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S A
What is computed tomography?

Projection radiography

An imaging technique that uses X-rays to view the internal structure of a
non-uniformly composed and opaque object such as the human body.

Computed tomography

An imaging technique that combines a series of X-ray projections taken
from many different angles and computer processing (i.e., reconstruction
methods) to create cross-sectional images of the bones and soft tissues
inside to the human body.

Hung Nien (U of M) Model-based X-ray CT image recon using VS methods with OS 05/19/2014 7 /58




Background Model-based CT reconstruction

What is computed tomography?

Figure: Chest X-ray image (left) and cross-sectional image of abdomen (right).
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Background Model-based CT reconstruction

Basics of X-ray computed tomography
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Background Model-based CT reconstruction

Image reconstruction methods

Non-iterative methods
@ Direct Fourier reconstruction
o Filter-backproject (FBP) method
e Very fast (seconds) but prone to noise (medium/high dose) )

[terative methods
e Maximum a posteriori (MAP) formulation
@ Penalized weighted least-squares (PWLS) formulation [TS*07]

X € arg )r;ngg {\U(x) 1 Ax||qy + R(x)}
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Image reconstruction methods

Figure: Dose reduction: FBP (left), ASiR (middle), and MBIR (right).
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Background Model-based CT reconstruction

Image reconstruction methods

Large problem size

x: 512 x 512 x 100 ~ 3 - 107 unknown image volume

y: 888 x 32 x 7000 ~ 2 - 108 measured noisy sinogram

A: (3 . 107) X (2 . 108) system matrix

A is sparse but still too large to store

Projection Ax and back-projection A’r operations computed on the fly

Computing gradient VW(x) = A'W (Ax — y) + VR(x) requires
projection and back-projection operations that dominate computation

e 6 6 6 o o
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S A
Image reconstruction methods

Large problem size
@ x: 512 x 512 x 100 ~ 3 - 10" unknown image volume
y: 888 x 32 x 7000 ~ 2 - 108 measured noisy sinogram
A: (3 . 107) X (2 . 108) system matrix
A is sparse but still too large to store
Projection Ax and back-projection A’r operations computed on the fly
Computing gradient VW(x) = A'W (Ax — y) + VR(x) requires
projection and back-projection operations that dominate computation

Enormous dynamic range of transmission data
@ The dynamic range of weighting W is huge
@ A’WA is highly shift-variant, and the problem is very ill-conditioned
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Image reconstruction methods

Non-iterative methods
@ Direct Fourier reconstruction
o Filter-backproject (FBP) method
@ Very fast (seconds) but prone to noise (medium/high dose)

[terative methods
e Maximum a posteriori (MAP) formulation
@ Penalized weighted least-squares (PWLS) formulation [TS*07]

X € arg )r;ngg {\U(x) 1 Ax|qy + R(x)}

@ Very slow (hours) but noise robust (low dose)
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Background Model-based CT reconstruction

Image reconstruction methods

Non-iterative methods
@ Direct Fourier reconstruction
o Filter-backproject (FBP) method
@ Very fast (seconds) but prone to noise (medium/high dose) )

Fast iterative methods
e Maximum a posteriori (MAP) formulation
@ Penalized weighted least-squares (PWLS) formulation [TS*07]

X € arg )r;ngg {\U(x) 1 Ax|qy + R(x)}

e Fast (minutes) and noise robust (low dose)
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Fast (2D) CT reconstruction using ADMM
Outline

@ Background

@ Fast (2D) CT reconstruction using ADMM
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CT reconstruction using split Bregman method

Equivalent formulation and split Bregman method
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CT reconstruction using split Bregman method

Equivalent formulation and split Bregman method

@ PWLS CT reconstruction: X € argmin {% ly — Ax||3, + <I>(Cx)}
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CT reconstruction using split Bregman method

Equivalent formulation and split Bregman method
@ PWLS CT reconstruction: X € argmin {% ly — Ax||3, + <I>(Cx)}
X

e Equivalent formulation [GOO09]:

(%,v) € arg n)r(nvn {% ly — Ax|gy + CD(V)} s.t. v=Cx
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CT reconstruction using split Bregman method

Equivalent formulation and split Bregman method
@ PWLS CT reconstruction: X € argmin {% ly — Ax||3, + <I>(Cx)}
X
e Equivalent formulation [GOO09]:

(%,v) € arg n)r(nvn {% ly — Ax|gy + CD(V)} s.t. v=Cx

e Corresponding (scaled) augmented Lagrangian:

s 1

La(x,v,en) £ 5 |y — Ax|lyy + O(v) + 3 [|Cx — v —e]3
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CT reconstruction using split Bregman method

