Relaxed linearized algorithms for faster X-ray CT image reconstruction

Hung Nien and Jeffrey A. Fessler

University of Michigan, Ann Arbor

The 13th Fully 3D Meeting – June 2, 2015
Statistical image reconstruction (SIR)

\[y = Ax + \varepsilon \]
Statistical image reconstruction for X-ray CT

\[y = Ax + \varepsilon \]
Statistical image reconstruction for X-ray CT

\[
\hat{x} = \arg \min_{x} \left\{ \Psi_{PWLS}(x) \equiv \frac{1}{2} \| y - Ax \|_2^2 W + R(x) + \iota \Omega(x) \right\}
\]
Statistical image reconstruction for X-ray CT

\[
\hat{x} \in \arg \min_x \{ \Psi_{PWLS}(x) \equiv \frac{1}{2} \| y - Ax \|_W^2 + R(x) + \iota \Omega(x) \}
\]
Statistical image reconstruction (SIR)
Statistical image reconstruction for X-ray CT

\[\hat{x} \in \arg \min_x \left\{ \Psi_{PWLS}(x) \triangleq \frac{1}{2} \| y - Ax \|^2_W + R(x) + \iota_{\Omega}(x) \right\} \]
Statistical image reconstruction for X-ray CT

\[\hat{x} \in \arg \min_x \left\{ \Psi_{\text{PWLS}}(x) \triangleq \frac{1}{2} \| y - Ax \|_W^2 + R(x) + \iota_{\Omega}(x) \right\} \]
Statistical image reconstruction for X-ray CT

\[\hat{x} \in \arg \min_x \left\{ \psi_{\text{PWLS}}(x) \triangleq \frac{1}{2} \| y - Ax \|_W^2 + R(x) + \iota_{\Omega}(x) \right\} \]
Statistical image reconstruction for X-ray CT

\[\hat{x} \in \text{arg min}_{x} \{ \Psi_{\text{PWLS}}(x) \triangleq \frac{1}{2} \| y - Ax \|_{W}^{2} + R(x) + \iota_{\Omega}(x) \} \]
Statistical image reconstruction for X-ray CT

\[
\hat{x} \in \arg \min_x \left\{ \Psi_{\text{PWLS}}(x) \triangleq \frac{1}{2} \| y - Ax \|_W^2 + R(x) + \iota_{\Omega}(x) \right\}
\]
First-order algorithms with ordered-subsets

Figure: Chest: Existing first-order algorithms with ordered-subsets (OS).

[Graph showing RMS difference in HU vs. number of iterations for OS-SQS, OS-FGM2, OS-LALM, and OS-OGM2]
First-order algorithms with ordered-subsets

Figure: Chest: Existing first-order algorithms with ordered-subsets (OS).
First-order algorithms with ordered-subsets

Figure: Chest: Existing first-order algorithms with ordered-subsets (OS).
Figure: Chest: Existing first-order algorithms with ordered-subsets (OS).
First-order algorithms with ordered-subsets

Figure: Chest: Existing first-order algorithms with ordered-subsets (OS).
Equality-constrained composite minimization

Consider an equality-constrained minimization problem:

$$(\hat{x}, \hat{u}) \in \arg \min_{x,u} \left\{ \frac{1}{2} \|u - y\|_2^2 + h(x) \right\} \text{ s.t. } u = Ax,$$

where h are closed and proper convex functions.
Equality-constrained composite minimization

Consider an equality-constrained minimization problem:

\[(\hat{x}, \hat{u}) \in \arg \min_{x, u} \left\{ \frac{1}{2} \| u - y \|^2_2 + h(x) \right\} \quad \text{s.t.} \quad u = Ax, \quad (1)\]

where \(h\) are closed and proper convex functions.

In particular, the quadratic loss function penalizes the difference between the linear model \(Ax\) and noisy measurement \(y\), and \(h\) is a regularization term that introduces the prior knowledge of \(x\) to the reconstruction.
Equality-constrained composite minimization

Consider an equality-constrained minimization problem:

\[
(\hat{x}, \hat{u}) \in \arg \min_{x,u} \left\{ \frac{1}{2} \|u - y\|_2^2 + h(x) \right\} \text{ s.t. } u = Ax,
\]

(1)

where \(h \) are closed and proper convex functions.

