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A B S T R A C T 

Recent cosmological analyses rely on the ability to accurately sample from high-dimensional posterior distributions. A variety 

of algorithms have been applied in the field, but justification of the particular sampler choice and settings is often lacking. 
Here, we investigate three such samplers to moti v ate and v alidate the algorithm and settings used for the Dark Energy Surv e y 

(DES) analyses of the first 3 yr (Y3) of data from combined measurements of weak lensing and galaxy clustering. We employ 

the full DES Year 1 likelihood alongside a much faster approximate likelihood, which enables us to assess the outcomes from 

each sampler choice and demonstrate the robustness of our full results. We find that the ellipsoidal nested sampling algorithm 

MULTINEST reports inconsistent estimates of the Bayesian evidence and somewhat narrower parameter credible intervals than the 
sliced nested sampling implemented in POLYCHORD . We compare the findings from MULTINEST and POLYCHORD with parameter 
inference from the Metropolis–Hastings algorithm, finding good agreement. We determine that POLYCHORD provides a good 

balance of speed and robustness for posterior and evidence estimation , and recommend different settings for testing purposes 
and final chains for analyses with DES Y3 data. Our methodology can readily be reproduced to obtain suitable sampler settings 
for future surv e ys. 

Key words: methods: statistical – cosmological parameters – cosmology: observations – large-scale structure of the Universe. 
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 I N T RO D U C T I O N  

he sampling of a posterior distribution is one of the central elements
n current cosmological analyses. With the increasing complexity of
osmological surv e ys and the large amount of data available, it is a
omplicated challenge to extract cosmological parameters 1 because
 E-mail: pablo.lemos.18@ucl.ac.uk (PL); nweaverd@umich.edu (NW) 
 In this work, we use the term parameters to refer to the parameters 
haracterizing a model, both nuisance and cosmological, for which we 
ant to generate samples. We use the term hyperparameters to refer to the 
arameters specific to sampler settings, which affect their performance, such 
s the number of samples we want to obtain, the stopping criteria, etc. This 
erminology is common in the machine learning literature. Note that the 
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f the high dimensionality and complex shapes of the distributions.
uisance parameters (accounting for various calibration and sys-

ematic effects) complicate the analysis by increasing the number of
arameters well beyond the six of the standard ( � cold dark matter)
 CDM model of cosmology. 
Bayesian techniques give a principled framework for probabilistic

nference, for instance characterizing information about complex,
sually non-Gaussian, posterior distributions for which the mean
nd standard deviation alone are insufficient to fully describe the
erm hyperparameters can refer to different concepts, even in the field of 
osmology (Lahav et al. 2000 ; Hobson, Bridle & Lahav 2002 ; Luis Bernal & 

eacock 2018 ). 
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hape of the distribution. Markov Chain Monte Carlo (MCMC) 
ethods have traditionally been used for this purpose (Metropolis 

t al. 1953 ; Neal 1997 ), and have a long history of applications
n cosmology (e.g. Christensen et al. 2001 ; Knox, Christensen & 

kordis 2001 ; Lewis & Bridle 2002 ; Verde et al. 2003 ; Tegmark
t al. 2004 ; Dunkley et al. 2005 ; Shaw, Bridges & Hobson 2007 ).
o we ver, for some applications (such as model comparison and the

omparison of different data sets) it is necessary to calculate not only
he shape of the posterior distrib ution b ut also the Bayesian evidence.
ested Sampling (Skilling 2006 ) is the method most commonly used 

or this purpose, because of its speed and its ability to obtain both
he Bayesian evidence and the posterior distribution in the same 
alculation. 

Because of their wide applicability, many tools have been devel- 
ped to implement these sampling algorithms given a user-defined 
ikelihood, and the choice to use one o v er another may be more driven
y accessibility and ease of implementation than rigorous testing for 
he specific analysis at hand. 

As the constraining power of cosmological data sets has grown, 
ifferent analyses have begun to diverge in their inferred parameter 
osteriors. Perhaps most famous is the discrepancy in the measure- 
ents of H 0 by the Planck Collaboration ( 2020 ) versus that obtained

ia distance ladder measurements (Riess et al. 2022 ), but there exists
lso tension between measurements of S 8 ≡ σ 8 ( �m 

/0.3) 0.5 from 

arge-scale structure probes and that inferred by Planck under � CDM 

see Di Valentino et al. 2021a , b ; Shah, Lemos & Lahav 2021 , for
e vie ws on these tensions). As these discrepancies could be indicators
f new physics, it is vital that the inferences upon which they are
ased are robust to analysis choices such as the specific sampler and
ettings used. 

Most samplers include hyperparameters that allow one to tune the 
lgorithm and, in the limit of infinite computing time and resources,
llow one to obtain arbitrarily precise constraints. In practice, we 
equire a balance of speed and accuracy, where it is feasible to run
 large number of chains but the error introduced by the sampler
s a negligible (or at least quantifiable) contribution to the analysis’
rror budget. This is particularly true for the Dark Energy Surv e y
DES, The Dark Energy Surv e y Collaboration 2005 ) combined weak
ensing and galaxy clustering cosmology analysis (henceforth, 3 ×
 pt), where the complexity of the data and analysis pipeline results
n the need to run a large number of chains for validation purposes. 

In this work, we perform a careful investigation of several lead- 
ng sampling algorithms available within the CosmoSIS analysis 
ramework. We focus on POLYCHORD and MULTINEST because of their 
bility to estimate the Bayesian evidence, and calculation of model 
omparison and data set tension statistics are of particular interest 
or the DES Y3 analysis. We investigate how hyperparameters 
mpact performance and focus particularly on a v oiding biases in 
he parameter constraints and evidence, which could lead to mistaken 
nterpretation of the core analysis results. We make recommendations 
or the sampler and settings for three different use cases of the DES
3 data, which strike different balances of speed and accuracy. 
There have been previous attempts at characterizing sampler 

erformance. F or e xample, Allison & Dunkle y ( 2014 ) compared
CMC and Nested Sampling methods, and Higson et al. ( 2019 )

eveloped diagnostic methods to assess errors from Nested Sampling 
hains, including the use of bootstrapping individual chain samples to 
ssess uncertainty. We use some of these tools, but assess uncertainty 
sing full independent chain realizations run o v er a wide range of
arameter settings, and using high-resolution chains as benchmarks. 
e combine tests on the first year of DES data (DES Y1) and on the

esults of a fast, approximate version of the likelihood that allows 
s to generate a large number of sampling runs under the same
yperparameter settings. 

The paper is structured as follows: In Section 2 , we introduce the
ethodology and notation of Bayesian parameter estimation, as well 

s the summary statistics that we will use throughout this work. In
ection 3 , we present the methodology and data used in this work.
ur results are shown in Section 4 , and we present our conclusions

n Section 5 . All the data produced from this work are available upon
equest. 

 SAMPLERS  

his section describes the formalism of parameter estimation in 
 Bayesian framework, as well as the three different sampling 
lgorithms employed in this work. Detailed descriptions of the 
ormalism can be found for example in MacKay ( 2002 ) and Sivia &
killing ( 2006 ). 

.1 The Bayesian framework 

n parameter estimation we have obtained some data D ; we have
ssumed a theoretical model M , and we seek an estimate of the
arameters θ of the model. This is accomplished by applying Bayes’ 
heorem 

 ( θ | D, M) = 

P ( D| θ, M) × P ( θ | M) 

P ( D| M) 
. (1) 

he quantities in this equation are usually labelled as 

 = 

L × � 

Z 

, (2) 

here P is the posterior, L the likelihood, � the prior, and Z 

he marginal likelihood or Bayesian evidence. The latter can be 
xpressed as 

 = 

∫ 
L × � d θ. (3) 

his is typically a complicated and high-dimensional integral. 
ecause Z acts as a normalizing factor that does not depend on the
arameters, it often plays no role for parameter estimation. There 
re, ho we ver, other applications where the Bayesian evidence is
undamental; one such case is Bayesian model comparison. Here, 
e have two competing theoretical models M A and M B and we want

o know which of these models is preferred given some measured
ata D . For this we calculate the ratio 

P ( M A | D) 

P ( M B | D) 
= 

P ( D| M A ) 

P ( D| M B ) 
× P ( M A ) 

P ( M B ) 
, (4) 

here the equality follows from Bayes’ theorem. The second factor 
n the right-hand side is the ratio of the prior beliefs in the two
odels. If there is no prior reason to prefer one model o v er the

ther, then this term is unity and hence disappears. The first factor
n the right-hand side is the ratio of the Bayesian pieces of evidence
or the two models. Therefore, under the assumption of equal prior
eliefs in the two models, we can find which model is preferred by
he data by calculating the ratio 

 ≡ Z A 

Z B 

. (5) 

his quantity is called the Bayes factor. Bayesian pieces of evidence 
re also used to quantify tension between different data sets 
Marshall, Rajguru & Slosar 2006 ). 
MNRAS 521, 1184–1199 (2023) 
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In addition to the Bayesian evidence of equation ( 3 ), we will
ompute two more summary statistics from our chains, which
ontain important information about our problem. The first one is the
 ullback–Leibler div ergence (K ullback & Leibler 1951 ), giv en by 

 KL = 

∫ 
P ( θ ) log 

P ( θ ) 

π ( θ ) 
d θ. (6) 

he Kullback–Leibler divergence measures the information gain
hen going from the prior to the posterior distribution, measured

n natural bits, or nats . The Kullback–Leibler divergence can be
sed amongst other things to calculate the information between two
ata sets, which in turn can be used to calculate the Suspiciousness
Handley & Lemos 2019b ), and quantify the concordance between
he data sets in a way that does not depend on prior volumes. 