Equivalent formulation and split Bregman method (cont’d)
@ Split Bregman iterates [GOQ9]:
D) € argmin {1 ly = Ax|y + 3 [[Cx — vt — (9|}
V(D) € arg min {cb(v) + 3 jexte) —y - e(k)Hg}
elk+1) — a(k) _ Cx(k+1) 4 y(k+1)
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CT reconstruction using split Bregman method

Equivalent formulation and split Bregman method (cont’d)
@ Split Bregman iterates [GOQ9]:
x(k+1) ¢ argmxin{% ly — Ax|lgy + 2 ||Cx — v(¥) W15 }
vk € arg min {cb(v) L alext D v —e k)Hz}
elk+1) — a(k) _ Cx(k+1) 4 y(k+1)
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CT reconstruction using split Bregman method

Equivalent formulation and split Bregman method (cont’d)
@ Split Bregman iterates [GOQ9]:
x4 € argmin {1 |y — Ax|y + 3 HCX ~ - e}
vkl € arg min {Cb(v + 7 [|ex(k+D) H }
elk+1) — a(k) _ Cx(k+1) 4 y(k+1)
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CT reconstruction using split Bregman method

Equivalent formulation and split Bregman method (cont’d)
@ Split Bregman iterates [GOQ9]:
x4 € argmin { § ly — Ax|fy + § |Cx— v — e}
v(kt1) € arg min {(D(V) +3 HCx(kH) —v— e(k)Hi}

e(k+1) = e(k) —_ Cx(k+1) + V(k+1)
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CT reconstruction using split Bregman method

Equivalent formulation and split Bregman method (cont’d)

@ Split Bregman iterates [GOQ9]:
D) € argmin {1 ly = Ax|y + 3 [[Cx — vt — (9|}
v+ € arg min {cb(v) + 3 jexte) —y - e(k)Hg}

elkt1) — oK) _ Cx(k+1) | y(k+1)

e Convergent with inexact updates [NF14a]
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CT reconstruction using split Bregman method

Equivalent formulation and split Bregman method (cont’d)
@ Split Bregman iterates [GOQ9]:
D) € argmin {1 lly — Ax|y + 4 [[Cx — v(4) — (9|0}
V(D) € arg min {cb(v) + 3 jexte) —y - e(k)Hg}
elk+1) — a(k) _ Cx(k+1) 4 y(k+1)

e Convergent with inexact updates [NF14a]
@ Slow x-update due to the highly shift-variant Hessian A’'WA + nC'C
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Fast (2D) CT reconstruction using ADMM
Better conditioning with additional VS

The idea is ...
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Fast (2D) CT reconstruction using ADMM
Better conditioning with additional VS

The idea is ...
e In 2D CT, A’'WA is highly shift-variant, but A’A is not

@ Replacing the weighted quadratic function in the x-update with an
unweighted one removes most shift-variances of the Hessian

Alternative formulation and ADMM
o Alternative formulation [RF12]:

(%x,0,V) € arg min {% ly — ulljy + CD(V)} s.t. u= Ax,v = Cx
X, U,V
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Fast (2D) CT reconstruction using ADMM
Better conditioning with additional VS

Alternative formulation and ADMM (cont’d)
o ADMM iterates [RF12]:

XD ¢ argmin {4 [ Ax — u(9) — d®)|7 4 7 [[Cx — v — e®|2
ulkt1) € arg min {5 ly — ulljy + 2 ||AxkH) —u — d(k)Hg}
vkt € arg min {(D(V + 2 jextH) —v — e(k)Hi}

dk+1) — d(k) — Ax(k+1) 4 y(k+1)
elk+1) — (k) _ Cx(k+1) 4 y(k+1)

\
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Better conditioning with additional VS

Alternative formulation and ADMM (cont’d)
o ADMM iterates [RF12]:

dk+1) — d(k) — Ax(k+1) 4 y(k+1)
elk+1) — (k) _ Cx(k+1) 4 y(k+1)

\

XD ¢ argmin {4 | Ax — u(9) — d®
X
ulk+1) ¢ arg min {% ly — ullg, + 2 2 ||AxHD) —u — d(k)Hz}

vkt € arg min {(D(V +2[jext) —v —e

I>

S+ 3 flex v — a2}

®)5}
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Better conditioning with additional VS

Alternative formulation and ADMM (cont’d)
o ADMM iterates [RF12]:

dk+1) — d(k) — Ax(k+1) 4 y(k+1)
elk+1) — (k) _ Cx(k+1) 4 y(k+1)

\

XD ¢ argmin {4 [[Ax — u(9 — d®)|7 4 7 [[Cx —
ulk+l) ¢ arg min {— ly — ulljy + 2 [|Ax*+D —u

vkt € arg min {(D(V +2[jext) —v —e

- o2}

— |3}
®)5}
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Fast (2D) CT reconstruction using ADMM
Better conditioning with additional VS