In particular, the quadratic loss function penalizes the difference between the linear model \(Ax \) and noisy measurement \(y \), and \(h \) is a regularization term that introduces the prior knowledge of \(x \) to the reconstruction. For example,

\[
(\hat{x}, \hat{u}) \in \arg \min_{x,u} \left\{ \frac{1}{2} \|u - W^{1/2}y\|_2^2 + (R + \iota \Omega)(x) \right\} \text{ s.t. } u = W^{1/2}Ax
\]

represents an X-ray CT image reconstruction problem.
Standard AL method

The standard AL method finds a saddle-point of the augmented Lagrangian (AL) of (1):

$$\mathcal{L}_A(x, u, d; \rho) \triangleq \frac{1}{2} \|u - y\|^2_2 + h(x) + \frac{\rho}{2} \|Ax - u - d\|^2_2$$

in an alternating direction manner:

$$\begin{cases}
 x^{(k+1)} \in \arg \min_x \left\{ h(x) + \frac{\rho}{2} \|Ax - u^{(k)} - d^{(k)}\|^2_2 \right\} \\
 u^{(k+1)} \in \arg \min_u \left\{ \frac{1}{2} \|u - y\|^2_2 + \frac{\rho}{2} \|Ax^{(k+1)} - u - d^{(k)}\|^2_2 \right\} \\
 d^{(k+1)} = d^{(k)} - Ax^{(k+1)} + u^{(k+1)},
\end{cases}$$

where d is the scaled Lagrange multiplier of u, and $\rho > 0$ is the AL penalty parameter.

Standard AL method

The standard AL method finds a saddle-point of the augmented Lagrangian (AL) of (1):

$$L_A(x, u, d; \rho) \doteq \frac{1}{2} \| u - y \|_2^2 + h(x) + \frac{\rho}{2} \| Ax - u - d \|_2^2$$

in an alternating direction manner:

$$\begin{align*}
 x^{(k+1)} &\in \arg \min_x \left\{ h(x) + \frac{\rho}{2} \| Ax - u^{(k)} - d^{(k)} \|_2^2 \right\} \\
u^{(k+1)} &\in \arg \min_u \left\{ \frac{1}{2} \| u - y \|_2^2 + \frac{\rho}{2} \| Ax^{(k+1)} - u - d^{(k)} \|_2^2 \right\} \\
d^{(k+1)} &= d^{(k)} - Ax^{(k+1)} + u^{(k+1)} ,
\end{align*}$$

where d is the scaled Lagrange multiplier of u, and $\rho > 0$ is the AL penalty parameter.

Linearized AL method

The linearized AL method adds an additional G-proximity term to the x-subproblem in the standard AL method:

$$
\begin{align*}
\mathbf{x}^{(k+1)} & \in \arg \min_{\mathbf{x}} \left\{ h(\mathbf{x}) + \frac{\rho}{2} \| \mathbf{Ax} - \mathbf{u}^{(k)} - \mathbf{d}^{(k)} \|_2^2 + \frac{\rho}{2} \| \mathbf{x} - \mathbf{x}^{(k)} \|_G^2 \right\} \\
\mathbf{u}^{(k+1)} & \in \arg \min_{\mathbf{u}} \left\{ \frac{1}{2} \| \mathbf{u} - \mathbf{y} \|_2^2 + \frac{\rho}{2} \| \mathbf{Ax}^{(k+1)} - \mathbf{u} - \mathbf{d}^{(k)} \|_2^2 \right\} \\
\mathbf{d}^{(k+1)} & = \mathbf{d}^{(k)} - \mathbf{Ax}^{(k+1)} + \mathbf{u}^{(k+1)},
\end{align*}
$$

where $G \triangleq \mathbf{D}_L - \mathbf{A}'\mathbf{A}$, and \mathbf{D}_L is a diagonal majorizing matrix of $\mathbf{A}'\mathbf{A}$.

