Weak Lensing of Type Ia Supernovae from the Dark Energy Survey

(DES Collaboration)

Author affiliations are shown in Appendix A

Accepted 2020 June 19. Received 2020 June 16; in original form 2020 March 25

ABSTRACT

We consider the effects of weak gravitational lensing on observations of 196 spectroscopically confirmed Type Ia Supernovae (SNe Ia) from years 1 to 3 of the Dark Energy Survey (DES). We simultaneously measure both the angular correlation function and the non-Gaussian skewness caused by weak lensing. This approach has the advantage of being insensitive to the intrinsic dispersion of SNe Ia magnitudes. We model the amplitude of both effects as a function of σ_8, and find $\sigma_8 = 1.2^{+0.9}_{-0.8}$. We also apply our method to a subsample of 488 SNe from the Joint Light-curve Analysis (JLA) (chosen to match the redshift range we use for this work), and find $\sigma_8 = 0.8^{+1.1}_{-0.7}$. The comparable uncertainty in σ_8 between DES-SN and the larger number of SNe from JLA highlights the benefits of homogeneity of the DES-SN sample, and improvements in the calibration and data analysis.

Key words: cosmology: observations – cosmology: cosmological parameters – cosmology: large scale structure

1 INTRODUCTION

Weak gravitational lensing (WL) is a key technique in observational cosmology (e.g., Wittman et al. 2000; Schrabback et al. 2010; Heymans et al. 2012; Hildebrandt et al. 2017), and also a key target of the Dark Energy Survey (DES) (The Dark Energy Survey Collaboration 2005; Abbott et al. 2016; Becker et al. 2016; Omori et al. 2018; Abbott et al. 2018; Baxter et al. 2019). Since WL is sensitive to space-like perturbations to the background cosmological metric, WL observations are a crucial cosmological test of theories of modified gravity (e.g., Schimd et al. 2005, 2007; Tsujikawa & Tatekawa 2008; Schmidt 2008).

The most established method of WL is the measurement of coherent distortions in the shapes of galaxies, particularly the shear (e.g., Joudaki et al. 2017; Zuntz et al. 2018; Troxel et al. 2018). WL has also been detected in observations of

* email: edward.macaulay@ung.edu

© 2020 The Authors

This document was prepared by DES survey using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359.
WL is also expected to affect the magnitudes of standard candles. Magnification due to WL has been detected in quasars (e.g., Scranton et al. 2005; Bauer et al. 2011), and also studied with Type Ia Supernovae (SNe Ia) (e.g., Wambsganss et al. 1997; Valageas 2000; Wang & Mukherjee 2004; Wang 2005; Dodelson & Vallinotto 2006). We note that weak gravitational lensing is also expected to affect gravitational-wave standard sirens, e.g. Shang & Haiman (2011), Liao et al. (2017).

Over-dense lines of sight enhance the focus of light rays, causing a magnification in the observed brightness, whereas under-dense lines of sight lead to a demagnification. Smith et al. (2014) estimated the expected lensing magnification of SNe in the Joint Light-curve Analysis (JLA) SN sample (Betoule et al. 2014). The expected lensing magnification for each SN was calculated by integrating the line-of-sight densities of galaxies observed by the Sloan Digital Sky Survey (SDSS) Baryon Oscillation Spectroscopic Survey (BOSS); (Dawson et al. 2013). A correlation between the magnitude residuals and the expected lensing signal was found at the 1.7σ confidence level.

Since most lines of sight in the Universe are underdense, and only rare lines of sight are over-dense, WL causes a characteristic skewness in the distribution of magnitude residuals of standard candles. The amount of lensing skewness depends on the contrast between voids and overdensities, and as such depends on Ωm and σ8.

In order to provide fast calculations of one-dimensional lensing statistics, Kainulainen & Marra (2009) developed the turboGL code, which was developed further in Kainulainen & Marra (2011). These lensing statistics were the basis for a series of papers developing a method to estimate the likelihood of the lensing distribution of a supernova sample (MeMo, ‘the Method of the Moments’); (Marra et al. 2013; Quartin et al. 2014).

Instead of enforcing a fiducial distribution for the SN magnitude residuals, MeMo is based on empirical fitting functions for the first, second, third, and fourth moments of the residuals of SNe distance measurements, which have been calibrated to N-body simulations as a function of redshift and parameters Ωm, σ8, and the intrinsic dispersion in SN magnitudes, σint. In Castro & Quartin (2014), MeMo was applied to the JLA sample, finding σ8 = 0.84^{+0.28}_{-0.65} (at the one-standard deviation confidence level).