Our last summary statistic is the Bayesian Model Dimensional-
ty (henceforth BMD), which provides an estimate of how many
aussian dimensions are constrained by our data: 

 = 2 
∫ 

P ( θ ) 

(
log 

P ( θ ) 

π ( θ ) 
− D KL 

)2 

d θ. (7) 

andley & Lemos ( 2019a ) discuss the advantages of characterizing
imensionality via the BMD as opposed to other commonly used
easures like the Bayesian Model Complexity (Spiegelhalter et al.

002 ), such as not relying on a single-point estimator. Another
dvantage of the BMD is that it can be computed directly from
oth nested sampling and MCMC chains as 

˜ d 

2 
= 

〈
( log L ) 2 

〉
P 

− 〈 log L 〉 2 P 

, (8) 

here 〈·〉 P 

indicates an average over the posterior distribution. 

.2 Metropolis–Hastings 

CMC is one of the most widely used methods for sampling
robability distributions. It consists of using chains in which each
lement depends only on the previous one, known as Markov Chains,
o obtain samples from the target distribution. The Metropolis–
astings algorithm (Hastings 1970 ) (denoted MH in the following)

s a common MCMC method, widely used in various fields such as
tatistical mechanics or as here, Bayesian inference. Here, we use

H in order to generate samples from the posterior distribution of
he cosmological and nuisance parameters. Next, we describe the
undamental aspects of MCMC algorithms in general, and MH in
articular, as well as details of its implementation within this work. 
Note that we include the MH sampler primarily as a benchmark

gainst which we can compare the parameter estimation results of
he nested samplers that are the main focus of this work. We have
ot made a significant effort to optimize the MH sampler’s speed and
erformance, so a fair assessment of its computational cost compared
o POLYCHORD and MULTINEST is beyond the scope of this paper. 

.2.1 The Metropolis–Hastings algorithm 

he goal of MCMC algorithms is to return samples from a distri-
ution that converges towards a unique stationary distribution π ( θ )
where θ are the cosmological and nuisance parameters) of the target
istribution, in this case the posterior P( θ ). Given the transition
atrix p ij of a Markov chain, which corresponds to the probability

f moving from state i at time t to state j at time t + 1, we thus have 

j = 

∑ 

j 

p ij πi . (9) 
NRAS 521, 1184–1199 (2023) 
e now need to construct such a transition matrix. 
The MH algorithm proposed in Hastings ( 1970 ) does so by

equiring p ij and π to satisfy the so-called detailed balance 

i p ij = πj p ji . (10) 

n MH, the transition matrix is then defined as 

 ij = q ij αij , (11) 

here q ij is the proposal distribution (corresponding to a proposed
jump’ in parameter space) and αij the acceptance distribution
corresponding to accepting this ‘jump’ or not), defined as 

ij = min 

(
1 , 

p j q ji 

p i q ij 

)
. (12) 

If a chain of samples is selected using this algorithm for a large
umber of steps, the density of their resulting distribution will follow
he target distribution, i.e. the posterior P( θ ). 

Depending on the initial point in parameter space and the provided
roposal, some samples drawn at the beginning of this process
hould be discarded as they are not representative of the posterior
istribution. This period is called burn-in, where the accepted points
ay be far from the peak of the posterior, and can be minimized if

tarting at a point in parameter space closer to the best-fitting value
see Hogg & F oreman-Macke y 2018 for a discussion on choices to
imit the burn-in period). It can be explored by plotting the posterior
r parameter values as a function of step number (or o v erplotting
hese values from chains that started at different points), where the
urn-in corresponds to samples before these values converge around
he typical set. 

One potential way of speeding up MH algorithms often used in
osmology is to take advantage of the fact that some parameters,
nown as ‘fast’, do not affect the slowest parts of the likelihood
alculation, which in the case of cosmology often involve the
ransfer function or line-of-sight integration. These parameters can
e decorrelated and sampled separately, making sampling nearly as
ast as it would for the ‘slow’ parameters alone (Lewis 2013 ). When
ast and slow parameters cannot be fully decorrelated in principle,
hey can be sampled using ‘dragging’ (Neal 2005 ), which consists
f ‘dragging’ the fast parameters while keeping the slow ones fixed,
eading to fast likelihood e v aluations. Both of these methods are
mplemented in the COBAYA package (Torrado & Lewis 2021 ). 

One of the difficulties of using MCMC algorithms such as MH
s the lack of definitive criteria ensuring the chain has converged
owards the target distribution. Several criteria for testing the conver-
ence have been proposed (An, Brooks & Gelman 1998 ; Sinharay
003 ). It is also useful to study the autocorrelation of the MH chains
o verify that the samples are independent on scales much smaller
han the chain length. In the following text, we will mainly use
he Gelman–Rubin diagnostic which is derived from the method
roposed in Gelman & Rubin ( 1992 ) to monitor the convergence of
H chains. This diagnostic works by comparing parameter estimates

rom a number of independent chains. Specifically, adopting the
tandard notation, it estimates the potential scale reduction factor ˆ R 

or a given parameter θ , defined as 

ˆ 
 = 

ˆ V 

W 

, (13) 

here ˆ V is the estimator of the variance of the parameter and W
s the average of the variance of θ within a chain (in the abo v e
xpression, the impact of degrees of freedom defined in Gelman
 Rubin 1992 is neglected). ˆ R � 1 implies that the distribution of

he sampled parameter is close to stationary; while this does not



Robust sampling for the dark energy survey 1187 

g  

c
p
0
V

V

w  

v

B

2

F  

m
s
u
c
a
o  

p
s  

o
r
u

 

e
c  

d  

p  

w
h
e
c
e
p

v  

b  

p
b

2

M
2  

t
p
s  

a  

t  

t  

t  

(  

s
p  

i
p
t  

d
M

(  

e  

fi  

a
L  

c  

e
a
a
i  

(  

&  

S
w
s

 

a
s
w
a
N
c  

l  

o  

h  

e  

t
c
w

l  

d  

i  

p
a  

s

2

A
H  

a  

I
(  

t  

c
w  

t  

d  

i  

s  

t  

t

2 https://github.com/f arhanf eroz/MultiNest
3 http:// kylebarbary.com/ nestle/index.html 
4 ht tps://dynest y.readthedocs.io/en/latest /
5 https://github.com/PolyChord/PolyChordLite 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/521/1/1184/6759441 by U
niversity of M

ichigan user on 11 April 2023
uarantee that the chain has converged, it is a good indication of
onvergence for unimodal posteriors when ˆ R is nearing 1 for all 
arameters. A typical convergence criterion is to stop when ˆ R − 1 < 

 . 1. When considering M independent chains, the variance estimator 
ˆ 
 is defined as 

ˆ 
 = 

N − 1 

N 

W + 

M + 1 

MN 

B, (14) 

here N is the length of the chains and B / N is an estimate of the
ariance of the parameter mean θ̄ across chains i.e. 