Linearized AL method

The linearized AL method adds an additional G-proximity term to the x-subproblem in the standard AL method:

\[
\begin{align*}
\mathbf{x}^{(k+1)} & \in \arg \min_{\mathbf{x}} \left\{ h(\mathbf{x}) + \frac{\rho}{2} \| \mathbf{A} \mathbf{x} - \mathbf{u}^{(k)} - \mathbf{d}^{(k)} \|^2_2 + \frac{\rho}{2} \| \mathbf{x} - \mathbf{x}^{(k)} \|^2_G \right\} \\
\mathbf{u}^{(k+1)} & \in \arg \min_{\mathbf{u}} \left\{ \frac{1}{2} \| \mathbf{u} - \mathbf{y} \|^2_2 + \frac{\rho}{2} \| \mathbf{A} \mathbf{x}^{(k+1)} - \mathbf{u} - \mathbf{d}^{(k)} \|^2_2 \right\} \\
\mathbf{d}^{(k+1)} & = \mathbf{d}^{(k)} - \mathbf{A} \mathbf{x}^{(k+1)} + \mathbf{u}^{(k+1)},
\end{align*}
\]

where $G \triangleq \mathbf{D}_L - \mathbf{A}' \mathbf{A}$, and \mathbf{D}_L is a diagonal majorizing matrix of $\mathbf{A}' \mathbf{A}$. Here, we linearize the algorithm in a sense that the Hessian matrix of the “augmented” quadratic AL term is diagonal.

Linearized AL algorithm for X-ray CT

Algorithm: OS-LALM for CT reconstruction.

Input: $K \geq 1$, $M \geq 1$, and an initial (FBP) image x.

set $\rho = 1$, $\zeta = g = M\nabla L_M(x)$

Algorithm:

for $k = 1, 2, \ldots, K$ do

for $m = 1, 2, \ldots, M$ do

$s = \rho \zeta + (1 - \rho) g$

$x^+ = x - (\rho D_L + D_R)^{-1} (s + \nabla R(x)) \Omega$

$\zeta^+ = M\nabla L_m(x^+)$

$g^+ = \frac{\rho}{\rho + 1} \zeta^+ + \frac{1}{\rho + 1} g$

decrease ρ gradually

end

end

Output: The final image x.

Relaxed AL method

The relaxed AL method accelerates the standard AL method with under- or over-relaxation:

\[
\begin{align*}
 x^{(k+1)} & \in \arg \min_x \left\{ h(x) + \frac{\rho}{2} \| Ax - u^{(k)} - d^{(k)} \|_2^2 \right\} \\
 u^{(k+1)} & \in \arg \min_u \left\{ \frac{1}{2} \| u - y \|_2^2 + \frac{\rho}{2} \| r_{u,\alpha}^{(k+1)} - u - d^{(k)} \|_2^2 \right\} \\
 d^{(k+1)} &= d^{(k)} - r_{u,\alpha}^{(k+1)} + u^{(k+1)}
\end{align*}
\]

where

\[
r_{u,\alpha}^{(k+1)} \triangleq \alpha Ax^{(k+1)} + (1 - \alpha) u^{(k)}
\]

is the relaxation variable of \(u \), and \(0 < \alpha < 2 \) is the relaxation parameter.

[Eckstein and Bertsekas, Math. Prog., 1992]
The relaxed AL method accelerates the standard AL method with under- or over-relaxation:

\[
\begin{align*}
 \begin{cases}
 x^{(k+1)} & \in \arg\min_x \left\{ h(x) + \frac{\rho}{2} \| Ax - u^{(k)} - d^{(k)} \|^2 \right\} \\
 u^{(k+1)} & \in \arg\min_u \left\{ \frac{1}{2} \| u - y \|^2 + \frac{\rho}{2} \| r_{u,\alpha}^{(k+1)} - u - d^{(k)} \|^2 \right\} \\
 d^{(k+1)} & = d^{(k)} - r_{u,\alpha}^{(k+1)} + u^{(k+1)},
 \end{cases}
\end{align*}
\]

where

\[
 r_{u,\alpha}^{(k+1)} \triangleq \alpha Ax^{(k+1)} + (1 - \alpha) u^{(k)}
\]

is the relaxation variable of \(u \), and \(0 < \alpha < 2 \) is the relaxation parameter. When \(\alpha = 1 \), it reverts to the standard AL method.