The effect of WL on SN magnitudes shares some similarities with the effects of Peculiar Velocities (PV), although there are also some significant contrasts (Gordon et al. 2007; Neill et al. 2007; Davis et al. 2011; Castro et al. 2016; Garcia et al. 2019). Both effects are sensitive to cosmological density fluctuations. However, PVs are sensitive to large scale (∼ Gpc) density fluctuations, whereas WL is most sensitive to far smaller (< Mpc) scales.

Whereas WL directly affects the observed magnitudes, PVs mainly affect the redshift; the apparent effect on the magnitude residual is due to comparing the theoretical magnitude at the PV-affected redshift, instead of the ‘true’ cosmological redshift.

While both effects are similar in magnitude at z ∼ 0.2, PVs dominate at lower redshifts, while WL becomes dominant at higher redshifts. Over the redshift range 0.1 < z < 0.3, the two effects are similar in magnitude (Macaulay et al. 2017).

Since many SNe in the JLA catalogue are within this redshift range, in Macaulay et al. (2017) we built on the WL MeMo method to include the effects of PVs on the moments of magnitude residuals. Modelling both PVs and WL allows for a simultaneous test of the consistency of Newtonian and lensing metric perturbations, which is a key prediction of the ΛCDM model (e.g., Hu & Jain 2004; Knox et al. 2006; Kunz & Sapone 2007; Zhang et al. 2007; Bertschinger & Zukin 2008; Simpson et al. 2013).

However, in this paper, we consider only the effects of WL, since the effect of PVs is sub-dominant, due to the absence of low redshift (z < 0.2) SNe in the DES-SN sample.

In addition to the effect on the moments of residuals, WL also causes correlations in the magnitudes. Scovacricchi et al. (2017) modelled the signal to noise ratio of the lensing correlation function, and forecast the signal-to-noise ratio of a WL detection by LSST. Scovacricchi et al. (2017) showed that for a SN survey the size of DES-SN (196 SN), the effects of WL on the correlation function would not be detectable. Nevertheless, measurements of the correlation function (however noisy), may still place upper limits on the effect of WL on the magnitude residuals.

Since the correlation function is (in principle) independent of the skewness, we can combine both observations. However, we may expect covariance between the two different types of measurements, since both observations are drawn from the same sample of data. In order to account for any covariance, we build on the bootstrap resampling method used in Macaulay et al. (2017) to allow for two different types of observable. We describe this method further, as well as the relevant theory and details of the observations, in Section 2. We discuss our results and conclusions in Section 3.

2 DATA & METHODOLOGY

We study 196 new spectroscopically confirmed Type Ia SNe from the Dark Energy Survey (DES). The observation and reduction of the sample is described in a series of papers in Brout et al. (2019a,b); D’Andrea et al. (2018); Lasker et al. (2019); Kessler et al. (2019). The cosmological analysis of the sample is described in Abbott et al. (2019), who found a value of Ωm = 0.331 ±0.038 for a flat ΛCDM cosmology. This is the fiducial cosmology we assume throughout this work.

We illustrate the angular coordinates of the SNe in Figure 1.

The SNe are located in the four DES SNe fields, chosen to overlap with other well-studied fields: ‘S’ (SDSS Stripe 82), ‘X’ (XMM-LSS), ‘C’ (Chandra Deep Field South), ‘E’ (Elais-S1).

We also compare our results from DES-SN to SN from the JLA sample (Betoule et al. 2014). The full JLA sample consists of 740 SNe spanning a redshift range up to z = 1.4.
We consider only a sub-sample of 488 in the redshift range of our lensing model, 0.2 < z < 0.5.

For both DES-SN and JLA, we consider the distance-redshift relation fixed (using the best-fit cosmology for each survey), since the ~10% uncertainty in the distance-redshift relation is small compared to the ~100% uncertainty in the lensing signal.

We consider two different effects caused by WL on SN magnitudes: the correlation in the residuals (due to the fact that the lensing signal will be similar for close lines of sight), and the skewness (caused by the asymmetry of over and under-densities of dark matter). We anticipate that with the lensing signal.

