex WNΩ•B/A of the affine space contains the
de Rham complex Ω•(Zp/pn)[T ] as a direct summand, while the complement is acyclic.
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Comparison theorem Thanks to the Deligne’s observation, we get the comparison between the
de Rham Witt complex and the crystalline cohomology:

Theorem 5.9 (Crystalline and De Rham-Witt comparison). Let k be a perfect field of characteristic
p, X/k smooth. Then there exists a canonical isomorphism in the derived category of projective Wn-
modules over X:

RuX/Wncrys∗OX/Wn
∼= WnΩ•X/k.

Proof. The case when X is an affine scheme that admits a smooth lifting X ′ follows from the
truncated version of the affine version of the Comparison Theorem 4.2: The left side is computed by

U 7→ RΓ(U/Wn,OX/Wn
) = Ω•(D/pn)/Zp

But note that since X admits a smooth lifting X ′, the truncated pd-envelope D/pn can be exactly
lifting. So the left side is given by the de Rham complex of X ′/Wn.

On the other hand, by the étale base change 5.7 and the Observation of Deligne, the right side
is (locally) quasi-isomorphic to

Ω•(Zp/pn)[Ti]
⊗Z/pn[Ti] OX′ = Ω•X′/Wn

.

So we get the comparison.
For the general case, we only need to note that any smooth scheme over k locally always admits

such a lifting, so we could use a hypercover by affines and the cohomological descent.

Corollary 5.10. For X/k smooth and proper, we have the isomorphism

RΓ(X/W crys,OX/W ) ∼= RΓ(X,WΩ•X/k).

And RΓ(X/W crys,OX/W ) is a perfect complex, with

RΓ(X/W crys,OX/W )⊗LW k = RΓ(X,Ω•X/k).

Here we note that the above comparison theorem does not require the existence of the lifting
(compare with 4.11).

6 Some results of the De Rham-Witt complex

In this section, we give some known and useful results about the de Rham-Witt complex.

The slope spectral sequence The initial goal for constructing the de Rham-Witt complex was
to study the Frobenius action on the crystalline cohomology. And this leads to the study of the
slope spectral sequence of the de Rham-Witt complex.

Let X/k be a proper smooth scheme. Then the absolute Frobenius morphism of X/k induces
an σ-linear action Φ on WΩ•X/k, such that it is piF on the degree i WΩiX/k. Here σ denotes the

restriction of F on W (k), which is the ring endomorphism of W (k) induced its Frobenius.
We then have the following deep result

Theorem 6.1. [Ill79] Assume the assumption above.

1. For any (i, j), the following inverse limit gives an isomorphism:

Hj(X,WΩiX/k) = lim←−
n

Hj(X,WnΩiX/k).

2. The V action on Hj(X,WΩiX/k) is complete and separated.

3. The torsion part T i,j of Hj(X,WΩiX/k) can be killed by a finite p-power, such that the torsion
free quotient is finite rank over W .
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Sketch of the proof.

Step 1 We consider the truncated complex:

0 −→WΩiX/k[−i] −→WΩ≤iX/k −→WΩ≤i−1
X/k −→ 0.

By the LES associated to it, suffices to show the properties of Vi on Hi(WΩ≤iX/k), where Vi is

a endomorphism of complex such that the map on degree j is pi−jV .

Step 2 Then we consider the filtration defined by Filn = ker(WΩ•X/k → WnΩ•X/k) and the graded
factor to show that

Claim 6.2. (i) Hj(WΩ≤iX/k/ViWΩ≤iX/k) is finite length W -module;

(ii) Hj(WΩ•X/k) is V -separated and complete.

Step 3 Granting the Claim, the extended action of Wσ[[Vi]][Φ] with ViΦ = ΦVi = pi+1 leads to the
conclusion.

Corollary 6.3. The slope spectral sequence

Eij1 = Hj(WΩiX/k) =⇒ Hi+j(WΩ•X/k)

degenerates after quotient p∞-torsion, with

H∗−i(WΩiX/k)⊗K = (H∗(WΩ•X/k)⊗K)[i,i+1)

being the component such that the slope of Φ are within [i, i+ 1).

Proof. The degeneracy follows from the decomposition, since those slopes are disjoint for different
i. Then we note that we already has pi|Φ on the degree i, such that the action of V is topologically
nilpotent. Granting this, since ΦV = pi+1, the slope of Φ on Hj(WΩiX/k)/T i,j must be strictly
smaller than i+ 1.