Alternative formulation and ADMM (cont’d)
o ADMM iterates [RF12]:

XD ¢ argmin {4 [ Ax — u(9) — d®)|7 4 7 [[Cx — v — e®|2
ulkt1) € arg min {5 ly — ulljy + 2 ||AxkH) —u — d(k)Hg}
vkt € arg min {(D(V + 2 jextH) —v — e(k)Hi}

dk+1) — d(k) — Ax(k+1) 4 y(k+1)
elk+1) — (k) _ Cx(k+1) 4 y(k+1)

\

e Convergent with inexact updates [ABT11]
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Fast (2D) CT reconstruction using ADMM
Better conditioning with additional VS

Alternative formulation and ADMM (cont’d)
o ADMM iterates [RF12]:

XD ¢ argmin {4 [ Ax — u(9) — d®)|7 4 7 [[Cx — v — e®|2
ulkt1) € arg min {5 ly — ulljy + 2 ||AxkH) —u — d(k)Hg}
vkt € arg min {(D(V + 2 jextH) —v — e(k)Hi}

dk+1) — d(k) — Ax(k+1) 4 y(k+1)
elk+1) — (k) _ Cx(k+1) 4 y(k+1)

\

e Convergent with inexact updates [ABT11]

@ pA’A + nC'C can be well preconditioned by an appropriate circulant
preconditioner in 2D CT
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Fast (2D) CT reconstruction using ADMM
Better conditioning with additional VS
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Figure: 2D NCAT: RMS errors as a function of iteration (left) and time (right).
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Better conditioning with additional VS

ADMM-PCG2 | _

RMSE(x'?)  (in dB)
RMSE(x'?) (in dB)

144 180 216 252 288 324 360 0 79 158 237 316 395 474 553 632 7L 7190
7, (seconds)

Iterations

Figure: 2D NCAT: RMS errors as a function of iteration (left) and time (right).

The fact is ...
A’A is still highly shift-variant in 3D CT due to the different geometries
and scan trajectories, so this method is still slow in 3D CT
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OS-LALM: a splitting-based OS algorithm for PWLS problems

Outline

© OS-LALM: a splitting-based OS algorithm for PWLS problems
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(OSH WAV B \V HERTC [{aa]i}-S Pt MO -t gl T I TR AW BCRTGI SIEI  Linearized AL method with OS acceleration

Outline

© OS-LALM: a splitting-based OS algorithm for PWLS problems
@ Linearized AL method with OS acceleration

Hung Nien (U of M) Model-based X-ray CT image recon using VS methods with OS 05/19/2014 23 / 58



(OSH WAV B \V HERTC [{aa]i}-S Pt MO -t gl T I TR AW BCRTGI SIEI  Linearized AL method with OS acceleration

Motivation

What's wrong with ADMM in CT recon?
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Motivation

What's wrong with ADMM in CT recon?
@ Image update is non-trivial

@ Memory burden of difference images is high
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Possible solution?

@ Proposed formulation [NF13]:
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The idea is ...

e Majorizing 0x(x) = %HAX —ulk) — d(k)Hg simplifies image updates
@ Quadratic data-fitting term makes the u-updates linear
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@ Linearized AL method
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Inexact linearized AL method

Linearized AL method and proposed variants (cont'd)
o Gradient-based linearized AL method [NF14b]:
skt = pve(x(9)) 4 (1 — p) gk
x(KF1) € prox -1y, (x40 — (p71t) slkH1))
g(k+1) — T&Vﬁ(x(k""l)) _|_ pTllg(k)
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Linearized AL method and proposed variants (cont'd)
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Linearized AL method and proposed variants (cont'd)
o Gradient-based linearized AL method [NF14b]:
s(kJFl) — pr(x(k)) + (]_ _ p) g(k)
x(KF1) € prox -1y, (x40 — (p71t) slkH1))
g(k+1) — ﬁvg(x(k""l)) _|_ pTllg(k)
o Linearized AL method with OS acceleration (M subsets) [NF14b]:
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@ Inexact updates? Convergence rate? Many subsets? [NF14d]
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@ Deterministic downward continuation approach
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An inconvenient truth ... of ADMM
o ADMM is convergent for any fixed penalty parameter
@ But, it is fast only if the penalty parameter is chosen appropriately

@ Choosing the optimal parameter is still an open problem

Any alternative?
@ Yes, continuation!

@ Recall the proximal-gradient image update:

x(k+1) ¢ ProX(,-1¢)h (xK) — (p~1t) sth+D))
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@ Choosing the optimal parameter is still an open problem

Any alternative?
@ Yes, continuation!