/N = 

1 

M − 1 

M ∑ 

i= 1 

( ̄θi − θ̄ ) 2 . (15) 

.2.2 Implementation 

or this study we use a simple version of the MH sampler imple-
ented within CosmoSIS . In the configuration used here the MH 

ampler uses a fast–slow scheme in which each parameter subspace 
ses a separate multi v ariate Gaussian proposal, with a one-third 
hance of each proposed jump length being drawn instead from 

n exponential distribution, to better explore parameter tails. We 
 v ersampled the fast subspace by a factor of 5 and have nine fast
arameters. In typical use of this sampler, the proposal is initially 
et to an estimate of parameter covariances, then tuned at the start
f the chain. During tuning, the estimated parameter covariances are 
eplaced with those computed from the points sampled in the chain 
p to that point. 
For this particular study we set the initial proposal using a param-

ter covariance extracted from a finished high-quality POLYCHORD 
hain, and because that was expected to be close to the target
istribution, we did not tune the proposal. This choice was moti v ated
rimarily by simplicity, in that it allowed us to use the MH sampler
ithout adjusting its hyperparameters. Variations of this setting could 
ave been used, namely using a more approximate initial proposal 
stimate – for example, using only the diagonal part of the parameter 
ovariance – and then tuning the proposal. These choices would be 
xpected to produce the same posterior estimate, just over a longer 
eriod of time. 
Note that using the MH sampler requires sampling a scaled 

ersion of the primordial power spectrum amplitude, 10 9 A S . This is
ecause the relative size of the unscaled A S values compared to other
arameters is small, which causes the proposal covariance matrix to 
e ill-conditioned. 

.3 MultiNest 

ultinest is an example of a nested sampling algorithm (Skilling 
006 ) which, in contrast to MCMC samplers like MH, can be used
o calculate the Bayesian evidence in addition to estimating the 
osterior. Instead of selecting individual samples sequentially, nested 
ampling starts with a large number of points (called ‘live’ points),
nd then repeatedly selects the live point with the smallest value of
he posterior density, eliminates it (turning it into a ‘dead point’), and
hen finds a new replacement live point with a posterior value larger
han that of the point that was eliminated. The collection of all points
live and dead) can then be used to calculate the evidence while also
erving as a (weighted) sample of the posterior. The most difficult 
art of Nested Sampling is finding new live points. It is extremely
nefficient simply to randomly generate points until one with a higher 
osterior value is found (especially when most live points are close 
o the maximum of the posterior and when the problem has high
imensionality). This is the challenge that specific algorithms like 
ULTINEST are designed to address. 
MULTINEST 2 is a publicly available code for Nested Sampling 

Feroz, Hobson & Bridges 2009 ; Feroz et al. 2019 ). It has been
 xtensiv ely used for cosmology analyses, including that of the
rst year (Y1) of DES data (Abbott et al. 2018 ). MULTINEST uses
 technique called ellipsoidal sampling (Mukherjee, Parkinson & 

iddle 2006b ), where it calculates a D -dimensional ellipsoid from
urrent set of live points, and finds the next point within that ellipsoid,
xpanded by a certain factor. MULTINEST also includes a clustering 
lgorithm to identify multiple peaks in the posterior distribution, 
llowing it to sample multimodal posteriors. This was its main 
mpro v ement o v er the ellipsoidal nested sampling code COSMONEST
Mukherjee et al. 2006a , b ; Pahud et al. 2006 ; Parkinson, Mukherjee
 Liddle 2006 ). There are other examples of ellipsoidal Nested
ampling algorithms, such as NESTLE 3 and DYNESTY 4 (Speagle 2020 ), 
hich uses dynamic sampling while still relying on ellipsoidal nested 

ampling. 
As described in Skilling ( 2006 ), the standard Nested Sampling

pproach calculates the pieces of evidence using the accepted 
amples, and using an approximation for the distribution of sampling 
eights. In addition to this calculation, MULTINEST produces an 

lternative calculation of the Bayesian evidence using Importance 
ested Sampling (henceforth INS). INS, first introduced in the 

ontext of Nested Sampling in Cameron & Pettitt ( 2014 ), uses all
ikelihood e v aluations to estimate the evidence, instead of using
nly the accepted points in the MULTINEST run (which in some cases
as acceptance rates as low as ∼ 1 per cent ). In an ideal case, both
stimates of the evidence should agree. In this work, when we refer
o the MULTINEST evidence, we are referencing the ‘default’ evidence 
alculation, and we will explicitly make reference to the INS evidence 
hen that is not the case. 
While ellipsoidal nested sampling leads to fast sampling, it can also 

ead to biases in both the posterior and the evidence estimation, as
iscussed later in the paper. This is illustrated in Fig. 1 : If the ellipsoid
s not expanded enough, the calculation of the evidence will ‘miss’
arts of the distribution. These issues are discussed using MULTINEST 
s an example, but apply to any implementation of ellipsoidal nested
ampling. 

.4 PolyChord 

n alternative code for Nested Sampling is POLYCHORD (Handley, 
obson & Lasenby 2015a , b ). 5 The difference between this algorithm

nd MultiNest is in the approach to generating new live points.
nstead of the ellipsoidal sampling, it uses so-called slice sampling 
Aitken & Akman 2013 ), where new live points are generated by
aking a random slice through the parameter space that includes the
urrent live point, and randomly generating new points until one 
ith higher likelihood is found. The process is then repeated with

he new point and a slice in a new random direction, for a user-
efined number of repetitions ( n repeats ) until the candidate live point
s sufficiently uncorrelated with the initial live point. In practice, the
ample covariance of existing points is used to decorrelate and whiten
he parameter space, such that slices are performed on an affine
ransformation of parameter space where the rele v ant likelihood 
MNRAS 521, 1184–1199 (2023) 
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M

Figure 1. An example of MULTINEST ’s ellipsoidal sampling, and how it can lead to biases. When trying to sample a certain distribution (top left), MULTINEST 
randomly generates some points (top right). It then uses the covariance matrix obtained from those points to calculate an ellipsoid enclosing all existing live 
points (bottom left, dashed line). That ellipsoid is expanded in volume by a factor inversely proportional to the efficiency, and samples are drawn from that 
ellipsoid (bottom right, dot–dashed line). As the latter plot shows in the light blue regions, if the magnification factor is not big enough (i.e. the efficiency is too 
high), this can lead to a bias in the estimation of the evidence. 
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idth is O(1) in each direction. This both simplifies and accelerates
he generation of new samples. 

Like MULTINEST , POLYCHORD has a clustering algorithm which
llows it to sample multimodal posterior distributions. In addition,
OLYCHORD is compatible with the fast–slow parameter implementa-
ion used by the code COSMOMC (Lewis & Bridle 2002 ; Lewis 2013 ),
hich provides a significant increase in speed for cosmological

ikelihoods. While it is slower than MULTINEST in obtaining pos-
erior distributions and Bayesian pieces of evidence for the models
tudied here, we will show that it more reliably gives unbiased 
esults. 

.5 Other samplers 

n this work, we focus on three sampling algorithms commonly used
n cosmology (Metropolis–Hastings, ellipsoidal nested sampling,
nd slice nested sampling). One common sampler that we do not
mplement is EMCEE , which is an af fine-inv ariant MCMC sampler that
ses an ensemble of w alk ers to traverse the posterior and update the
roposal distribution before applying standard Metropolis–Hastings
cceptance criteria (F oreman-Macke y et al. 2013 ). We found that
n the large-dimensional parameter spaces tested here, the samples
enerated by EMCEE had high enough levels of correlation so as
o require intractable runtimes. Coupled with the inability to apply
onvergence criteria like the Gelman–Rubin statistic to correlated
 alk ers and the large amount of samples that need to be discarded

s burn-in, we decided not to include it in this study. 
There exist other algorithms that, while perhaps not yet as widely

sed in cosmology, could become more common in the future.
NRAS 521, 1184–1199 (2023) 
eus 6 (Karamanis, Beutler & Peacock 2021 ) is an implementation
f ensemble slice sampling (Karamanis & Beutler 2021 ) for MCMC,
nd has the advantage of not requiring tuning of any hyperparam-
ters, thus providing a promising alternative to traditional MCMC
lgorithms. We provide a more detailed discussion of Zeus , and
ompare it to EMCEE , MULTINEST , and POLYCHORD in Section A . Other
lgorithms such as Hamiltonian Monte Carlo (Betancourt 2017 ) or
he No-U-Turn Sampler algorithm (Hoffman & Gelman 2014 ) have
xisted for some time, but require accurate deri v ati ves, which cannot
e accessed easily in current cosmological theory codes such as CAMB .