Figure 1. The angular coordinates of the four DES supernova fields. Due to the large angular separations between fields, we do not consider correlations between different fields. The points have been colour-coded by redshift; blue for lowest z, and red for highest z.

2.2 Correlations

The correlation function of magnitude residuals due to weak lensing is given by

\[\langle \Delta \mu_i, \Delta \mu_j \rangle = \left(\frac{5}{\ln 10} \right)^2 \left(\frac{1}{2\pi} \right) \int_0^\infty \left(\int_0^\infty J_0(\Delta) \rho(\Theta) d\Theta \right) d\Delta, \]

where \(J_0 \) is the Bessel function of the zeroth-kind (Bartelmann & Schneider 2001), \(P_\delta(\ell) \) is the angular power spectrum of the lensing convergence, \(\kappa \), which is related to the matter power spectrum \(P_m \) by

\[P_\delta(\ell) = \frac{9 H_0^2 \Omega_m^2}{4 \ell^2} \int_0^\infty d\chi \frac{W^2(\chi)}{a^2(\chi)} P_m \left(\frac{\ell}{\chi}, \chi \right), \]

where \(W \) is the redshift distribution of the sources, and \(a \) is the scale factor, both as a function of comoving distance, \(x \), \(H_0 \) is the Hubble parameter, \(\Omega_m \) is the total matter density, and \(c \) is the speed of light. We calculate \(P_m(\ell) \) with CAMB-Sources (Challinor & Lewis 2011), based on the redshift distribution of the SNe. In order to quantify the SNe redshift distribution, we use Kernel Density Estimation (KDE) based on the redshifts of the SNe.

In this work, we focus on small scale (\(\Theta < 30 \) arcmin) angular correlations. This is because the strongest correlation is expected at \(\Theta < 10 \) arcmin scales (as can be seen in Figure 3).

2.3 Combined Observations Likelihood

In this paper, we simultaneously fit for the correlation and skewness caused by gravitational lensing, by minimising the \(\chi^2 \) given by

\[\chi^2 = \Delta \mu^T C^{-1} \Delta \mu, \]

assuming that the intrinsic dispersion is Gaussian – the third moment depends only on the cosmological parameters.

The functions are based on the turboGL code, and tested against simulation results by Hilbert et al. (2008) and Takahashi et al. (2011). This approach has the advantage of computational efficiency in evaluating the moments, however, it is limited to the range of parameters used to evaluate the moments, and the cosmological model used in the simulations (flat ΛCDM).

Castro et al. (2018) used simulations to study the effect of baryonic physics on 1-point lensing statistics, finding that the effect of baryons could double the probability of highly lensed objects.

In Castro & Quartin (2014), \(C_i \) was calculated analytically based on observations of higher moments of the SN residuals. However, in Macaulay et al. (2017), we found that the necessity of the analytical estimation of the data covariance matrix on measurements of high moments (up to the 8th) could lead to biases in the estimation of \(C_i \). Instead, we adopted a bootstrap resampling method, based only on the directly observed moments (i.e., up to the fourth). This bootstrap resampling method naturally allows for the covariance to be estimated between different types of observables, which is the approach we take here to include covariance between observations of the correlation function and the skewness of the SN.
where (as with MeMo), $\Delta \mu$ is the difference between theory and observation vectors. We note that since our estimate of the data covariance matrix does not depend on σ_b, minimising this χ^2 is equivalent to likelihood maximisation (for a fixed data covariance matrix). The vector μ is constructed by concatenating the vectors for the two different types of observations:

$$\mu = [\mu_{ij}; \mu_3].$$

(6)

where μ_{ij} is the correlation vector (as a function of angular separation), and μ_3 is the third moment vector (as a function of redshift). We use four bins of angular separation, and five redshift bins.

We choose the redshift binning to match the redshift bins in Abbott et al. (2019) (within the redshift range used here). We have verified that the method is stable when changing the number of redshift or angular bins. This stability is aided by the bootstrap-resampling method used to estimate the covariance matrix: increasing the number of bins naturally increases the correlations in the off-diagonal elements of the covariance matrix.

We do not include the second and fourth moments, since the unique lensing skewness is captured by the third moment, and the even moments are sensitive to the model of the SN intrinsic dispersion. The implicit assumption of this choice is that the intrinsic dispersion of the magnitudes has zero skewness. We use emcee (Foreman-Mackey et al. 2013) to probe our likelihood.