@ Recall the proximal-gradient image update:
x(k+1) ¢ ProX(,-1¢)h (x) — (p~tt) sthr D))

@ We can adjust the step size by varying the penalty parameter
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Faster convergence using continuation

An inconvenient truth ... of ADMM
o ADMM is convergent for any fixed penalty parameter
@ But, it is fast only if the penalty parameter is chosen appropriately

@ Choosing the optimal parameter is still an open problem

Any alternative?
@ Yes, continuation!

@ Recall the proximal-gradient image update:
x(k+1) ¢ ProX(,-1¢)h (x) — (p~tt) sthr D))

@ We can adjust the step size by varying the penalty parameter (How?)
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@ Decreasing pyx compensates the shrinkage of step length

@ Decreasing py too fast could make the algorithm unstable or diverge
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OS-LALM: a splitting-based OS algorithm for PWLS problems Deterministic downward continuation approach

Faster convergence using continuation

Deterministic downward continuation
@ Decreasing pyx compensates the shrinkage of step length
@ Decreasing py too fast could make the algorithm unstable or diverge
@ The designed sequence [NF14d]:

1 L ifk=0

Pk = - T \2 .
k+1 1— (m) , OtherW|Se

Inspired by a second-order recursive system analysis

An adaptive restart condition takes care of the dependence on A
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© OS-LALM: a splitting-based OS algorithm for PWLS problems

@ Low-memory OS-LALM with additional variable splits
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OS-LALM with an additional VS

Is additional VS really beneficial?
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OS-LALM: a splitting-based OS algorithm for PWLS problems Low-memory OS-LALM with additional variable splits

OS-LALM with an additional VS

Is additional VS really beneficial?
@ /1-regularization (compressed sensing)
o TV-regularization (sparse-view CT)

@ Smooth regularizer with very high curvature (corner-rounding)

CT reconstruction with “high-memory” VS
e PWLS formulation:

X € arg xmelgr; {%Hy - Ang + CD(Cx)}
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OS-LALM: a splitting-based OS algorithm for PWLS problems Low-memory OS-LALM with additional variable splits

OS-LALM with an additional VS

Is additional VS really beneficial?
@ /1-regularization (compressed sensing)
o TV-regularization (sparse-view CT)

@ Smooth regularizer with very high curvature (corner-rounding)

CT reconstruction with “high-memory” VS
e PWLS formulation:

N . 1|~ = 112
% € arg min {iHy — Ax||; + CD(Cx)}
e Equivalent formulation [NF14c]:

(x,0,V) € arg min {% 1§ — ul3 + CD(V)} s.t. u= Ax,v = Cx
x€Q,u,v

[hat]
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OS-LALM: a splitting-based OS algorithm for PWLS problems Low-memory OS-LALM with additional variable splits

OS-LALM with an additional VS

“High-memory” OS-LALM

sl = pve(x() + (1 — p) gk

okt = ¢/ (Cx(K) — y(k) — (k)

x(k+1) — [xm — L (s 4 (kD)) ]
Q

pLi+nLa
g(k+1) — ﬁvg(x(kﬁ'l)) _|_ T-]hg(k)
vk ¢ proxﬁq(b(Cx(kH) — elk)
e(kJrl) = e(k) — Cx(kJrl) _|_ V(k+1)

v
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vk ¢ proxﬁq(b(Cx(kH) — elk)
e(kJrl) = e(k) — Cx(kJrl) _|_ V(k+1)

@ Gradient descent-like algorithm with adjustable step sizes
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OS-LALM: a splitting-based OS algorithm for PWLS problems Low-memory OS-LALM with additional variable splits

OS-LALM with an additional VS

“High-memory” OS-LALM

sl = pve(x() + (1 — p) gk

okt = ¢/ (Cx(K) — y(k) — (k)
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Q
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vk ¢ proxﬁq(b(Cx(kH) — elk)
e(kJrl) = e(k) — Cx(kJrl) _|_ V(k+1)

@ Gradient descent-like algorithm with adjustable step sizes

@ ® can be either smooth or non-smooth (with efficient proxs)
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@ Gradient descent-like algorithm with adjustable step sizes
@ ® can be either smooth or non-smooth (with efficient proxs)

@ Requires two extra image volumes for each direction
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OS-LALM: a splitting-based OS algorithm for PWLS problems Low-memory OS-LALM with additional variable splits

OS-LALM with an additional VS

“High-memory” OS-LALM

sl = pve(x() + (1 — p) gk
O'(k+1) = 77 CI (Cx(k) — v(k) — e(k))

x(k+1) — [xm — i (sK 4 ok ]Q

g(k+1) e ﬁvg(x(kﬁ'l)) _|_ T-]hg(k)
vk ¢ proxﬁq(b(Cx(kH) — elk)
e(kJrl) = e(k) — Cx(kJrl) _|_ V(k+1)

@ Gradient descent-like algorithm with adjustable step sizes

@ ® can be either smooth or non-smooth (with efficient proxs)
@ Requires two extra image volumes for each direction
°

Remarkable memory and computational overhead
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OS-LALM: a splitting-based OS algorithm for PWLS problems Low-memory OS-LALM with additional variable splits

Low-memory OS-LALM with “compressed” VS

The idea is ...
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Low-memory OS-LALM with “compressed” VS

The idea is ...
@ The auxiliary variables v and e can be large, but C'v and C’e are not

@ Majoirzing ® makes all v- and e-related updates linear!