 M E T H O D O L O G Y  

he goal of this paper is to compare the performance of the
reviously introduced methods for cosmological analysis. In cos-
ology, we usually perform inference with about six to eight

osmological parameters, and a number of nuisance parameters
sed to model systematic uncertainties. The nuisance parameters are
sually marginalized o v er for cosmological constraints, though they
ay also be interesting in their own right (e.g. constraining galaxy

ias or the amplitude of intrinsic alignment of galaxies). Here, we
se the pipeline for the DES Year 1 3 × 2 pt analysis, which has
0 nuisance parameters. We assume a wCDM cosmological model,
hich allows for a varying equation of state for dark energy. We

herefore constrain seven cosmological parameters: { �m 

, �b , h , n s ,
 s , w, �νh 2 } , giving a total of 27 parameters to be sampled. 

art/stac2786_f1.eps
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Figure 2. Posterior distribution for a high-quality Nested Sampling run (red) 
and a Metropolis–Hastings run (yellow) which uses a full proposal covariance. 
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In practice, we use two different pipelines in our analysis. We 
se the public DES Y1 3 × 2 pt likelihood implemented in the
osmological parameter estimation code COSMOSIS (Zuntz et al. 
015 ), which includes all the samplers used in this work. In addition,
e also use a fast likelihood that employs several approximations to 

educe the e v aluation time by a factor of ∼50. Both of these pipelines
re described below. 

.1 Fast likelihood analysis 

he sampling methods described in this work can be slow, and in
ome cases we can only understand the effects of tuning different 
yperparameters by repeating the sampling a large number of times. 
or that purpose, we generated a fast likelihood , which produces 
osterior distributions that are similar to those of the DES Y1 
ipeline, but uses multiple approximations to significantly reduce 
he run time. The resulting likelihood is an approximation to the true
ikelihood that allows for a large number of chains to be run and thus
or the variance of samplers to be characterized. It can be considered
 toy model that is substantially more applicable to our use case than
he analytic models (e.g. Gaussian mixture models) that are often 
mployed to characterize sampler behaviours. 

The primary changes in the fast likelihood are: 

(i) Using the fitting function presented in Eisenstein & Hu ( 1998 )
or the transfer function when computing the linear matter power 
pectrum; 

(ii) Acceleration of the calculation of the Halofit non-linear 
cale (Equation A4 in Takahashi et al. 2012 ) using a non-iterative
nterpolation-based root-finding algorithm and trapezoidal integra- 
ion; 

(iii) Calculation of the lensing efficiencies and Limber angular 
orrelation functions (Equations IV .3–IV .6 in Abbott et al. 2018 )
sing a simplified trapezoidal integration scheme. 

.2 Application to DES Y1 data 

e apply all the samplers described abo v e to the DES 3 × 2 pt
nalysis, running MULTINEST and POLYCHORD with a large number 
f different hyperparameter settings. Because the bulk of the work 
resented in this paper was performed while the analysis pipeline 
or the recently released Y3 analysis (Abbott et al. 2022 ) was being
eveloped, these tests are run using the DES Y1 data (Abbott et al.
018 ) and the Y1 version of the DES modelling pipeline. These
ata consist of a combination of three two-point correlation function 
easurements: cosmic shear, g alaxy–g alaxy lensing, and g alaxy 

lustering. 
There are mainly two purposes to this paper: to find sampler 

ettings that yield unbiased results for the DES analysis while 
inimizing the running time, and to generally understand the causes 

f bias in the parameter estimation or evidence calculation. The 
esults presented in this work depend heavily on the dimensionality 
f the likelihood, as well as the form of the likelihood, and so
annot be generalized to all sampling problems. Ho we ver, as most
osmological sampling problems have similar dimensionality and 
haracteristics, these results should still be useful in guiding sampler 
hoices in future cosmological analyses. 

 RESULTS  

n this work, we hav e e xplored different sampling settings, to
ompare their performance and run time. Unless stated otherwise, 
ll runs use the same likelihood, priors, and data, and are run using
he same computing platform (the Cori system at NERSC) and with
he same number of nodes. 

.1 Posterior validation with Metropolis–Hastings 

CMC methods are expected to produce more reliable posteriors 
han Nested Sampling, because their convergence criterion is based 
n the posterior, not on the Bayesian evidence (which is difficult
o estimate well from standard MCMC chains). Given this, before 
ooking in detail at the effects of hyperparameters, we compare 
onstraint contours from MH and POLYCHORD in order to benchmark 
he accuracy of the nested sampling posterior estimates. 

We run eight MH chains in parallel using four processors per
hains, spread across two nodes. We stopped the chains once ˆ R − 1 <
 . 02 for all parameters (see Section 2.2 for a description of the
elman–Rubin statistic ˆ R ), amounting to 762 000 samples. We burn 

he first 20 per cent of the chains, as described in Section 2.2 . Fig. 2
hows the posterior estimated with these two sets of chains on the
osmological parameters w, �m 

, and σ 8 along with the posterior 
stimated from a high-quality POLYCHORD chain. 

We note that our MH run was slower than most nested sampling
uns, using around 4600 CPU-hours (6 d of walltime). Nested 
ampling is known to scale better with dimensionality, so this 
s on some level expected. Ho we ver, we emphasize that this is
ot necessarily a fair comparison because, as was discussed in 
ection 2.2 , our MH runs did not employ a number of speed-up

echniques which would likely be used in practice if MH were being
sed as the main sampler in an analysis. This is fine for our purposes,
ecause as noted abo v e we are using the MH chains to compare
osterior distributions, not runtime. 
We interpret the good agreement observed in Fig. 2 between MH

nd the high-quality POLYCHORD chain as confirmation that with 
ood enough settings, Nested sampling can accurately sample the 
osterior. We then explore what these settings need to be for both
ULTINEST and POLYCHORD . 
MNRAS 521, 1184–1199 (2023) 
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.2 MULTINEST 

ULTINEST has several hyperparameters that can be tuned. These
hanges can increase accuracy in computing different quantities,
t the expense of computing time. Table 1 shows timing and
ummary statistic results 7 of running MULTINEST chains with the
ES likelihood using a variety of different choices for the sampler’s
yperparameters. We briefly describe these MULTINEST hyperparam-
ters (for more details see Feroz et al. 2009 , 2019 , henceforth F08,
13, respectively), and how they affect the sampler performance. 

(i) n live : the number of li ve points. This quantifies ho w many
oints are used to sample the posterior and is proportional to the
xpected final number of samples in the chain. For the full likelihood
e compare two different values: n live = 250 and n live = 675 . The

atter value is based on the fiducial choice of n live = 25 ∗ D, where
 is the number of parameters being sampled. 
 higher number of live points increases the accuracy of the estimated
osterior distributions and Bayesian evidence; we find that increasing
 live decreases the uncertainty in log Z by a factor 

√ 

� n live , and
ncreases run time linearly. 

(ii) eff i ci ency : a MULTINEST -specific hyperparameter that con-
rols the size of the ellipsoids used by MULTINEST to search for new
ive points. To find the next live point after every step, MULTINEST uses
he covariance of the existing live points to create an N -dimensional
llipsoid, then expands the ellipsoid by a factor of 1 / eff i ci ency 

efore using it to find the ne xt liv e point. 8 This procedure is illustrated
n Fig. 1 . 
s previously explained, this figure also shows a potential weakness
f MULTINEST : we see that the expanded ellipsoid, shown with
he dash–dotted orange line in the lower right-hand panel, is not
apturing part of the tails of the true posterior distribution, shown
n shaded blue. These regions will not be sampled, or considered
hen calculating the Bayesian evidence. This missing-posterior-tail
ias will be more severe for higher values of efficiency, a finding
hat is reflected in the results shown in Table 1 , Fig. 3 , and Fig. 4 .

hen the efficiency is too high, all the summary statistics calculated
n this work are systematically wrong. Even for efficiencies as low
s 10 −3 , we find a lack of convergence in summary statistics and
isagreement with the best POLYCHORD values. 
his bias can be reproduced using a 27-dimensional Gaussian
osterior distribution, which has a known true evidence, as shown
n Fig. 5 . Comparisons to this Gaussian toy model also show that
OLYCHORD gets more reliable evidence estimates, motivating us to
dopt the best POLYCHORD run on the DES likelihood as a benchmark
correct value’. 

e also see in Table 1 that there is an approximately power-law
elation between runtime and efficiency. Therefore, it can become
 xtremely computationally e xpensiv e to achiev e a low enough value
f efficiency to obtain unbiased evidence estimates with MULTINEST .
he importance of the efficiency hyperparameter for MULTINEST
resents another challenge in that there is no principled way of
no wing what v alue of the ef ficiency should be used, or if the value
sed was low enough, without running the algorithm multiple times.
NRAS 521, 1184–1199 (2023) 

 Reported uncertainties are via bootstrap resampling as computed by the 
NESTHETIC software package Handley ( 2019 ). 
 The efficiency is thus a rough estimate of the acceptance rate, the probability 
hat a point sampled from the expanded ellipsoid will have a higher likelihood 
han the point needing replacement. Ho we ver, the algorithm’s acceptance 
cales better than this due to the ellipsoid hitting the prior boundaries in some 
f the parameter directions, as indicated by the fact that the BMD is less than 
he number of sampled parameters. 
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ote that biases from high efficiencies have a less severe impact on
arginalized posteriors than on estimates of the Bayesian evidence.
e can see this in Fig. 3 . While higher efficiency does cause the

ampler to miss the tails of the distribution, even for very high values
hose missing tails are unlikely to significantly affect interpretation
f the contours. Thus, if we are only interested in the posterior
istributions, we do not need to use efficiencies as low as would be
eeded if we wanted to compute the Bayesian evidence. 