2.4 Covariance Matrix

In a similar manner to Macaulay et al. (2017), we use a bootstrap re-sampling method to estimate the data covariance matrix. To estimate C, we randomly sample (with replacement) from the genuine sample of SNe Ia. For each random sample, we calculate a combined data vector, consisting of the correlation and skewness vectors. We repeat this process of sampling to generate an ensemble of measurements, from which we can directly calculate an estimate of the covariance matrix. The advantage of this approach is that we can naturally estimate the covariance between the two different types of observable (the correlation and the skewness). The data covariance matrix is illustrated in Figure 2.

2.5 Simulations

In order to verify our methodology against a fiducial cosmology, we generate realizations of DES-SN by drawing samples from the MICE simulation (Fosalba et al. 2015) with selection functions to match the genuine observations. We note that we use the simulations only as a test of the methodology; they do not directly contribute to the analysis of the genuine data (e.g., we do not use the simulations to estimate the data covariance matrix, etc.).

We start with a 3,000 square-degree light-cone from MICE, comprising over one million simulated galaxies. We then perform an angular selection cut, to match the 30 square-degree area of the supernova fields in DES. We match the footprints of the DES SNe fields, e.g., three patches for the C and X fields, and two for the E and S fields, so that the angular footprint matches the genuine DES fields. Over ten-thousand simulated galaxies pass this angular selection cut.

We next sub-sample to match the number and redshift distribution of DES-SN. We approximate the redshift probability distribution function of DES-SN with a 1D KDE in redshift. To generate each simulated realization, we then draw 196 galaxies from the super-sample of ten-thousand, with a probability ascribed to each galaxy given by the 1D KDE. Each realization thus matches the angular and redshift distribution of the genuine sample.

For each of these galaxies, we take the value of the lensing convergence, κ, as estimated by the MICE simulation, and calculate the magnitude residual $\Delta \mu$ due to κ, using:

$$\Delta \mu = 5 \log_{10}(1 - \kappa)$$

(Bartelmann & Schneider 2001). To include the effect of the intrinsic dispersion for a SN, we then add to the lensed-only residual $\Delta \mu$ a noise term, sampled from a Gaussian distribution (with standard deviation of 0.1 mag). This $\Delta \mu$ thus approximates a SN magnitude residual, including the intrinsic dispersion and lensing magnification.

In Figure 3 we illustrate the measured correlation function from the MICE simulations. Since the signal from each realization is low, we measure the correlation function for 10,000 realizations, and show the average. We compare the simulated measurements to the expected theoretical linear and non-linear correlation function for the fiducial cosmology used in the MICE simulation.

The theoretical correlation function depends on the redshift distribution of the sources, which varies between realizations due to sampling noise. We re-calculate the theory for each redshift distribution, and illustrate the range in Figure 3.

We can see in Figure 3 that MICE most closely matches the linear theory for angular scales of $\Theta > 6$ arcmin. For smaller angular scales, MICE is closer to the non-linear theory. This may be due to the resolution of the MICE simulation.

MICE is based on a Gadget-2 simulation (Springel 2005)
with a box width of 3.072 h^{-1} Mpc, and a softening length of 50 h^{-1} kpc. In order to construct the simulated light-cones Fosalba et al. (2015) sample the simulation into 265 radially concentric ‘onion shells’ over the redshift range $0 < z < 1.4$, each corresponding to a time of approximately 35 megayears per shell. To calculate the lensing convergence maps, Fosalba et al. (2015) pixelate each shell using a Healpix angular tessellation with a Healpix resolution of $N_{\text{side}}=4,096$. This tessellation corresponds to an effective angular resolution of 0.85 arcmin. This resolution remains constant in redshift, since each shell is tessellated with the same $N_{\text{side}}=4,096$. This limit may be too coarse to fully resolve the rare, dense structures predicted by the theoretical non-linear correlation function.

Even though the resolution of the MICE simulation is 0.85 arcmin, we believe there are at least two effects that may introduce suppression of the correlation function out to angular scales larger than the resolution limit. Firstly, feedback from smaller scales will not be able to affect structure formation at larger scales. In other words, the simulation will not resolve additional gravitational accretion from dense, sub-resolution structures. Secondly, even if structure at scales greater than 0.85 arcmin were perfectly resolved, we would still expect the correlation function to be under-estimated for these scales, if the density of structure at sub-resolution scales remains under-estimated, since the correlation function depends on the product of the densities across a range of angular scales.