“Low-memory” OS-LALM
@ At the kth iteration, replace ¢ by

dl)(v; CX(k+1)) x V/V¢(Cx(k+1)) + L7¢ HV _ CX(k+1)H§
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OS-LALM: a splitting-based OS algorithm for PWLS problems Low-memory OS-LALM with additional variable splits

Low-memory OS-LALM with “compressed” VS

The idea is ...
@ The auxiliary variables v and e can be large, but C'v and C’e are not

@ Majoirzing ® makes all v- and e-related updates linear!

“Low-memory” OS-LALM

@ At the kth iteration, replace ¢ by
C\IID(V; Cx(k+1)) o V’V¢(Cx(k+1)) + %“’ Hv — Cx(k+1) Hi
@ The v-update has a linear approximate solution:

vk ~ cx(k+1) (Le(k) + Lo L$1V¢(Cx(k+1))>

N+Le N+Lo
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OS-LALM: a splitting-based OS algorithm for PWLS problems

Low-memory OS-LALM with “compressed” VS

“Low-memory” OS-LALM (cont’d)

s(kJrl) — pvg(x(k)) —+ (]_ _ p) g(k)
ol1) = (30) ~ h)

V=[x - o (s 4 ok ) }Q
) = prIVE(x(k“)) + ﬁg(k)
) = %é(k) + ﬁVR(x(k“))

n
) — a(k) _ glk+1)

Low-memory OS-LALM with additional variable splits
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OS-LALM: a splitting-based OS algorithm for PWLS problems Low-memory OS-LALM with additional variable splits

Low-memory OS-LALM with “compressed” VS

“Low-memory” OS-LALM (cont’d)

s(kJrl) — pvg(x(k)) —+ (]_ _ p) g(k)
ol1) = (30) ~ h)

n
— a(k) _ g(k+1)

@ Suppose @ is smooth, and V& is Le-Lipschitz

XD = [x(6) — L (k) g k) }Q
AR bt
V( + ) — %e( )+WVR(X( + ))
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“Low-memory” OS-LALM (cont’d)

s(kJrl) — pvg(x(k)) + (]_ _ p) g(k)
ol1) = (30) ~ h)

n
— a(k) _ g(k+1)

@ Suppose @ is smooth, and V& is Le-Lipschitz

@ No explicit proximal mapping is in the updates

XD = [x(6) — L (k) g k) }Q
AR bt
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OS-LALM: a splitting-based OS algorithm for PWLS problems Low-memory OS-LALM with additional variable splits

Low-memory OS-LALM with “compressed” VS

“Low-memory” OS-LALM (cont’d)

s(kJrl) — pvg(x(k)) + (]_ _ p) g(k)
ol1) = (30) ~ h)

x(k+1) = [xm — rnn (K 4 gt }Q
g(k+1) = prIVE(x(k‘H-)) + ﬁg(k)
glk+1) — %é(k) + ﬁVR(x(k“))

n
alk+1) — g(k) _ glk+1)

@ Suppose @ is smooth, and V& is Le-Lipschitz
@ No explicit proximal mapping is in the updates

@ Requires only two extra image volumes for all directions
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OS configuration
@ OS with the bit-reversal order
o Separable quadratic surrogate with Hessian D| £ diag{A’WA1}
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Experimental results

Setup and notation

OS configuration
@ OS with the bit-reversal order

o Separable quadratic surrogate with Hessian D| £ diag{A’WA1}

Naming conventions
@ OS-SQS-M: the standard OS algorithm [EF99]
@ OS-Nes05-M: the state-of-the-art OS+momentum algorithm [KRT13]
@ OS-LALM-M-p-n: the proposed one-split algorithm [NF14b; NF14d]
@ OS-LALM-M-c-n (low-mem): the proposed two-split algorithm

Hung Nien (U of M) Model-based X-ray CT image recon using VS methods with OS 05/19/2014 36 / 58



Experimental results Low-dose CT with edge-preserving regularizers
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© Experimental results
@ Low-dose CT with edge-preserving regularizers
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Experimental results Low-dose CT with edge-preserving regularizers