(iii) Tolerance : the stopping criterion. Both MULTINEST and POLY-
HORD can estimate how much the existing live points will contribute
o the estimate of the evidence. When that contribution is smaller
han the chosen value of the tolerance, the algorithm terminates.
ne can check whether the tolerance is low enough by plotting the
rogression of the weights of the chain, as shown in Fig. 6 . If the
olerance is low enough, this plot will show a peak that reaches unity,
nd will then decay back towards zero. A spike at the end shows that
he contribution to the evidence from the final set of live points is too
igh, and the tolerance should be decreased. 
able 1 shows that tolerance does not have a significant impact on
ither run-time or on summary statistics. Because of this, and because
 chain initially run with higher tolerance can be resumed to reach
 lower tolerance, the choice of this parameter is not considered
 challenge: we simply recommend a tolerance that ensures that
eights look similar to those on the right-hand panel of Fig. 6 . 
(iv) OMP threads : MULTINEST in COSMOSIS uses a double paral-

elization scheme: The Boltzmann solver CAMB (Lewis, Challinor &
asenby 2000 ; Howlett et al. 2012 ) is parallelized using OPENMP ,
nd the MULTINEST sampling algorithm uses MPI parallelization.
e tested two settings, both using the same number of nodes, but

hanging the number of cores used on each type of parallelization.
e find that not using the OPENMP parallelization greatly impro v es

he sampling speed. We expected this, as MULTINEST will be faster
hen all cores are used by MPI parallelization, up to the number
f live points. As expected, changing this setting does not affect the
esults in any way apart from the run time. 

(v) Constant Efficiency : MULTINEST can use a different sampling
ethod, called ‘constant efficiency’ mode. In this setting, we aban-

on the strategy of increasing the volume of the ellipse by a factor
f 1 / eff i ci ency . Instead, the increase in the size of the ellipses
hanges at every step to match the input ‘constant efficiency’ value
n the sampling efficiency (i.e. the ratio of points accepted to points
ampled). F13 describe how: 
Despite the increased chances of the fitted ellipsoids encroaching
ithin the constrained likelihood volume (i.e. missing regions of
arameter space for which L > L i ), past experience has shown
e.g. F08) this constant efficiency mode may nevertheless produce
easonably accurate posterior distributions for parameter estimation
urposes.’ 
ur results agree with these statements in F13, with some caveats.

ndeed, for efficiencies set to values of 0.3 and 0.1, constant efficiency
ode produces significantly quicker runtimes and worse estimates

f the evidence and other summary statistics than the standard mode.
o we ver, at lo wer ef ficiency v alues we find that this trend is inverted.
 or e xample, when the ‘constant efficienc y’ hyperparameter is set to
0 −3 , the constant efficiency runtime becomes longer than standard
ULTINEST , and the evidence estimate also appears to converge to
he correct v alue. Ho we ver, gi ven its longer runtime at efficiencies
eeded for accurate pieces of evidence, we do not recommend using
constant efficiency’ to estimate the evidence. 

As previously discussed, MULTINEST produces an alternative
NS evidence estimate. By examining Table 1 we can compare
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Table 1. Comparison of time required and output values for MULTINEST with different settings. All runs use the DES Y1 3 × 2 pt likelihood and a wCDM 

cosmology, with 128 cores. The settings OM P thr eads = 1 corresponds to 128 MPI threads, while OM P thr eads = 4 corresponds to 32 MPI threads. CE 

refers to ‘Constant ef ficiency’. L Ev als is the number of Likelihood e v aluations. INS refers to the Importance Nested Sampling reported by MULTINEST , D KL 

is the Kullback–Leibler divergence, and BMD is the Bayesian Model Dimensionality. Reported uncertainties are via bootstrap resampling as computed by 
ANESTHETIC (Handley 2019 ). 

n live Eff Tol OMP CE Time (h) Acceptance L Evals log Z INS log Z D KL BMD 

675 1 0.3 1 F 11.2 0.067 265 314 −277.71 ± 0.17 −285.14 ± 0.05 18.54 ± 0.16 13.0 ± 0.3 
675 1 0.1 1 F 13.8 0.056 340 783 −277.68 ± 0.17 −284.93 ± 0.22 18.61 ± 0.15 13.5 ± 0.4 
675 1 0.01 1 F 20.3 0.042 510 583 −277.63 ± 0.17 −284.94 ± 0.14 18.42 ± 0.15 13.0 ± 0.4 
675 1 0.1 4 F 46.3 0.053 356 248 −277.53 ± 0.17 −285.09 ± 0.06 18.33 ± 0.16 12.8 ± 0.4 
675 1 0.1 1 T 3.8 0.228 78 561 −275.41 ± 0.16 −286.36 ± 0.19 17.59 ± 0.15 12.3 ± 0.3 
250 0.3 0.1 1 F 4.3 0.053 134 554 −278.68 ± 0.28 −285.46 ± 0.27 19.32 ± 0.28 13.3 ± 0.6 
675 0.3 0.3 1 F 14.6 0.054 346 242 −278.52 ± 0.17 −285.01 ± 0.14 19.16 ± 0.16 13.5 ± 0.4 
675 0.3 0.1 1 F 16.2 0.048 396 284 −278.37 ± 0.17 −285.13 ± 0.10 19.14 ± 0.17 12.6 ± 0.4 
675 0.3 0.01 1 F 21.4 0.040 531 284 −278.53 ± 0.17 −284.63 ± 0.28 19.18 ± 0.16 13.7 ± 0.4 
675 0.3 0.1 4 F 50.3 0.050 383 602 −278.45 ± 0.17 −285.13 ± 0.04 19.21 ± 0.16 13.0 ± 0.3 
675 0.3 0.1 1 T 4.6 0.199 94 746 −276.56 ± 0.17 −285.78 ± 0.24 18.64 ± 0.16 12.3 ± 0.4 
250 0.1 0.1 1 F 5.9 0.041 178 614 −279.09 ± 0.28 −285.69 ± 0.04 19.98 ± 0.28 13.4 ± 0.7 
675 0.1 0.1 1 F 23.7 0.035 562 784 −278.88 ± 0.17 −285.16 ± 0.10 19.44 ± 0.17 12.9 ± 0.4 
675 0.1 0.1 1 T 6.9 0.106 189 995 −278.34 ± 0.17 −285.27 ± 0.06 19.93 ± 0.16 13.2 ± 0.4 
250 0.01 0.1 1 F 11.7 0.026 294 202 −280.78 ± 0.29 −285.67 ± 0.02 20.97 ± 0.30 14.4 ± 0.7 
675 0.01 0.1 1 F 39.3 0.025 825 487 −280.62 ± 0.18 −285.38 ± 0.02 21.04 ± 0.17 13.6 ± 0.4 
675 0.01 0.1 1 T 28.1 0.027 754 351 −280.76 ± 0.18 −285.23 ± 0.02 20.96 ± 0.16 14.0 ± 0.4 
250 0.001 0.1 1 F 39.0 0.010 823 090 −281.78 ± 0.30 −285.93 ± 0.01 21.62 ± 0.28 14.6 ± 0.7 
675 0.001 0.1 1 F 109.5 0.010 2116 032 −282.01 ± 0.18 −285.29 ± 0.02 21.99 ± 0.17 14.9 ± 0.4 
675 0.001 0.1 1 T 126.3 0.008 2756 262 −280.92 ± 0.19 −285.52 ± 0.09 20.17 ± 0.17 15.2 ± 0.4 

