The Universe Caught Speeding: Dark Energy 2 Decades After

Dragan Huterer

Department of Physics
University of Michigan
What are these objects?
Shapley-Curtis debate
(Washington DC, 1920)

What is the nature of “spiral nebulae” (today called galaxies) such as Andromeda?

• Shapley: they are all part of our Galaxy, the Milky Way

• Curtis: they are separate “island universes” (i.e. galaxies)

Curtis was correct!
There are billions of such galaxies out there... each of these galaxies has ~100 billion stars... and they are billions of light-years away.
Edwin Hubble and the Expansion of the Universe (1929)

In 1929 Hubble measured the red shift (or, redshift) of nearby galaxies and found that they nearly all move away from us. ⇒ The Universe is Expanding!

100 inch Hooker telescope (Mt Wilson, CA)
Velocity is easy: from the Doppler recession of galaxy spectra (first done by astronomer Vesto Slipher, whom Hubble never credited)

Distance is hard: from Cepheid variable stars
How do you get galaxy velocity (with respect to us)?

Doppler Effect

Demo: Doppler whistle
Redshift: shift of galaxy light wavelength (due to galaxy’s motion relative to us)

Light from almost all galaxies is redshifted (and not blueshifted) - the galaxies are receding away from us!
How do you get distances to galaxies?

Cepheids (variable stars)

- Empirical finding: Cepheids’ period of pulsation is proportional to intrinsic luminosity
- Measure period
- Measure apparent luminosity (or, flux)
- Then, can get distance:

\[f = \frac{L}{4\pi d^2} \]

(f = flux
L = luminosity)

http://hyperphysics.phy-astr.gsu.edu/
The original Hubble diagram (1929)

Slope of this relation (velocity vs. distance) is called the Hubble constant H_0. Modern value:

$$H_0 \approx 70 \text{ km/sec/megaparsec}$$

(will return to H_0 later!)
History of the universe from $t=0$ to $t=13.8$ Gyr

A Brief Overview...
Big Bang (t=0)

- Expansion starts
- Happened “everywhere”
- Details not well known
- Currently beyond reach of any cosmological probe

Please don’t ask “what happened before the big bang?”
Very early Universe (t=tiny moments after BB)

- High energies
- Exotic physics
- Grand Unified Theory? (all forces united)
- **Inflation** - a period of rapid expansion
- Density fluctuations laid out!
Quark Soup
(t<1 sec)

Quarks are free, floating around

Later, they are bound

PROTON
Nucleosynthesis (t=3 minutes)

- Nuclei form!
- ...out of neutrons, protons
- Hydrogen, Helium, small quantities of a few other light elements
- Universe is dominated by radiation (photons)
- Universe is still opaque - photons do not propagate far
Universe becomes transparent (t=300,000 yrs)

- Atoms form!
- ... electrons and nuclei combine
- Photons finally free to propagate - universe has rarified enough
- The **Cosmic Microwave Background** radiation we observe has been released at this time; Temperature today=2.725 Kelvin
- Uniform to one part in 100,000
T=2.726 Kelvin

Penzias & Wilson, 1965
Camden Hill, NJ
(Nobel Prize 1978)
Fluctuations 1 part in 100,000 (of 2.726 Kelvin)

credit: Planck team

(Nobel Prize for discovery of fluctuations (in 1992): to COBE team members, in 2006)
The dark ages (t< 1 billion yrs)

- Universe is dark, slowly becomes matter dominated
- First stars and first galaxies form
- First stars ionize the hydrogen atoms
Modern Universe (t < 13.8 billion yrs)

- Stars, Galaxies, Clusters of galaxies everywhere
- Even more Dark Matter than we cannot directly see
- Universe is still matter dominated - or so we thought!
- A big surprise is in store!!
What is the geometry of space?

Flat (zero curvature)

Positively curved ("closed")

Negatively curved ("open")
By measuring **distances** in the universe, you can determine its **geometry**.

Problem: distances in astronomy are notoriously hard to measure.

Diagram: Graph showing the relationship between average distance between galaxies and redshift, with curves for Open, Flat, and Closed geometries.
Type Ia Supernovae!

A white dwarf accretes matter from a companion. Once the WD star’s mass reaches a certain limit, the star explodes.