We note that Fosalba et al. (2015) also find that for angular scales approaching 1 arcmin ($\ell \sim 10,000$), the convergence power spectrum underestimates the non-linear theoretical expectation by ~ 30 %. This divergence can be seen in Figure 2 of Fosalba et al. (2015), particularly for ℓ close to 10,000.

We note that since the correlation function is an integral of the power spectrum across a range of scales, if the power spectrum is systematically underestimated across the range of integration, a given scale in the correlation function will be underestimated by a greater amount than the direct value of the power spectrum at the direct scale corresponding to the scale in the correlation function. We believe this is consistent with the results in Figure 3 for the angular correlation function from the MICE simulation.

We believe there is a clear opportunity for future work to improve simulation of the small-scale lensing convergence power spectrum. However, we emphasise that since the current data places only large upper-limits on the correlation function, this is not a limiting factor for this analysis.

When fitting for the correlation function, we assume a fiducial form for the function (given by the background cosmology and redshift distribution of the sources), and scale the amplitude according to the value of σ_8. To fit for the genuine data, we use CAMBSources to calculate the matter power spectrum and lensing window function, with HALOFIT (Smith et al. 2003) to calculate the non-linear power spectrum.

However, we can see in Figure 3 that this will over-predict the lensing signal in the simulated data. As such, when we fit for simulated catalogues, instead of using either the linear or non-linear correlation functions, we take the ensemble average correlation function in Figure 3 as the fiducial.

Although we parameterize the amplitude of the density perturbations with σ_8, we note that the physical scale of the density perturbations which affect SN lensing are at smaller physical scales (or higher k values, in the case of the power spectrum) than the 8 Mpc scale directly associated with σ_8. Our assumption is that once we have set the amplitude of the density perturbations (via σ_8), we can extrapolate the scale of density fluctuations to smaller scales. Our use of σ_8 as a parameter is to set the relative scale of the density fluctuations, and not necessarily as a direct probe of structure at 8 Mpc scales.

We also test the skewness from the MICE simulation against the theoretical expectation from MeMo, shown in Figure 4. We find that for $z > 0.5$ the MICE simulation

Figure 3. Measurements of the lensing correlation function measured from the MICE simulation to theoretical expectations from CAMBSources. The solid black line is the expected correlation function assuming a non-linear power spectrum, and the dashed black line assumes a linear power spectrum. The grey shaded regions illustrate the one standard-deviation regions of these functions, due to small differences in the redshift distributions of each realization. The blue hexagonal points illustrate the average measured lensing correlation function from the MICE simulation.

Figure 4. In this figure we compare measurements of the lensing skewness from the MICE simulation to the corresponding theory from the MeMo fitting function. We note that MICE appears to under-predict the skewness, compared to the MeMo fitting function for $z > 0.5$.

Weak Lensing of SNe Ia from DES 5
under-predicts the effect of lensing moments compared to the MeMo fitting function.

We believe this is consistent with the under-prediction of correlations at small angular scales seen in Figure 3. Both the high \(\theta \) skewness and the small \(\Theta \) correlation function rely on the simulation of small, rare, dense lines of sight, which demand high simulation resolution, and accurate modelling of the complicated baryonic physics which affects these small scales.

Castro et al. (2018) found that introducing baryons has a significant effect on the lensing probability density function (although at scales that would not be resolved by the 0.85 arcmin resolution of MICE).

As we consider the lensing signal for lines-of-sight at increasingly high redshift, the chance of finding a rare, dense structure (causing high magnification) will increase. If these structures are not resolved in the simulation, we would expect the measured skewness to be less than expectations. As such, we do not fit for any moments for SNe with \(z > 0.5 \) for the real or simulated data sets. Although this redshift cut reduces our sensitivity to the most highly lensed supernovae, the sparseness of the DES-SN sample at these redshifts also makes robust measurements of the skewness difficult.

3 DISCUSSION OF RESULTS & CONCLUSIONS

The results of the fits to 100 simulated data-sets are shown in Figure 5. We plot the likelihood for each simulation, and also illustrate the average of the likelihoods, in order to verify that the results are consistent with the input of the simulation.