[Eckstein and Bertsekas, Math. Prog., 1992]
Implicit linearization via redundant variable-splitting

Consider an equivalent equality-constrained minimization problem with a redundant equality constraint:

\[(\hat{x}, \hat{u}, \hat{v}) \in \arg \min_{x,u,v} \left\{ \frac{1}{2} \| u - y \|_2^2 + h(x) \right\} \quad \text{s.t.} \quad \begin{cases} u = Ax \\ v = G^{1/2}x \end{cases} \]

Implicit linearization via redundant variable-splitting

Consider an equivalent equality-constrained minimization problem with a redundant equality constraint:

\[(\hat{x}, \hat{u}, \hat{v}) \in \arg\min_{x,u,v} \left\{ \frac{1}{2} \|u - y\|^2_2 + h(x) \right\} \quad \text{s.t.} \quad \begin{cases} u = Ax \\ v = G^{1/2} x. \end{cases} \]

Suppose we use the same AL penalty parameter ρ for both equality constraints in AL methods. The quadratic AL term

\[\frac{\rho}{2} \left\| Ax - u^{(k)} - d^{(k)} \right\|^2_2 + \frac{\rho}{2} \left\| G^{1/2} x - v^{(k)} - e^{(k)} \right\|^2_2 \]

has a diagonal Hessian matrix $H_{\rho} \triangleq \rho A'A + \rho G = \rho D_L$, leading to a separable quadratic AL term.

Proposed relaxed linearized AL method

The proposed relaxed linearized AL method solves the equivalent minimization problem with a redundant equality constraint using the relaxed AL method:

\[
\begin{align*}
\mathbf{x}^{(k+1)} &\in \operatorname{arg\,min}_{\mathbf{x}} \left\{ h(\mathbf{x}) + \frac{\rho}{2} \| \mathbf{A}\mathbf{x} - \mathbf{u}^{(k)} - \mathbf{d}^{(k)} \|_2^2 \right. \\
&\quad \left. + \frac{\rho}{2} \| \mathbf{G}^{1/2}\mathbf{x} - \mathbf{v}^{(k)} - \mathbf{e}^{(k)} \|_2^2 \right\} \\
\mathbf{u}^{(k+1)} &\in \operatorname{arg\,min}_{\mathbf{u}} \left\{ \frac{1}{2} \| \mathbf{u} - \mathbf{y} \|_2^2 + \frac{\rho}{2} \| r^{(k+1)}_{\mathbf{u},\alpha} - \mathbf{u} - \mathbf{d}^{(k)} \|_2^2 \right\} \\
\mathbf{d}^{(k+1)} &= \mathbf{d}^{(k)} - r^{(k+1)}_{\mathbf{u},\alpha} + \mathbf{u}^{(k+1)} \\
\mathbf{v}^{(k+1)} &= r^{(k+1)}_{\mathbf{v},\alpha} - \mathbf{e}^{(k)} \\
\mathbf{e}^{(k+1)} &= \mathbf{e}^{(k)} - r^{(k+1)}_{\mathbf{v},\alpha} + \mathbf{v}^{(k+1)}.
\end{align*}
\]

When \(\alpha = 1 \), the proposed method reverts to the linearized AL method.
Proposed relaxed linearized AL method

The proposed relaxed linearized AL method solves the equivalent minimization problem with a redundant equality constraint using the relaxed AL method:

\[
\begin{align*}
 x^{(k+1)} &\in \arg\min_x \left\{ h(x) + \frac{\rho}{2} \|Ax - u^{(k)} - d^{(k)}\|^2 + \frac{\rho}{2} \|G^{1/2}x - v^{(k)} - e^{(k)}\|^2 \right\} \\
 u^{(k+1)} &\in \arg\min_u \left\{ \frac{1}{2} \|u - y\|^2 + \frac{\rho}{2} \|r_{u,\alpha}^{(k+1)} - u - d^{(k)}\|^2 \right\} \\
 d^{(k+1)} &= d^{(k)} - r_{u,\alpha}^{(k+1)} + u^{(k+1)} \\
 v^{(k+1)} &= r_{v,\alpha}^{(k+1)} - e^{(k)} \\
 e^{(k+1)} &= e^{(k)} - r_{v,\alpha}^{(k+1)} + v^{(k+1)}.
\end{align*}
\]

When \(\alpha = 1 \), the proposed method reverts to the linearized AL method.
Proposed relaxed linearized AL method (cont’d)