Figur e 3. Mar ginalized one- and two-dimensional posterior distributions for 
two extreme values of the efficiency on MULTINEST . In red, a low value, which 
is therefore more likely to have fully sampled the tails of the distribution, 
and in the yellow dotted contours, a high value. We can see how the high 
efficiency does not fully sample the tails of the posterior distributions, and 
therefore gets narrower contours. 
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Figure 4. MULTINEST calculations of the evidence for different values of the 
ef ficiency. The MULTINEST v alues are plotted as red points, the MULTINEST 
INS evidence estimates in orange, and the grey band shows the 68 per cent 
confidence level of the best POLYCHORD estimate. 
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ts dependence on hyperparameters to that of the main evidence 
alculation. This INS evidence estimate is very stable amongst all 
f our MULTINEST runs, al w ays around the value of log Z ∼ −285,
lmost independently of the hyperparamter settings. Fig. 4 shows 
his graphically, with the INS estimates of the evidence in orange. 
hey are significantly and consistently lower than the best estimate 
rom POLYCHORD . While this might suggest convergence to the ‘truth’,
his is belied by results from the Gaussian toy model of Fig. 5 , in
hich the MULTINEST INS evidence estimates are also systematically 
iased low. Our results thus appear to contradict the findings of
13, which showed that in some toy models INS was more accurate

han the baseline evidence estimate of MULTINEST . Note that in
ddition to being lower than the truth, the INS evidence reported also
ignificantly underestimates its sampling error, i.e. the uncertainty 
aused by imperfect sampling. 
MNRAS 521, 1184–1199 (2023) 
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M

Figure 5. MULTINEST and POLYCHORD estimations of the evidence for different values of the efficiency and n repeats parameters, for a Gaussian posterior 
distribution with known truth (dashed line). In both cases, we use nlive = 250 and tole ranc e = 0 . 1. For each setting, we show 10 different sampling runs, 
which we displace along the x -axis for visualization purposes. The figure shows how POLYCHORD gets more reliable evidence estimates even for low values of 
n repeats , where as MULTINEST gets biased estimates if the efficiency is not low enough. The yellow points include error bars, even though they are too small to 
be seen. 

Figure 6. Normalized sample weight (weight divided by maximum weight) versus number of samples for different values of the tolerance. This plots serves as 
a convergence diagnostic; only the plot on the right has converged in this case. All plots use POLYCHORD with n live = 250 and n repeats = 60. 
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.3 Polychord 

ike MULTINEST , POLYCHORD has a number of hyperparameters which
an be adjusted to balance running time and the accuracy of estimates
or posterior distributions and summary statistics. The result of
arying them is shown in Table 2 . 

(i) n l ive , the number of live points. As with MULTINEST , more live
oints lead to an increase in the accuracy of the posterior distribution,
nd to a decrease in the error estimate for the evidence. Also, as was
he case for MULTINEST , POLYCHORD run-times scale linearly with the
umber of live points. 
(ii) tole ranc e , the stopping criterion. It is defined in the same way

or Section 4.2 , and the same conclusions apply: a lower tolerance
NRAS 521, 1184–1199 (2023) 
oes not have a significant impact on either runtime nor summary
tatistic accuracy. In fact, the tolerance seems to have even less of
n impact on runtime for POLYCHORD than for MULTINEST . As before,
e recommend using the weight-versus-step-number convergence
iagnostic illustrated in the right-hand panel of Fig. 6 to select a
easonable tolerance for a chain, and note that a POLYCHORD chain
an be resumed to reach a lower tolerance. 

(iii) n repeats , the number of repeats. This hyperparameter is spe-
ific to POLYCHORD ’s slice-sampling algorithm described in Sec-
ion 2.4 . Recall that at every step, POLYCHORD repeats the process
f creating a slice through parameter space in a random direction, in
hich it finds a new potential live point. The value of n repeats dictates
ow many times this process is repeated for each sample selection. If
his number is too low, the new live point will be correlated with the

art/stac2786_f5.eps
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Table 2. Comparison of time required for POLYCHORD with different settings. All runs use the DES Y1 3 × 2 pt likelihood and a wCDM cosmology, with 128 
cores. The settings OM P thr eads = 1 corresponds to 128 MPI threads, while OM P thr eads = 4 corresponds to 32 MPI threads. 

n live Tol n repeats OMP Time (h) Acceptance L Evals log Z D KL BMD 

50 0.1 60 1 21.3 0.003 473 705 −282.22 ± 0.65 22.26 ± 0.64 12.1 ± 1.3 
250 0.3 60 1 51.7 0.006 1171 509 −282.01 ± 0.29 21.85 ± 0.27 14.3 ± 0.7 
250 0.1 15 1 11.9 0.022 342 878 −281.47 ± 0.32 21.51 ± 0.30 14.3 ± 0.7 
250 0.1 30 1 23.7 0.011 675 895 −282.64 ± 0.29 22.35 ± 0.27 15.6 ± 0.7 
250 0.1 60 1 46.2 0.006 1319 862 −282.51 ± 0.30 22.34 ± 0.26 15.2 ± 0.7 
250 0.1 60 4 75.5 0.007 1016 058 −282.48 ± 0.29 22.26 ± 0.29 14.3 ± 0.7 
250 0.1 120 1 87.4 0.003 2597 251 −282.87 ± 0.30 22.30 ± 0.32 14.9 ± 0.8 
250 0.03 60 1 60.9 0.006 1379 582 −282.46 ± 0.30 22.21 ± 0.30 14.4 ± 0.7 
250 0.01 60 1 62.4 0.006 1504 244 −282.72 ± 0.30 22.72 ± 0.34 13.5 ± 0.6 
250 0.001 60 1 68.3 0.005 1670 676 −282.09 ± 0.30 22.12 ± 0.29 14.2 ± 0.6 
675 0.1 15 1 22.5 0.026 733 506 −281.54 ± 0.18 21.38 ± 0.18 14.1 ± 0.4 
675 0.1 30 1 47.5 0.014 1458 873 −282.52 ± 0.19 22.32 ± 0.19 14.6 ± 0.4 
675 0.1 60 1 117.9 0.007 2863 702 −282.09 ± 0.18 21.95 ± 0.17 14.4 ± 0.5 
675 0.01 60 1 131.2 0.007 3289 309 −282.14 ± 0.18 21.79 ± 0.17 14.5 ± 0.4 
675 0.1 120 1 191.4 0.003 5795 180 −282.34 ± 0.18 22.32 ± 0.17 14.3 ± 0.4 

Figure 7. POLYCHORD estimations of the evidence for different values of 
n repeats . The different values are plotted as red points, and the blue band 
shows the 68 per cent confidence level of the best POLYCHORD estimate. 
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revious sample in the chain. Such correlations between live points 
ould bias the posterior distribution and summary statistics. In this 
ense, a higher value of n repeats is somewhat akin to increasing the 
egree of ‘thinning’ of a standard MCMC chain, with the result that
ore likelihood e v aluations are performed but then discarded, in the

nterest of reducing systematic uncertainty. 
he official POLYCHORD paper (Handley et al. 2015b ) recommends 
sing at least n repeats ∼ 2 D, where D is the number of dimensions
eing sampled. In this work, we tested values that are approximately 
 0.5, 1, 2, 4 } times the number of dimensions. Fig. 7 shows the
orresponding values of the summary statistics. We see that a value 
 repeats = 15 obtains biased estimates of the evidence for the full

ikelihood, but values as low as n repeats = 30 (for D = 27) already
btain valid results. The main conclusion is that, as expected, while 
 poor choice for n repeats can lead to biased results, the accuracy 
f estimates for evidence and other summary statistics are not 
early as sensitive to n repeats as they are to MULTINEST ’s efficiency 
yperparameter. 
(iv) OMP threads . As with MULTINEST , we obtain the best results
hen we use all our cores for MPI parallelization, up to the number
f cores matching the number of live points. 