We note that the simulated realizations tend to cluster in two groups: a large fraction which recover a lower value of \(\sigma_8 \) than the simulation input, and a small fraction which recover a higher value. We believe this is because of the non-Gaussian lensing probability distribution function, combined with the limited size of each realization. Due to the low likelihood of sampling from the high magnification tail, many of the realizations of 196 SNe will not have any samples drawn with high magnification, which will lead to low values of \(\sigma_8 \). Conversely, a minority of the samples will have several magnified SNe, leading to an over-estimated value of \(\sigma_8 \). We believe this causes the distribution of simulated realizations in Figure 5: with many realizations under-estimating \(\sigma_8 \), and a smaller sample over-estimating \(\sigma_8 \). However, we note that the ensemble average of the realizations is not biased.

We also show in Figure 5 the equivalent fit to the genuine DES-SN data. We find \(\sigma_8 = 1.2_{-0.8}^{+0.9} \) suggesting a possibility for WL at the ~ 1.3\(\sigma \) level. We note that the uncertainty of our measurement is consistent with the uncertainties from the simulated data. In Figures 6 and 7 we plot the observed angular correlation function and skewness for DES-SN.

Albeit within large (~ 100%) uncertainties, we note that our value is consistent with the value of \(\sigma_8 = 0.8120 \pm 0.0073 \) derived by Planck Collaboration et al. (2018a) from measurements of the CMB, assuming a \(\Lambda \)CDM model. The values are summarised in Table 1.

Perhaps of more significance than the best-fit value of \(\sigma_8 \), we emphasize the lower limit of 0.4. We note that this lower limit is not sensitive to the value of the intrinsic dispersion of the SNe Ia, as with, e.g., Castro & Quartin (2014) and Macaulay et al. (2017). We assume only that the intrinsic dispersion is uncorrelated (i.e., genuinely intrinsic to each SN), and does not introduce additional skewness. Beyond these assumptions, the model requires no further assumption as to the intrinsic dispersion of the SNe (such as redshift independence).

Although far from a detection of WL in SNe, this lower limit on \(\sigma_8 \) suggests some possibility for WL, consistent with the statistical limitations of the size of the sample (e.g. Scovacricchi et al. 2017). We note that the limits on WL is consistent with the lensing results found by Smith et al. (2014), who found limits on the lensing signal with a significance of 1.7\(\sigma \). The value of \(\sigma_8 \) and significance of the lensing signal is also consistent with the values from Macaulay et al. (2017).

We repeat our measurement with the JLA sample. As with DES-SN, we restrict the redshift range to \(z > 0.17 \), to minimize sensitivity to peculiar velocities. We also restrict the redshift range to \(z < 0.5 \) (again, as with DES-SN), since we believe that the systematic uncertainties in theoretical modelling and simulation of extreme-small scale weak lensing at high redshift is currently insufficient, even given the large statistical uncertainties of WL in current SNe surveys. After these redshift cuts, we have 488 SNe from the JLA sample, and find \(\sigma_8 = 0.8^{+1.1}_{-0.7} \).

We note that the range of uncertainty \(\sigma_8 \) from JLA of 1.8 is larger than the range from DES-SN, of 1.7, despite the larger number of 488 SNe in the JLA sub-sample than the 196 from DES. We believe this is due to the homogeneity of the DES-SN sample, and improvements in photometric calibration.

We note that our values with both DES-SN and JLA are consistent with the value from Castro & Quartin (2014),
studying JLA, who found $\sigma_8 = 0.84^{+0.28}_{-0.65}$. Comparing directly to our value with JLA of $\sigma_8 = 0.8^{+1.0}_{-0.7}$, we note that although our uncertainty is larger, there are several differences between the two analyses.

In this work, we do not include SNe at $z > 0.5$, and do not include the second and fourth moments. Also, while the bootstrap re-sampling method we use here to estimate the data-covariance matrix allows us to estimate the covariance between the third moment and the correlation function, this method leads to larger uncertainties than the analytical covariance matrix used by Castro & Quartin (2014).

Although the statistical uncertainty on the value of σ_8 is far from competitive with lensing measurements from galaxy shear techniques, we note the added-value nature of the measurements; placing limits on WL from observations taken to probe the distance-redshift relation.

We reiterate the conclusions from Scovacricchi et al. (2017) of the potential to place competitive constraints on WL with the next generations of supernovae surveys, such as LSST (LSST Science Collaboration et al. 2009; LSST Dark Energy Science Collaboration 2012; Ivezić et al. 2019), Euclid (Laureijs et al. 2011; Astier et al. 2014; Amendola et al. 2018) and WFIRST (Hounsell et al. 2018). We also emphasize the need for improved modelling of simulations and theory of the high redshift, small angular-scale lensing effects that will be required to fully realize the potential for SN-WL.