The proposed relaxed linearized AL method further simplifies as follows:

\[
\begin{align*}
\gamma^{(k+1)} &= (\rho - 1) g^{(k)} + \rho h^{(k)} \\
x^{(k+1)} &\in \arg\min_x \left\{ h(x) + \frac{1}{2} \| x - (\rho D_L)^{-1} \gamma^{(k+1)} \|_2^2 \right\} \\
\zeta^{(k+1)} &= \nabla L(x^{(k+1)}) \triangleq A' (Ax^{(k+1)} - y) \\
g^{(k+1)} &= \frac{\rho}{\rho+1} \left(\alpha \zeta^{(k+1)} + (1 - \alpha) g^{(k)} \right) + \frac{1}{\rho+1} g^{(k)} \\
h^{(k+1)} &= \alpha (D_L x^{(k+1)} - \zeta^{(k+1)}) + (1 - \alpha) h^{(k)},
\end{align*}
\]

where \(L(x) \triangleq (1/2) \| Ax - y \|_2^2 \) denotes the quadratic data-fidelity term, and \(g^{(k)} \triangleq A'(u^{(k)} - y) \) denotes the split gradient of \(L \).
The proposed relaxed linearized AL method further simplifies as follows:

\[
\begin{align*}
\gamma^{(k+1)} &= (\rho - 1) g^{(k)} + \rho h^{(k)} \\
x^{(k+1)} &\in \arg \min_x \left\{ h(x) + \frac{1}{2} \| x - (\rho D_L)^{-1} \gamma^{(k+1)} \|^2_{\rho D_L} \right\} \\
\zeta^{(k+1)} &= \nabla L(x^{(k+1)}) \triangleq A' (Ax^{(k+1)} - y) \\
g^{(k+1)} &= \frac{\rho}{\rho + 1} \left(\alpha \zeta^{(k+1)} + (1 - \alpha) g^{(k)} \right) + \frac{1}{\rho + 1} g^{(k)} \\
h^{(k+1)} &= \alpha \left(D_L x^{(k+1)} - \zeta^{(k+1)} \right) + (1 - \alpha) h^{(k)},
\end{align*}
\]

where \(L(x) \triangleq (1/2) \| Ax - y \|_2^2 \) denotes the quadratic data-fidelity term, and \(g^{(k)} \triangleq A'(u^{(k)} - y) \) denotes the split gradient of \(L \).
Relaxed OS-LALM for faster CT reconstruction

To solve X-ray CT image reconstruction problem:

\[\hat{x} \in \arg\min_x \left\{ \frac{1}{2} \| y - Ax \|_W^2 + R(x) + \iota_\Omega(x) \right\} \]

using the proposed relaxed linearized AL method, we apply the following substitution:

\[
\begin{cases}
A \leftarrow W^{1/2} A \\
y \leftarrow W^{1/2} y
\end{cases}
\]

and set \(h \triangleq R + \iota_\Omega \).
Relaxed OS-LALM for faster CT reconstruction

To solve X-ray CT image reconstruction problem:

\[\hat{x} \in \arg \min_x \left\{ \frac{1}{2} \| y - Ax \|_W^2 + R(x) + \iota_{\Omega}(x) \right\} \]

using the proposed relaxed linearized AL method, we apply the following substitution:

\[
\begin{cases}
 A &\leftarrow W^{1/2} A \\
y &\leftarrow W^{1/2} y
\end{cases}
\]

and set \(h \triangleq R + \iota_{\Omega} \).

The image update now is a diagonally weighted denoising problem. We solve it using a projected gradient descent step from \(x^{(k)} \).
Relaxed OS-LALM for faster CT reconstruction

To solve X-ray CT image reconstruction problem:

$$\hat{x} \in \arg \min_x \left\{ \frac{1}{2} \|y - Ax\|_W^2 + R(x) + \iota_\Omega(x) \right\}$$

using the proposed relaxed linearized AL method, we apply the following substitution:

$$\begin{cases}
 A &\leftarrow W^{1/2} A \\
 y &\leftarrow W^{1/2} y
\end{cases}$$

and set \(h \triangleq R + \iota_\Omega \).

The image update now is a \textbf{diagonally weighted denoising problem}. We solve it using a \textbf{projected gradient descent step from} \(x^{(k)} \). For speed-up, \textbf{ordered subsets (OS)} or incremental gradients are used.
We also use a **continuation technique** to speed up convergence; that is, we decrease ρ gradually with iteration.
Speed-up with decreasing continuation sequence

We also use a continuation technique to speed up convergence; that is, we decrease ρ gradually with iteration.