.4 Fast-likelihood tests of sampler variance 

hile the studies abo v e giv e us an indication of how changing the
alues of POLYCHORD and MULTINEST hyperparameters affect runtime 
nd the accuracy of summary statistic estimates, they do not tell us
uch about noise in those relations due to the particular realization

f random points sampled in a given chain run. In order to assess
his sampler variance, we run a large number of independent chains,
hich long runtimes make infeasible with the full DES likelihood 

tudied abo v e. Thus, to more robustly assess convergence properties
nd characterize how sampler variance changes across settings, 
e use the approximate fast likelihood to generate multiple chain 

ealizations at each set of sampler hyperparameters. 
We use a set of three ‘high-quality’ POLYCHORD chains with 

 live = 1000, n repeats = 120, and tol = 0.001 to approximate 
he truth and compare with the performance of chains run with
ower quality settings. Unless otherwise stated, we ran 20 inde- 
endent chains for each combination of settings. While the pre- 
ious sections illustrated the different impacts of the eff i ci ency 

nd n repeats parameters (as the unique hyperparameters for each 
ampler), we found that varying n live had the most pronounced 
mpact on posterior and evidence estimates for both MULTINEST and 
OLYCHORD . This aligns with the recommendations of Higson et al.
 2019 ), who note that increasing n live is the most computationally 
fficient way to increase accuracy, as it decreases both stochastic 
nd systematic contributions to the uncertainty. We therefore mostly 
how results in this section with respect to varying n live . Unless
therwise stated, MULTINEST chains were run with eff i ci ency = 

.1 and tole ranc e = 0.1, and POLYCHORD chains with n repeats = 30 
nd tole ranc e = 0.01. 

Fig. 8 shows the marginalized 1D constraints on �m 

and log Z
or multiple independent MULTINEST (red) and POLYCHORD (blue) 
hains with different numbers of live points. The average of the
igh-quality POLYCHORD chains are shown in grey. Constraints on �m 

re consistent across the different of n live values for both samplers. 
s expected, based on results in previous sections, we find the
MNRAS 521, 1184–1199 (2023) 
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Figur e 8. Left : 1D mar ginalized mean and 68 per cent credible intervals of �m 

for both MULTINEST (red) and POLYCHORD (blue) run using the f ast lik elihood 
at dif ferent v alues of nli ve ( { 100, 250, 675 } ), while other hyperparameters are held constant at the default values listed in Section 4.4 . 20 chains are run at 
each setting of n live , corresponding to the clusters of jittered points. The mean and standard error of chains at each setting are indicated by stars at the centre of 
each cluster. The horizontal lines correspond to the average mean and 1 σ credible intervals of three high-quality POLYCHORD runs ( n live = 1000, n repeats = 120, 
tole ranc e = 10 −3 ). There is good agreement between POLYCHORD and MULTINEST on the mean and small discrepancies between the credible intervals. MULTINEST 
credible intervals are consistently smaller than those reported by POLYCHORD . Fig. 9 shows this in greater detail for S 8 . Right : Estimates of the Bayesian evidence 
(and its sampler-reported uncertainty) for the same chains as the left-hand plot. The shaded band shows ±1 σ uncertainty on the mean evidence of the three 
high-quality POLYCHORD chains. The POLYCHORD values are consistent at all settings, including at the lowest settings, with each individual run consistent with 
the high-resolution ‘truth’ within its reported uncertainty. In contrast, MULTINEST evidence estimates display a systematic bias that is greater for small n live , and 
the reported uncertainty for individual chains is insufficient to make runs consistent across dif ferent v alues of n live . The reported uncertainties in log Z for each 
indi vidual chain (gi ven by the error bars) is consistent with the sampling variance across chain means for POLYCHORD , but is greatly o v erestimated for MULTINEST 
where the means across chains are much more tightly clustered. This is shown more directly in Fig. 10 . 

Figure 9. Histogram of the half-width of 68 per cent credible intervals 
for S 8 for many chains using the fast likelihood for both POLYCHORD (top) 
and MULTINEST (bottom). MULTINEST systematically reports smaller credible 
intervals than POLYCHORD for the range of settings tested, here shown with 
colours indicating different numbers of live points. The red lines indicate the 
credible intervals for the three high-quality POLYCHORD chains. 
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m 

credible intervals reported by MULTINEST to be consistently
10 per cent smaller than those reported by POLYCHORD . The same

s true to a lesser extent for S 8 . This is shown in Fig. 9 , which
epicts the estimated uncertainty in S 8 inferred from POLYCHORD (top)
nd MULTINEST (bottom) chains run with different n live settings. The
NRAS 521, 1184–1199 (2023) 
ncertainty is represented by the half-width of the 68 per cent credible
nterval ( σ 68 ( S 8 )), a quantity comparable to the standard deviation but

ore directly related to the marginalized quantities we are interested
n for Bayesian cosmological inference and less sensitive to the
ails of the posterior. As was noted in Section 4.2 , underestimation
f credible intervals is expected when the MULTINEST eff i ci ency 

arameter is too large. We see here that having low n live can also
otentially cause parameter constraint error bars to be slightly 
nderestimated. 
Estimates of both the mean and dispersion of the Bayesian

 vidence dif fer significantly between the samplers. The v alues of
og Z reported by POLYCHORD are consistent across the range of
ettings we tested, indicating minimal systematic bias in the estimates
ue to hyperparameter settings. In contrast, the reported MULTINEST
vidence changes significantly as a function of n live , and to a degree
uch larger than the algorithm’s reported uncertainty. This can also

e seen in Figs 4 and 5 , which show results for different likelihoods.
s we increase n live in Fig. 8 , the MULTINEST evidence estimate shifts

owards that reported by PolyChord . This behaviour suggests
hat the MultiNest settings tested here are insufficient to obtain
ccurate pieces of evidence. 

In addition to being robust to systematic shifts in the reported
vidence, the sample variance in evidence estimates between differ-
nt POLYCHORD chains with the same settings shows good agreement
ith the sampler variance uncertainty reported from each individual

hain. Fig. 10 shows the distribution of reported evidence values
cross the 20 chains at each value of n live . The dashed Gaussian
urves are drawn according to 

 

(〈 log Z〉 c , 〈 σ ( log Z) 〉 2 c 
)
, (16) 

here the averages are computed over each ensemble of 20 chains.
or POLYCHORD , these closely match the empirical distribution of

art/stac2786_f8.eps
art/stac2786_f9.eps


Robust sampling for the dark energy survey 1195 

Figure 10. Histogram of reported log Z for many POLYCHORD (top) and 
MULTINEST (bottom) chains run with different numbers of live points. The solid 
curves are Gaussian fits to the distribution in reported log Z across different 
chain realizations. The dashed Gaussian curves show the expected distribution 
based on the mean log Z and mean claimed uncertainty across chains. The 
relatively close agreement between solid and dashed curves indicates that the 
reported uncertainty in POLYCHORD chains is fairly representative of the true 
sampling error. MULTINEST reports uncertainties considerably larger than the 
observed sampling variance. 
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Figure 11. Standard deviation of parameter means across chains relative to 
the average within-chain parameter standard deviation. We require that the 
contribution to mean parameter shifts from sampler variance is small for 
settings used to run chains testing the impact of unmodelled systematics. The 
POLYCHORD publication settings can be found in Table 3 . 
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eported pieces of evidence, indicated by the solid Gaussian curves 
hich are fits to the histogram. In contrast, the reported statistical
ncertainty in MULTINEST pieces of evidence is much greater than the 
bserved scatter across chain realizations. 
The uncertainty in log Z given by POLYCHORD is more solidly

rounded than that of MULTINEST , having been derived analytically 
y Keeton ( 2011 ), whereas the MULTINEST evidence estimates use the
elative entropy and are based on information theoretic arguments. 
ur numerical results affirm the greater reliability of evidence errors 

rom POLYCHORD . 
Despite MULTINEST o v erestimating the statistical uncertainty in 

og Z , the reported pieces of evidence are still inconsistent across
yperparameter settings, due to even greater systematic shifts as 
 live is increased. Ho we ver, none of the MULTINEST settings tested 
esulted in evidence values approaching the stable POLYCHORD 
stimates. 

We can also use this ensemble of chains to estimate and limit the
ontribution of sampler biases to the systematic error budget of the 
ES Y3 analysis. The DES Y3 analysis requires that unmodelled 

ystematics shift the maximum posterior point of key cosmological 
arameters by not more than 0.3 σ in the 2D plane of �m 

and S 8 (c.f.
rause et al. 2021 ). Here, we adopt a somewhat simplified but none

he less strict criterion that the typical variation of parameter means 
cross chain realizations is far below their statistical uncertainty. We 
hus require 

c 

[
θ̄
]

< 0 . 1 〈 σs [ θ ] 〉 c , (17) 

here the left-hand side is the standard deviation of the parameter 
ean across chain realizations and the right-hand side is a threshold, 

et equal to a fraction of the average of the standard deviations of
he parameter computed from the individual chains. Note that this 
equirement is closely related to requiring the Gelman–Rubin statistic 
efined in Section 2.2 to be below a given threshold. 
We are primarily interested in shifts on �m 

and S 8 , and so require
hat any recommended sampler settings satisfy equation ( 17 ) for
hose parameters. Fig. 11 confirms this requirement is fulfilled for 
 live > 200 with the fiducial values of the other hyperparameters. 