Shoulder region helical scan

Specification
@ Image size: 512 x 512 x 109
@ Sinogram size: 888 x 32 x 7146 (about 7 turns, pitch = 0.5)
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Experimental results Low-dose CT with edge-preserving regularizers

Shoulder region helical scan

Specification
@ Image size: 512 x 512 x 109
@ Sinogram size: 888 x 32 x 7146 (about 7 turns, pitch = 0.5)

Converged Proposed

Figure: Shoulder: the initial FBP image (left), the reference reconstruction
(middle), and the reconstructed image using OS-LALM after 30 iterations (right).
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Experimental results Low-dose CT with edge-preserving regularizers

Shoulder region helical scan
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Figure: Shoulder: RMS differences as a function of iteration using different
OS-based algorithms with 20 subsets (left) and 40 subsets (right).
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Figure: Shoulder: RMS differences as a function of iteration using different
OS-based algorithms with 20 subsets (left) and 40 subsets (right).
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Figure: Shoulder: RMS differences as a function of iteration using different
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Experimental results Low-dose CT with edge-preserving regularizers

Shoulder region helical scan
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Figure: Shoulder: RMS differences as a function of iteration using different
OS-based algorithms with 20 subsets (left) and 40 subsets (right).
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Experimental results Low-dose CT with edge-preserving regularizers

Shoulder region helical scan
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Figure: Shoulder: RMS differences as a function of iteration using different
OS-based algorithms with 20 subsets (left) and 40 subsets (right).
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Figure: Shoulder: RMS differences as a function of iteration using different
OS-based algorithms with 20 subsets (left) and 40 subsets (right).
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Experimental results Low-dose CT with edge-preserving regularizers

Shoulder region helical scan
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Figure: Shoulder: RMS differences as a function of iteration using different
OS-based algorithms with 20 subsets (left) and 40 subsets (right).
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Experimental results Low-dose CT with edge-preserving regularizers

Shoulder region helical scan
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Figure: Shoulder: reconstructed images using different OS-based algorithms after
30 iterations.
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Experimental results Low-dose CT with edge-preserving regularizers

Shoulder region helical scan
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0S-SQS-40 . OS-LALM-40-c-1 0OS-Nes05-40

Figure: Shoulder: difference images of the reconstructed images using different
OS-based algorithms after 30 iterations.
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Experimental results Low-dose CT with edge-preserving regularizers

GE performance phantom axial scan

Specification
@ Image size: 1024 x 1024 x 90

@ Sinogram size: 888 x 64 x 984 (less view redundancy, cf. helical scan)
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Experimental results Low-dose CT with edge-preserving regularizers

GE performance phantom axial scan

Specification
@ Image size: 1024 x 1024 x 90

@ Sinogram size: 888 x 64 x 984 (less view redundancy, cf. helical scan)
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Figure: GEPP: the initial FBP image (left), the reference reconstruction (middle),
and the reconstructed image using OS-LALM after 30 iterations (right).
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Experimental results Low-dose CT with edge-preserving regularizers

GE performance phantom axial scan
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Figure: GEPP: RMS differences as a function of iteration using different
OS-based algorithms with 12 subsets (left) and 24 subsets (right).
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Experimental results Low-dose CT with edge-preserving regularizers

GE performance phantom axial scan

30
0S-SQs-12 OS-Nes05-12 OS-LALM-12—c-1

20

Figure: GEPP: difference images of the reconstructed images using different
OS-based algorithms with 12 subsets after 30 iterations.
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Experimental results Low-dose CT with edge-preserving regularizers

GE performance phantom axial scan
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Figure: GEPP: difference images of the reconstructed images using different
OS-based algorithms with 24 subsets after 30 iterations.
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Sparse-view CT with TV-like regularizers
Outline

© Experimental results

@ Sparse-view CT with TV-like regularizers
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SO EINCSIIS  Sparse-view CT with TV-like regularizers

Chest region half scan

Specification
@ Image size: 718 x 718 x 122
@ Sinogram size: 888 x 64 x 81 (about 12.6% views are used)
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Experimental results Sparse-view CT with TV-like regularizers

Chest region half scan

Specification
@ Image size: 718 x 718 x 122
@ Sinogram size: 888 x 64 x 81 (about 12.6% views are used)
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Figure: Chest: the initial FBP image (left), the reference reconstruction (middle),
and the reconstructed image using OS-LALM after 100 iterations (right).
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SO EINCSIIS  Sparse-view CT with TV-like regularizers