Based on a second-order recursive system analysis, we use

$$\rho_i(\alpha) = \begin{cases}
1, & \text{if } i = 0 \\
\frac{\pi}{\alpha(i+1)} \sqrt{1 - \left(\frac{\pi}{2\alpha(i+1)}\right)^2}, & \text{otherwise.}
\end{cases}$$

Therefore, we use a faster-decreasing continuation sequence in a more over-relaxed linearized AL method.

Proposed relaxed linearized algorithm

Algorithm: Relaxed OS-LALM for CT reconstruction.

Input: $K \geq 1$, $M \geq 1$, $0 < \alpha < 2$, and an initial (FBP) image x.

set $\rho = 1$, $\zeta = g = M \nabla L_M(x)$, $h = D_L x - \zeta$

for $k = 1, 2, \ldots, K$ do

for $m = 1, 2, \ldots, M$ do

$s = \rho (D_L x - h) + (1 - \rho) g$

$x^+ = \left[x - (\rho D_L + D_R)^{-1} (s + \nabla R(x)) \right] \Omega$

$\zeta = M \nabla L_m(x^+)$

$g^+ = \frac{\rho}{\rho + 1} (\alpha \zeta + (1 - \alpha) g) + \frac{1}{\rho + 1} g$

$h^+ = \alpha (D_L x^+ - \zeta) + (1 - \alpha) h$

decrease ρ using (2)

end

end

Output: The final image x.
Chest region helical scan

We reconstruct a $600 \times 600 \times 222$ image from an $888 \times 64 \times 3611$ helical (pitch 1.0) CT scan.

![Figure: Chest: Cropped images of the initial FBP image $x^{(0)}$ (left), the reference reconstruction x^* (center), and the reconstructed image $x^{(20)}$ using relaxed OS-LALM with 10 subsets after 20 iterations (right).]
Figure: Chest: Convergence rate curves of different OS algorithms with 10 (left) and 20 (right) subsets.
Figure: Chest: Difference images of the initial FBP image $x^{(0)} - x^*$ and the reconstructed image $x^{(10)} - x^*$ using OS algorithms with 10 subsets after 10 iterations.
Figure: Chest: Difference images of the initial FBP image $\mathbf{x}^{(0)} - \mathbf{x}^*$ and the reconstructed image $\mathbf{x}^{(5)} - \mathbf{x}^*$ using OS algorithms with 20 subsets after 5 iterations.
Chest region helical scan (cont’d)

Figure: Chest: Difference images of the initial FBP image $\mathbf{x}^{(0)} - \mathbf{x}^*$ and the reconstructed image $\mathbf{x}^{(10)} - \mathbf{x}^*$ using OS algorithms with 20 subsets after 10 iterations.
Chest region helical scan (cont’d)

Figure: Chest: Difference images of the initial FBP image $\mathbf{x}^{(0)} - \mathbf{x}^*$ and the reconstructed image $\mathbf{x}^{(20)} - \mathbf{x}^*$ using OS algorithms with 20 subsets after 20 iterations.

More results
Conclusions and future work

In summary,

▶ We proposed a relaxed variant of linearized AL methods for faster X-ray CT image reconstruction
▶ Experimental results showed that the proposed algorithm converges α-fold faster than its unrelaxed counterpart
▶ The speed-up means that one needs fewer subsets to reach an RMS difference criteria in a given number of iterations
▶ Empirically, the proposed algorithm is reasonably stable when we use moderate numbers of subsets

For future work,

▶ We want to work on the convergence rate analysis of the proposed algorithm
Conclusions and future work

In summary,

► We proposed a relaxed variant of linearized AL methods for faster X-ray CT image reconstruction

► Experimental results showed that the proposed algorithm converges α-fold faster than its unrelaxed counterpart

► The speed-up means that one needs fewer subsets to reach an RMS difference criteria in a given number of iterations

► Empirically, the proposed algorithm is reasonably stable when we use moderate numbers of subsets

For future work,

► We want to work on the convergence rate analysis of the proposed algorithm
Conclusions and future work

In summary,

▸ We proposed a relaxed variant of linearized AL methods for faster X-ray CT image reconstruction

▸ Experimental results showed that the proposed algorithm converges \(\alpha \)-fold faster than its unrelaxed counterpart