Each explosion yields (about) the same amount of energy/light \implies standard candle
A “Standard Candle” analogy: Headlights of a Car

If you know the intrinsic brightness of the headlights, you can estimate how far away the car is.

\[f = \frac{L}{4\pi d^2} \]

\(f = \text{flux} \)
\(L = \text{luminosity} \)
\(d = \text{distance} \)
Key property of SNe Ia:
Their intrinsic luminosity is (nearly) constant
\[\Rightarrow \text{They are standard candles} \]

- flux \(\sim \frac{1}{\text{distance}^2} \)

So, by measuring the flux, you can determine distance to supernova

And by measuring the shift of spectral lines, you can determine redshift of supernova
But how do you find SNe?

Rate: 1 SN per galaxy per 500 yrs!

Solution:
- use world’s large telescopes,
- schedule them to find, then “follow-up” SNe
- heroic hard work by two teams of researchers

Nobel Prize in Physics 2011

Adam Riess
Johns Hopkins University

Saul Perlmutter,
Lawrence Berkeley Lab

Brian Schmidt,
Australian National Univ.
Supernova Hubble diagram
(actual data; each error bar denotes ~20 SN)

\[\log [\text{Relative distance}] \]

- always accelerates
- accelerates now and decelerates in the past
- open
- flat
- always decelerates
- closed

\{ Matter only cases \}
Dark Energy

- Universe is dominated by something other than dark matter
- This new component - “dark energy” - makes the universe expand faster and faster (i.e. slower as we look in the past)
- This new component is smooth
- Other than that, we don’t know much!
Recall: Dark Matter is in “halos” around galaxies.

Dark Matter ≠ Dark Energy
Facts about DE

- DE is smooth
- DE pushes things (galaxies) apart
- DE energy density approximately constant - double the volume, double the energy (for matter, double the volume, energy stays the same)

⇒ Verifying whether this is true is at forefront of measurements in cosmology

- DE is only noticeable at recent times (ie. low redshifts), and completely subdominant in early univ.
- DE slows down the growth of structure
A Candidate: Vacuum Energy

Quantum Physics says:
“empty space” is filled with particles and antiparticles getting created and annihilated
Theoretical prediction for vacuum energy

A straightforward calculation using quantum mechanics gives

\[10^{120}\] times more than the observed amount

This is known as the COSMOLOGICAL CONSTANT PROBLEM
This is known as the **COINCIDENCE PROBLEM**
One puzzle: all matter *dilutes away*, but dark energy remains constant. So why are they (very roughly) comparable today?

The past was dominated by matter, the future will be dominated by dark energy. What makes the present day so special?
What is dark energy?

- Is it vacuum energy?
- Is it modification of Einstein’s theory of gravity?
- Is it a (funny) fluid that fills up universe?
- Or is it something else - completely, utterly unexpected?
(Bizarre) Consequences of DE

- In the accelerating universe, galaxies are leaving our observable patch \Rightarrow the sky will be empty in 100 billion years!

- In particular, under certain circumstances we will have a **Big Rip** - galaxies, stars, planets, our houses, atoms, and then the fabric of space itself will rip apart!
Dark Energy Survey (2012)

21cm mapping

Harvard-Cfa survey (1980s)

Euclid and WFIRST (~2027)

LSST (~2021)
Dark Energy Survey

• New camera on 4m telescope in Chile
• Observations 2013-2019
• ~700 scientists worldwide
• Analyses in progress (first major results Aug 2017)
Dark Energy Survey (DES)

Cerro Tololo, Chile

Blanco Telescope
Type Ia supernovae + Cepheid distances give

$$H_0 = 74.0 \text{ (km/s/Mpc)}$$

Cosmic Microwave Anisotropies give

$$H_0 = 67.0 \text{ (km/s/Mpc)}$$

These two measurements are about five standard deviations (quoted errors) apart

$$\implies$$ discrepant at 99.99997\% confidence
The hottest topic in cosmology in past couple of years:

Is Hubble tension due to new physics?
[e.g. unusual, new behavior of dark energy]

Dark matter and dark energy are here to stay, but this may be evidence for e.g. unusual, new behavior of dark energy

There is worldwide effort by

- cosmology **theorists** to better understand the sources of this tension and
- cosmology **experimentalists** to better measure H_0 using a variety of methods
Conclusions

1. **Universe is expanding** ⟹ it was smaller in the past, it started with a Big Bang

2. **Dark Energy** ⟹ universe is accelerating, worldwide effort to understand/measure better

3. **Hubble tension** ⟹ discrepancy in measurements of H_0 by two trusted methods, may indicate a major new discovery!

Talk available at http://www-personal.umich.edu/~huterer/activities.html