Chest region half scan

300 300
—6— OS-LALM-5-¢c-0.2 (low-mem) —6— OS-LALM-5-c-0.2 (low-mem)
—+— OS-LALM-5-¢c-0.1 (low—mem) L —+— OS-LALM-5-¢c-0.1 (low-mem)
250 —o— OS-LALM-5-¢c-0.05 (low-mem) |4 250 —#— OS-LALM-5-¢-0.05 (low-mem)
200 200
=) =)
= B
Q 150 Q 150
7] %)
= =
T [
100 100
50 50
0 . . . . . . .
0 05 1 15 3 35 4

2 25
Time [ksec]

Figure: Chest: RMS differences as a function of iteration (left) and time (right)
using OS-LALM with M =5 and different values of 7.
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SO EINCSIIS  Sparse-view CT with TV-like regularizers

Chest region half scan
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Figure: Chest: RMS differences as a function of iteration (left) and time (right)
using OS-LALM with different values of M and n = 0.05.
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SO EINCSIIS  Sparse-view CT with TV-like regularizers

Chest region half scan
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Figure: Chest: RMS differences as a function of iteration (left) and time (right)
using different OS-based algorithms with M = 5.
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Experimental results Sparse-view CT with TV-like regularizers

Chest region half scan
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Figure: Chest: reconstructed images using different OS-based algorithms with
M =5 after 100 iterations.
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Conclusion and future work

Conclusion

We proposed ...

o A splitting-based OS algorithm, OS-LALM, for solving PWLS X-ray
CT image reconstruction problems

@ A deterministic downward continuation approach for accelerating the
proposed algorithm

@ A low-memory variant of the proposed algorithm when considering
additional variable splits
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Conclusion and future work

Conclusion

We proposed ...

o A splitting-based OS algorithm, OS-LALM, for solving PWLS X-ray
CT image reconstruction problems

@ A deterministic downward continuation approach for accelerating the
proposed algorithm

@ A low-memory variant of the proposed algorithm when considering
additional variable splits

Experimental results showed that ...

@ The proposed algorithm significantly accelerates the convergence of
X-ray CT image reconstruction with negligible overhead

@ The proposed algorithm is stable when using many subsets for OS
acceleration
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Conclusion and future work

Future work

Theory
@ Convergence analysis of OS-LALM when M > 1
@ Convergence analysis of OS-LALM with downward continuation
@ Optimal downward continuation and restart condition
o Convergence analysis of low-mem OS-LALM
o

Parameter selection for low-mem OS-LALM
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Conclusion and future work

Future work

Theory
@ Convergence analysis of OS-LALM when M > 1
@ Convergence analysis of OS-LALM with downward continuation
@ Optimal downward continuation and restart condition
o Convergence analysis of low-mem OS-LALM
o

Parameter selection for low-mem OS-LALM

Extension
o Non-quadratic data-fitting term

@ Low-mem OS-LALM with non-smooth potential functions

Hung Nien (U of M) Model-based X-ray CT image recon using VS methods with OS 05/19/2014 54 / 58



References |

[AB*11]

[EF99]

[GOOY]

[KR*13]

M. V. Afonso, J. M. Bioucas-Dias, and M. A. T. Figueiredo.
“An augmented Lagrangian approach to the constrained
optimization formulation of imaging inverse problems”. In:
IEEE Trans. Im. Proc. 20.3 (Mar. 2011), pp. 681-95.

H. Erdogan and J. A. Fessler. “Ordered subsets algorithms for
transmission tomography”. In: Phys. Med. Biol. 44.11 (Nov.
1999), pp. 2835-51.

T. Goldstein and S. Osher. “The split Bregman method for
L1-regularized problems”. In: SIAM J. Imaging Sci. 2.2 (2009),
pp. 323-43.

D. Kim, S. Ramani, and J. A. Fessler. “Accelerating X-ray CT
ordered subsets image reconstruction with Nesterov's first-order
methods". In: Proc. Intl. Mtg. on Fully 3D Image Recon. in
Rad. and Nuc. Med. 2013, pp. 22-5.

Hung Nien (U of M) Model-based X-ray CT image recon using VS methods with OS 05/19/2014 55 / 58



References |l

[NF13]

[NF14a]

[NF14b]

[NF14c]

H. Nien and J. A. Fessler. “Combining augmented Lagrangian
method with ordered subsets for X-ray CT reconstruction”. In:
Proc. Intl. Mtg. on Fully 3D Image Recon. in Rad. and Nuc.
Med. 2013, pp. 280-3.

H. Nien and J. A. Fessler. “A convergence proof of the split
Bregman method for regularized least-squares problems”. In:
arXiv: 1402.4371 (2014).

H. Nien and J. A. Fessler. “Accelerating ordered-subsets X-ray
CT image reconstruction using the linearized augmented
Lagrangian framework”. In: Proc. SPIE 9033 Medical Imaging
2014: Phys. Med. Im. To appear. 2014.