Corollary 6.4. By taking i = 0, for any j, we have

Hj(WOX/k)⊗K = (H∗(X/W crys)⊗K)[0,1).

Remark 6.5. Here we remark that in many situations the torsion can be infinitely generated over
W . So it would be surprising to see them being able to be killed by a uniform p-power.

The higher Cartier isomorphism We first recall the Cartier isomorphism in characteristic p:

Theorem/Definition 6.6. Let X/k be a smooth scheme over a perfect field of characteristic p
Then there exists a functorial isomorphism

C−1 : ΩiX(p)/k −→ H
i(FX/k∗Ω

•
X/k),

where FX/k is the relative Frobenius, and X(p) is the Frobenius twist. On the local coordinates, the
map for degree 0 is C−1(x⊗ 1) = xp, and for degree 1 it is C−1(dy ⊗ 1) = yp−1dy.

The isomorphism C−1 is called the Cartier isomorphism.

Here we note that the Cartier map can be lift to the F : W2ΩiX/k → ΩiX/k of the truncated de
Rham Witt complex. Moreover, we have the following generalized result

Theorem 6.7 (Higher Cartier isomorphism). For n ≥ 1, the map Fn : W2nΩiX/k → WnΩiX/k
induces an isomorphism

WnΩiX/k −→ H
i(WnΩ•X/k),

that is compatible with products, and equals to C−1 when n = 1.

Remark 6.8. The Cartier isomorphism, or more generally the F -map are essential for the de Rham
Witt complex. Recently Bhatt, Lurie and Mathew gave another construction of the de Rham-Witt
complex, with the input being only the Cartier isomorphism and some homological algebra. Due to
the lack of time, we will not discuss anything here.
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Applications: rational points in characteristic p Now we apply the de Rham-Witt complex
to the study of rational points for varieties in characteristic p.

Let k = Fq be a finite field for q = pa. Then for any X/k separated of finite type, recall from
the beginning that the zeta function of X is given by

ζX(t) = exp(
∑
n∈N+

|X(Fqn)| t
n

n
),

which is a rational function by

ζX(t) =

2 dim(X)∏
i=0

det(1− F a∗ |Hi(X/W crys)⊗K)(−1)i+1

.

Then there is an easy consequence of the slope spectral sequence:

Proposition 6.9. Assume X/k satisfy:

• geometrically connected;

• proper and smooth;

• Hi(X,WOX/k)⊗K = 0, any i > 0.

Then for any finite extension Fqn of k, we have

|X(Fqn)| ≡ 1, mod qn.

Proof. By the Corollary 6.4 to the slope spectral sequence, we have

(Hi(X/W crys)⊗K)[0,1) = Hi(X,WOX/k)⊗K = 0.

Moreover, since X is geometrically connected, the action of F a on H0(X/W crys) ⊗ K is trivial.
Thus except for degree 0 cohomology, Frobenius eigenvalues of all the other cohomology groups are
divided by q. Hence by expending the power series, we get the result from the expression of the zeta
function.

Corollary 6.10. Let X/k be a smooth Fano hypersurface in a projective space Pnk . Then |X(Fqn)| ≡
1, mod qn, for any n ≥ 1.

Proof. It suffices to check the vanishing of Hi(X,WOX/k) = 0 for i ≥ 1. Then recall the first item
in the Theorem 6.1 that

Hi(X,WOX/k) = lim←−
n

Hi(X,WnOX/k).

Moreover, we have a short exact sequence of sheaves over X

0 −→ Fn∗ OX −→WnOX −→Wn−1OX −→ 0.

Thus by induction, it suffices to show that

Hi(X,Fn∗ OX) = 0, i > 0.

Now note that by assumption, the Frobenius map is finite. In particular, the higher pushout of
Fn vanishes. So from the degenerated Leray spectral sequence we get

Hi(X,Fn∗ OX) = Hi(X,OX).

Moreover, by assumption X is a smooth Fano hypersurface in Pn. Thus Hi(X,OX) = 0 for 1 ≤ i ≤
n− 2, and when i = n− 1 we get

Hn−1(X,OX) = H0(X,ωX)

= H0(X,OX(d− n− 1)) = 0,

since d− n− 1 < 0. So we are done.
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