Table 1

<table>
<thead>
<tr>
<th>Reference</th>
<th>Sample</th>
<th>Method</th>
<th>σ_8 Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Castro & Quartin (2014)</td>
<td>JLA</td>
<td>Variance+Skewness+Kurtosis</td>
<td>$0.8^{+0.3}_{-0.2}$</td>
</tr>
<tr>
<td>Macaulay et al. (2017)</td>
<td>JLA</td>
<td>Variance+Skewness+Kurtosis</td>
<td>$1.6^{+0.2}_{-0.3}$</td>
</tr>
<tr>
<td>This Work</td>
<td>JLA</td>
<td>Skewness+Correlation</td>
<td>$0.8^{+0.3}_{-0.4}$</td>
</tr>
<tr>
<td>This Work</td>
<td>DES-SN</td>
<td>Skewness+Correlation</td>
<td>$1.2^{+0.3}_{-0.4}$</td>
</tr>
</tbody>
</table>

4 DATA AVAILABILITY

The supernova data underlying this article were accessed from https://des.ncsa.illinois.edu/releases/1m. The simulated data were accessed from http://maia.ice.cat/mice/.

5 ACKNOWLEDGEMENTS

We thank the referee for a careful review, and constructive comments and suggestions, which have been very helpful in improving this work.

E.M., D.B., R.C.N. acknowledge funding from STFC grant ST/N000668/1.

Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico and the Ministério da Ciência, Tecnologia e Inovação, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the Dark Energy Survey.

The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenössische Technische Hochschule (ETH) Zürich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ciències de l’Espai (IEEC/CSIC), the Institut de Física d’Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universität München and the associated Excellence Cluster Universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, Texas A&M University, and the OzDES Membership Consortium.

Based in part on observations at Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, which is operated by the Association of Universi-
ties for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. The DES data management system is supported by the National Science Foundation under Grant Numbers AST-1138766 and AST-1536171. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2015-71825, ESP2015-66861, FPA2015-68048, SEV-2016-0588, SEV-2016-0597, and MDM-2015-8305, of which include ERDF funds from the European Union. IFAE is partially funded by the CERCA program of the Generalitat de Catalunya. Research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Program (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478. We acknowledge support from the Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO), through project number CE110001020, and the Brazilian Instituto Nacional de Ciência e Tecnologia (INCT) e-Universe (CNPq grant 465376/2014-2).

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

REFERENCES
Amendola L., et al., 2018, Living Reviews in Relativity, 21, 2
Castro T., Quartz M., Benitez-Herrera S., 2016, Physics of the Dark Universe, 6, 36
Kainulainen K., Marra V., 2009, Phys. Rev. D, 80, 123020

Figure 6. The observed angular correlation function of the JLA and DES-SN samples. The fiducial angular correlation function is illustrated with the blue line, and the allowed range of σ_8 from DES-SN is shown with the shaded region. We note that the measured points are highly correlated, and in some cases we can place only upper-limits on the angular correlation function.

Figure 7. The measured skewness of the JLA and DES-SN samples. The blue shaded region illustrates the range of lensing skewness given the range of the best-fit σ_8 from the DES-SN sample ($\sigma_8=1.19^{+0.30}_{-0.31}$).
E. Macaulay et al.

Pueblo Mall, Stanford, CA 94305, USA
40 Center for Astrophysics | Harvard & Smithsonian, 60 Garden Street, Cambridge, MA 02138, USA
41 Australian Astronomical Optics, Macquarie University, North Ryde, NSW 2113, Australia
42 Lowell Observatory, 1400 Mars Hill Rd, Flagstaff, AZ 86001, USA
43 George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, and Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843, USA
44 Department of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, NJ 08544, USA
45 Institució Catalana de Recerca i Estudis Avançats, E-08010 Barcelona, Spain
46 Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA
47 Brandeis University, Physics Department, 415 South Street, Waltham MA 02453
48 Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
49 Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse, 85748 Garching, Germany
50 Universitätss-Sternwarte, Fakultät für Physik, Ludwig-Maximilians Universität München, Scheinerstr. 1, 81679 München, Germany

This paper has been typeset from a \TeX/\LaTeX\ file prepared by the author.