Evidence for suppression of growth in the standard cosmological model

Dragan Huterer University of Michigan

Early DESI data; D. Schlegel/Berkeley La

Ross Young Scholars Program Ohio State University, summer 1992

Timeline of the universe

Figure credit: Noah Weaverdyck

Supernova Cosmology Project Suzuki, et al., *Ap.J.* (2011)

> Union2.1 SN la Compilation

No Big ^{1.4} Bang

1.2

1.0

0.8¹ C

from Huterer & Shafer (2017) review

Hubble Tension:

SH₀ES (Riess et al 2022) $H_0 = 73.04 \pm 1.04$ (km/s/Mpc) CMB: (Planck 2018) $H_0 = 67.36 \pm 0.54$ (km/s/Mpc)

Currently the premier challenge for the standard cosmological model, and the most exciting development in cosmology (imo).

The tension recently crossed the 5-sigma threshold; this is an important step!

$CMB\ measurement\ of\ H_0$

H₀ is a "derived parameter" in the CMB no special signature, but constrained very well.

Planck (2018) finds:

 $H_0 = (67.36 \pm 0.54) \,\text{km/s/Mpc}$ [flat LCDM]

 $H_0 = (63.6 \pm 2.2) \text{ km/s/Mpc}$ [curved LCDM]

we get

 $m = 5 \log_{10}(H_0 d_L) + \mathcal{M}$, where $\mathcal{M} \equiv M - 5 \log_{10}(H_0 \cdot 1 \text{Mpc}) + 25$

Because SNIa measure relative distances, to get at H₀ they need to be "anchored" by absolute distances from e.g. Cepheids

H_0 tension - theory

- There are literally hundreds of models out there
- However, there is only ONE <u>simple</u> model.

Sample/cosmic variance?

 \Rightarrow Global H₀ is ~67, but H₀ in our local volume is ~73 (equivalent to: "we live in a void")

However that model is completely ruled out.

Wu & Huterer (2017), Kenworthy, Scolnic & Riess (2019)

essentially because local measurements map out a pretty big local volume (so cosmic variance is small)

as explained on next slide...

We determined the **sample variance** of H0 from the distance-ladder measurement by repeating the analysis ~1.5 million times on numerical (Nbody) LCDM simulations

Wu & Huterer (2017)

There is also the S_8 tension, but it is not as significant

$$S_8 \equiv \sigma_8 \left(\frac{\Omega_m}{0.3}\right)^{0.5}; \quad \sigma_8^2 = \int \Delta^2(k, R = 8h \text{Mpc}^{-1}) W^2(kR) d\ln k$$

(HSC also gets a similar constraint)

<u>However</u>, the S8 tension is also seen in other LSS data ("lensing is low" etc)

<u>Major</u> current or upcoming DE experiments:

• Ground photometric:

- Kilo-Degree Survey (KiDS)
- Dark Energy Survey (DES)
- Hyper Supreme Cam (HSC)
- Vera Rubin Telescope (and its survey LSST)

• Ground spectroscopic:

- Hobby Eberly Telescope DE Experiment (HETDEX)
- Prime Focus Spectrograph (PFS)

Dark Energy Spectroscopic Instrument (DESI)

• Space:

- Euclid (just launched July 2023!)
- Nancy Roman Telescope

Dark Energy Spectroscopic Instrument (DESI)

- on 4m Mayall telescope at Kittt Peak (AZ)
- international collaboration ~1000 scientists
- 5000 spectra at once
- operating very well: up to 100,000 spectra per night!
- world's leading spectroscopic survey

1.dark energy2.neutrino mass3.primordial non-Gaussianity

What if gravity deviates from GR? For example: $H^{2} - F(H) = \frac{8\pi G}{3}\rho, \quad \text{or} \quad H^{2} = \frac{8\pi G}{3}\left(\rho + \frac{3F(H)}{8\pi G}\right)$

Modified gravity

Dark energy

Notice: there is no way to distinguish these two possibilities just by measuring expansion rate H(z)!

Growth of structure comes to the rescue: in standard GR, H(z) determines distances **and** growth of structure

$$\ddot{\delta} + 2H\dot{\delta} - 4\pi\rho_M\delta = 0$$

 \Rightarrow compare geometry [D(z), Vol(z)] and growth [Pk(z)]

Comparing geometry and growth ("geometry-growth split")

One approach: Double the standard DE parameter space

Instead of Ω_M and w, have:

 $\Omega_M^{\text{geom}}, W^{\text{geom}}, \Omega_M^{\text{grow}}, W^{\text{grow}}$

[In addition to other, usual parameters]

		Cosmological Probe	Geometry	Growth
	Pantheon	SN Ia	$H_0 D_L(z)$	
	eBOSS DR16	BAO	$\{D_M(z); D_H(z)\}$	$r_d(z_d)$
Zhang, Hui, & Stebbins (2005) Wang et al (2007)	Planck2018 -	CMB	$j_\ell[k\chi(z)]$	$S_T(k,z)$
Zhao, Knox & Tyson (2009) Ruiz & Huterer (2015)	KiDS-1000 -	Weak lensing	$rac{d\chi(z)}{d(z)}g_i(z)g_j(z)$	$\Omega_m^2 P_\delta\left(\frac{\ell}{\chi}, z\right)$
Bernal et al (2016) Muir et al (2020) \rightarrow DES	eBOSS DR16 ←	RSD		$f(z)\sigma_8(z)$
Ruiz-Zaptero et al (2021) \rightarrow KIDS Andrade et al (2021)				