H. Nien and J. A. Fessler. “Fast splitting-based ordered-subsets
X-ray CT image reconstruction”. In: Proc. 3rd Intl. Mtg. on
image formation in X-ray CT. Submitted. 2014.

Hung Nien (U of M) Model-based X-ray CT image recon using VS methods with OS 05/19/2014 56 / 58



References IlI

[NF14d] H. Nien and J. A. Fessler. “Fast X-ray CT image reconstruction
using the linearized augmented Lagrangian method with
ordered subsets”. In: arXiv: 1402.4381 (2014).

[RF12]  S. Ramani and J. A. Fessler. “A splitting-based iterative
algorithm for accelerated statistical X-ray CT reconstruction”.
In: IEEE Trans. Med. Imag. 31.3 (Mar. 2012), pp. 677-88.

[TST07] J-B. Thibault et al. “A three-dimensional statistical approach
to improved image quality for multi-slice helical CT". In: Med.
Phys. 34.11 (Nov. 2007), pp. 4526—-44.

Hung Nien (U of M) Model-based X-ray CT image recon using VS methods with OS 05/19/2014 57 / 58



THANK YOU!

any question?
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Second-order recursive system analysis

Minimize a quadratic function

@ Simple quadratic programming:

X € arg mxin : |Ax||5
o Let VAV’ be the EVD of A’A, where 0 < =X\ < ... <)\, =1L
o LALM iterates (with a fixed p):

x(FD) = x() — (1/L) (VAV'x(K) + (p~1 — 1) g(¥)
g(kJrl) — ﬁV/\le(kJrl) + ﬁg(k)
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Backup slides

Second-order recursive system analysis

Minimize a quadratic function

@ Simple quadratic programming:
: L1 2
X € argmin 3 | Ax||5
o Let VAV’ be the EVD of A’A, where 0 < =X\ < ... <)\, =1L
o LALM iterates (with a fixed p):
x(FD) = x() — (1/L) (VAV'x(K) + (p~1 — 1) g(¥)
g(k+1) — ﬁVAVIX(kJrl) + piilg(k)
@ The diagonalized system X = V'x and g £ V'g satisfies a 2nd-order

recursive system determined by the characteristic polynomial:

(L+p)r =21 —=XN/L+p/2)r+(1—N\/L)
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@ p = pr: critically damped
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Let

a2y (1-%)

@ p = pr: critically damped

@ p > pr: over-damped

@ p < p7: under-damped, oscillates with frequency v; ~ \/m
We also observed that

@ In practice, the asymp. convergence rate of the system is determined
by the eigencomponent with the smallest eigenvalue A\; =
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Second-order recursive system analysis

System behaviors based on the value of p
Let

a2y (1-%)

@ p = pr: critically damped

@ p > pr: over-damped

@ p < p7: under-damped, oscillates with frequency v; ~ \/m
We also observed that

@ In practice, the asymp. convergence rate of the system is determined
by the eigencomponent with the smallest eigenvalue A\; =

@ For \; < L/2, the critically damped system converges fastest
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To attain the fastest asymp. convergence rate, we would like to choose

Pr=ri=2E(1-1)
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Second-order recursive system analysis

System behaviors based on the value of p (cont'd)

To attain the fastest asymp. convergence rate, we would like to choose

Pr=ri=2E(1-1)

L
|
; |
|

01 L — | —L=09
I
.

ML=1

Figure: Asymptotic convergence
rate of a system with 6 distinct
eigenvalues.
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Second-order recursive system analysis

Design a decreasing sequence px — p*
We know that
@ As the algorithm proceeds, only the component oscillating at the
fregency Y1 =~ \/m persists
o In this case, £(k) £ (g(¥) — Vﬁ(x(kﬂ)))/ (Ve(x(D) — ve(x(K))
oscillates at the frequency 2\/m
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@ As the algorithm proceeds, only the component oscillating at the
freqency 11 =~ \/pu/L persists

o In this case, £(k) £ (g(¥) — Vﬁ(x(kﬂ)))/ (Ve(x(D) — ve(x(K))
oscillates at the frequency 2+/p/L

o If the algorithm is restarted when £(k) > 0, we shall observe the next
restart signal after a further (7/2)+/L/u iterations
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Second-order recursive system analysis

Design a decreasing sequence px — p*
We know that

@ As the algorithm proceeds, only the component oscillating at the
freqency 11 =~ \/pu/L persists

o In this case, £(k) £ (g(¥) — Vé(x(kﬂ)))/ (Ve(x(D) — ve(x(K))
oscillates at the frequency 2+/p/L

o If the algorithm is restarted when £(k) > 0, we shall observe the next
restart signal after a further (7/2)+/L/u iterations

@ We can easily design a decreasing sequence py that reaches p* every
time we restart the algorithm!
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