▸ The speed-up means that one needs fewer subsets to reach an RMS difference criteria in a given number of iterations

▸ Empirically, the proposed algorithm is reasonably stable when we use moderate numbers of subsets

For future work,

▸ We want to work on the convergence rate analysis of the proposed algorithm
Conclusions and future work

In summary,

▶ We proposed a relaxed variant of linearized AL methods for faster X-ray CT image reconstruction

▶ Experimental results showed that the proposed algorithm converges α-fold faster than its unrelaxed counterpart

▶ The speed-up means that one needs fewer subsets to reach an RMS difference criteria in a given number of iterations

▶ Empirically, the proposed algorithm is reasonably stable when we use moderate numbers of subsets

For future work,

▶ We want to work on the convergence rate analysis of the proposed algorithm
Conclusions and future work

In summary,

- We proposed a relaxed variant of linearized AL methods for faster X-ray CT image reconstruction.
- Experimental results showed that the proposed algorithm converges α-fold faster than its unrelaxed counterpart.
- The speed-up means that one needs fewer subsets to reach an RMS difference criteria in a given number of iterations.
- Empirically, the proposed algorithm is reasonably stable when we use moderate numbers of subsets.

For future work,

- We want to work on the convergence rate analysis of the proposed algorithm.
Conclusions and future work

In summary,

▶ We proposed a relaxed variant of linearized AL methods for faster X-ray CT image reconstruction
▶ Experimental results showed that the proposed algorithm converges α-fold faster than its unrelaxed counterpart
▶ The speed-up means that one needs fewer subsets to reach an RMS difference criteria in a given number of iterations
▶ Empirically, the proposed algorithm is reasonably stable when we use moderate numbers of subsets

For future work,

▶ We want to work on the convergence rate analysis of the proposed algorithm
Acknowledgments

- Supported in part by NIH grant U01 EB-018753
- Equipment support from Intel Corporation
- Research support from GE Healthcare
Shoulder region helical scan

We reconstruct a $512 \times 512 \times 109$ image from an $888 \times 32 \times 7146$ helical (pitch 0.5) CT scan.

Figure: Shoulder: Cropped images of the initial FBP image $x^{(0)}$ (left), the reference reconstruction x^* (center), and the reconstructed image $x^{(20)}$ using relaxed OS-LALM with 20 subsets after 20 iterations (right).
Shoulder region helical scan (cont’d)

Figure: Shoulder: Convergence rate curves of different OS algorithms with 20 (left) and 40 (right) subsets.
Figure: Shoulder: Difference images of the initial FBP image $x^{(0)} - x^*$ and the reconstructed image $x^{(20)} - x^*$ using OS algorithms with 20 subsets after 20 iterations.
Abdomen region helical scan

We reconstruct a $600 \times 600 \times 239$ image from an $888 \times 64 \times 3516$ helical (pitch 1.0) CT scan.

Figure: Abdomen: Cropped images of the initial FBP image $x^{(0)}$ (left), the reference reconstruction x^* (center), and the reconstructed image $x^{(20)}$ using relaxed OS-LALM with 10 subsets after 20 iterations (right).
Abdomen region helical scan (cont’d)

Figure: Abdomen: Convergence rate curves of different OS algorithms with 10 (left) and 20 (right) subsets.
Abdomen region helical scan (cont’d)

Figure: Abdomen: Difference images of the initial FBP image $x^{(0)} - x^*$ and the reconstructed image $x^{(20)} - x^*$ using OS algorithms with 10 subsets after 20 iterations.
Simple vs. proposed relaxed OS-LALM

Figure: Chest: Convergence rate curves of different relaxed algorithms with a fixed AL parameter $\rho = 0.05$ (left) and the decreasing ρ (right).
Wide-cone axial scan

We reconstruct a $718 \times 718 \times 440$ image from an $888 \times 256 \times 984$ axial CT scan.

Figure: Wide-cone: Cropped images of the initial FBP image $\mathbf{x}^{(0)}$ (left), the reference reconstruction \mathbf{x}^* (center), and the reconstructed image $\mathbf{x}^{(20)}$ using relaxed OS-LALM with 24 subsets after 20 iterations (right).
Wide-cone axial scan (cont’d)

Figure: Wide-cone: Convergence rate curves of different OS algorithms with 12 (left) and 24 (right) subsets.