 C O N C L U S I O N S  

n this paper, we have studied the performance of two commonly used
ools used to sample posteriors for cosmological analysis, MULTINEST 
nd POLYCHORD , as a function of their hyperparameter settings. Our
nalysis had two parts: testing multiple sampler settings on the DES
1 3 × 2 pt analysis to calibrate the time needed to get unbiased
osterior distributions in the Y3 analysis, and also using a faster
pproximate version of the likelihood to characterize the amount of 
ampler variance and further validate those findings. 

We found that these Nested Sampling algorithms require careful 
uning of their hyperparameters, especially n live and MULTINEST ’s el- 
ipsoidal sampling efficienc y. P articularly for MULTINEST , the wrong
ettings can lead to a poor sampling of the tails of the posterior distri-
ution, and to a biased evidence estimation. Furthermore, the superior 
peed of the MULTINEST algorithm compared with POLYCHORD ’s slice 
ampling method is not present when sufficiently accurate sampling 
yperparameters are used. POLYCHORD produces unbiased evidence 
stimates with reasonable settings, as well as contours that are in good
greement with those we find using Metropolis–Hastings. Therefore, 
ur findings lead us to prefer POLYCHORD o v er MULTINEST . 
The studies described in this paper were used to guide recom-
endations for sampler settings used for the DES Y3 cosmology 

nalysis (Krause et al. 2021 ) as well as some Y1 follow-up pa-
ers (Chen et al. 2021 ; Muir et al. 2021 ). These recommendations
re summarized in Table 3 for three use-cases. We recommend 
hat MULTINEST only be used for preliminary testing and pipeline 
ebugging. While it is relatively fast, we found the (fairly standard)
ettings described in Case III of Table 3 to produce marginalized pos-
MNRAS 521, 1184–1199 (2023) 
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Table 3. Recommended sampler settings based on this work, used for the 
DES Y3 cosmology analysis. Approximate wall-time estimates are given for 
a wCDM DES Y1 3 × 2 chain run on 128 cores. 

Case I: Publication quality 
(one-time runs) 

Sampler POLYCHORD 

n live 500 
Tol 0.01 
n repeats 60 
fast fraction 0.01 
Time to run: ∼4 d 

Case II: Testing 
(noisy contours) 

Sampler POLYCHORD 

n live 250 
Tol 0.1 
n repeats 30 
fast fraction 0.0 
Time to run: ∼1 d 

Case III: Very preliminary results only 
(unreliable pieces of evidence, �m 

and σ 8 posterior 
widths underestimated by ∼10 per cent) 

Sampler MULTINEST 

n live 250 
Efficiency 0.3 
Tol 0.1 

constant efficiency 
F 

Time to run: ∼6 h 
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erior widths for �m 

and σ 8 that are systematically underestimated
y about 10 per cent and unreliable pieces of evidence. For most
re-publication testing, we recommend using the fast POLYCHORD
ettings described in Case II. Those settings will produce unbiased
osteriors and e vidence v alues, though the resulting contours for
arginalized posteriors will be somewhat noisy. Case I in Table 3

resents our recommendation for publication-quality results, with
n increased number of live points extending the run-time but
esulting in reduced noise in both posterior contours and evidence 
stimates. 

While this study was performed specifically for DES Y3, our
ndings should be useful as a guide for cosmological analyses of
imilar dimensionality. Though our results were broadly consistent
cross three different likelihoods: the full DES Y1 likelihood, a fast
pproximate DES Y1 likelihood, and a 27D Gaussian toy model, the
xact settings of Table 3 will likely need to be adjusted for problems
here the number of dimensions or the shape of the posterior
istribution change significantly. We found that good posterior and
vidence estimates can be obtained with relatively low settings of
 repeats ∼D with POLYCHORD , but that MULTINEST pieces of evidence
ere systematically biased except at extreme values of eff i ci ency ,

nd MULTINEST missed tail regions of the posterior such that reported
redible intervals were consistently ∼ 10 per cent smaller than those
eported by POLYCHORD . We found that increasing n live had the
reatest impact in improving accuracy of the summary statistics of
nterest. 

Sampling algorithms are a key component of modern cosmological
nalyses and it is important to characterize their impacts on inference.
s demonstrated in this work, poor choice of sampler and/or hyperpa-

ameter settings can lead to biased estimates of parameter constraints
NRAS 521, 1184–1199 (2023) 
nd other key summary statistics, but it is possible to achieve suffi-
iently unbiased estimates in realistic use cases. Through this work,
e moti v ate the sampling methods used for the DES Y3 analyses,

nd note that the fine margins demanded by precision cosmology
ill increasingly require heightened scrutiny of sampling tools. 
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PPENDI X  A :  OTH ER  SAMPLERS  
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odes, EMCEE and ZEUS , in terms of the stability of their posterior
stimates. As already noted, EMCEE showed very poor convergence 
ith the full DES likelihood and ZEUS was not integrated into the
OSMOSIS framework at the time of testing, a requirement for its use
n the fiducial DES analysis. Furthermore, neither of these samplers 
rovide an estimate of the Bayesian Evidence, a key summary 
tatistic of interest for the DES Y3 analysis. We therefore use the
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ihood distribution, and compare the stability of posterior estimates. 
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able A1. Comparison between POLYCHORD , EMCEE , and ZEUS . All three
amplers are run with settings that generate around 1.5 × 10 6 likelihood
 v aluations, and therefore are expected to take similar amounts of time
n realistic cases, where likelihood e v aluations are the slowest part of the
alculation. Likelihood e v aluations and acceptance are av eraged o v er each of
he 10 chains. The last column is averaged over each of the 27 parameters. 

ampler 〈 L Evals 〉 〈 Acceptance 〉 σc [ ̄p ] / 〈 σp 〉 c 
OLYCHORD 1749 508 0.0074 0.06 
MCEE 1500 000 0.26 0.06 
EUS 1666 525 0.18 0.01 

ach chain. Defining similar settings across different samplers can
e challenging; we use the Case II settings showed in Table 3 for
OLYCHORD , and tune the settings in the other samplers to obtain
 similar number of likelihood e v aluations, of order 5 × 10 5 . Our
esults are shown in Table A1 . 

We find that for similar numbers of likelihood e v aluations, we
et many more samples for EMCEE and ZEUS as shown by their
igher acceptance rates. This is expected for MCMC samplers when
ompared to nested samplers. We also see how, for a similar number
f likelihood e v aluations, ZEUS seems to obtain more stable posterior
eans than the other two samplers, which shows the great potential

f ZEUS for future cosmological analyses. It is important, ho we ver, to
ighlight once more the two main advantages of Nested Sampling,
espite its low acceptance rate: It provides us with an estimate of
he Bayesian Evidence, needed for Bayesian model comparison
nd tension quantification; and it can sample multimodal spaces,
omething with which MCMC samplers tend to struggle. Therefore,
t is key to select the sampling method that better suits the problem at
and, and if possible to use multiple methods to ensure robustness. 

PPENDIX  B:  EF FICIENCY  RU LE  O F  T H U M B  

rom the results of this paper, as well as our understanding of
llipsoidal nested sampling, we can set up an approximately guideline
o correctly choose an efficiency that will not lead to biased sampling.

We can estimate the enlargement of the ellipse in each direction
rom the efficiency and the number of dimensions N d , as 

nlargement = eff −1 /N d (B1) 

From Mukherjee et al. ( 2006a ) and our work, we estimate that we
eed an enlargement of approximately � 1.5. Therefore, the required
fficiency is approximately 

ff ∼ 1 . 5 −N d . (B2) 

his shows how poorly the required efficiency scales with an increase
n dimensionality. In the case of DES, the required efficiency is e ∼
0 −5 , which is consistent with the findings of Fig. 4 , showing that an
fficiency of 10 −3 is not enough to reach the correct evidence values.

As a side note, we can also estimate the acceptance of MULTINEST
s 

cc = eff BMD / N d , (B3) 

here BMD is the Bayesian Model Dimensionality. 
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