Comparing geometry and growth

Advantages:

- physically well motivated (modified gravity)
- failure of geom=grow in measurements implies something is off regardless of implementation

A simpler alternative to full geometry-growth split: growth index γ (Peebles ~1980, Linder 2005)

$$f(a) \equiv \frac{d \ln D}{d \ln a} \simeq \Omega_m(a)^{\gamma}$$

then the linear growth is

$$D(a) = \exp \int_{1}^{a} d \ln a' \,\Omega_{m}^{\gamma}(a')$$

fits DE models in GR, to very high accuracy (0.1%)

$$\gamma \simeq 0.55$$

(really $\gamma \simeq 0.55[1 + 0.02w(z = 1)])$

Growth index also fits MG models (e.g. γ≃0.67 in DGP), though see Wen, Nguyen & Huterer, JCAP 2023

- Pros: γ is easy to implement
- Cons: not "physical" (but neither is S₈)
- Pros: very robust if $\gamma \neq 0.55$ then *something* is wrong

Evidence for suppression of growth in the standard cosmological model

Nguyen, Huterer & Wen, PRL 131, 111001 (2023); PRL Editor's Suggestion

The universe caught suppressing cosmic structure growth

(Nhat-)Minh Nguyen

- Implemented, validated growth index to theory pipeline. CMB affected by γ only via lensing.
- 2. Applied to analysis of CMB+fs8+DESY1+BAO data

Data	γ	S_8	$H_0 \ [\mathrm{kms^{-1}Mpc^{-1}}]$	$ \log_{10}\mathrm{BF_{10}} $	$\Delta\chi^2\equiv\chi^2_\gamma-\chi^2_{\gamma=0.55}$
PL18	$0.668\substack{+0.068\\-0.067}$	$0.807\substack{+0.019\\-0.019}$	$68.1\substack{+0.7 \\ -0.7}$	0.4	-2.8
PL18+ $f\sigma_8$	$0.639\substack{+0.024\\-0.025}$	$0.814\substack{+0.011\\-0.011}$	$67.9\substack{+0.5 \\ -0.5}$	1.7	-13.6
$PL18+f\sigma_8+DESY1+BAO$	$0.633\substack{+0.025\\-0.024}$	$0.802\substack{+0.008\\-0.008}$	$68.4\substack{+0.4 \\ -0.4}$	1.2	-13.2
PL18+ $f\sigma_8$ +DESY1+BAO (flat Λ CDM+GR)	0.55	$0.803\substack{+0.008\\-0.008}$	$68.5\substack{+0.4 \\ -0.4}$	-	0

More details

Signature of suppressed growth in CMB

Resolves the S_8 tension, alleviates the H_0

- Planck's S8 is ~lower than for fixed γ
- fs8+DESY1+BAO S_8 is ~higher than for fixed $\pmb{\gamma}$
- (and the error bars are larger with γ varied, so)
- \Rightarrow S8 tension is resolved
- H0 tension is somewhat alleviated

The same effect (suppressed late-time growth) has been seen before in some geometry-growth-split analyses

note: high w_{growth} is equivalent to suppressed late-time growth

So:

- A new intriguing piece of evidence that growth is suppressed, building upon previous work which found the same
- Will be *very* sharply tested with forthcoming data!

Conclusions

- Current status of DE: excellent consistency with ~70% dark energy ~30% matter flat universe
- Like particle physicists, we would really like to see some "bumps" in the data \Rightarrow H₀ tension, maybe S₈ tension
- •~4-sigma evidence that growth is suppressed (relative to LCDM expectation)
 - •This, along with other DE and DM science, will be sharply tested with forthcoming experiments

New textbook, out May 2023 (Cambridge University Press) Emphasis: pedagogy, computation Level: lower graduate

Extra slides

More details

Data	$\Delta\chi^2\equiv\chi^2_\gamma-\chi^2_{\gamma=0.55}$							
	low- ℓTT	low- $\ell \mathbf{EE}$	high- ℓ TTTEEE	lensing	$f\sigma_8$	DESY1	BAO	total
PL18 temp.+pol.	-1.1	-0.4	-7.0	-	-	-	-	-8.5
PL18	-1.0	-0.1	-3.1	+1.4	-	-	-	-2.8
PL18+ $f\sigma_8$	+0.1	-0.3	-5.6	+0.5	-8.3	-	-	-13.6
PL18+DESY1+BAO	-0.6	-0.8	-3.7	+0.3	-	-0.7	+0.8	-4.7
$f\sigma_8+\text{DESY1+BAO}$	-	-	-	-	-1.2	-2.9	-2.2	-6.3
PL18+ $f\sigma_8$ +DESY1+BAO	-0.2	-1.1	-5.3	-0.7	-6.8	+0.8	+0.1	-13.2