Model-based X-ray CT image reconstruction using variable splitting methods with ordered subsets

Hung Nien (粘紘) Advisor: Prof. Jeffrey A. Fessler

University of Michigan, Ann Arbor

May 19, 2014

Hung Nien (U of M) Model-based X-ray CT image recon using VS methods with OS

05/19/2014 1 / 58

- Supported in part by NIH grant R01-HL-098686
- Supported in part by an equipment donation from Intel Corp.
- Sinogram data are provided by GE Healthcare

Introduction

- Background of X-ray CT and its reconstruction
- Fast X-ray CT image reconstruction using VS methods with OS [HN & J A Fessler, Fully 3D, 2013]
 [HN & J A Fessler, SPIE MI, 2014]
 [HN & J A Fessler, CT Meeting, 2014]
 [HN & J A Fessler, arXiv:1402.4381, 2014]
- Blind gain correction for X-ray CT image reconstruction [HN & J A Fessler, SPIE MI, 2013]
- Model-based light field reconstruction
- Onclusion and future work

Introduction

- Background of X-ray CT and its reconstruction
- Fast X-ray CT image reconstruction using VS methods with OS [HN & J A Fessler, Fully 3D, 2013]
 [HN & J A Fessler, SPIE MI, 2014]
 [HN & J A Fessler, CT Meeting, 2014]
 [HN & J A Fessler, arXiv:1402.4381, 2014]
- Blind gain correction for X-ray CT image reconstruction [HN & J A Fessler, SPIE MI, 2013]
- Model-based light field reconstruction
- 6 Conclusion and future work

Introduction

Background of X-ray CT and its reconstruction

Fast X-ray CT image reconstruction using VS methods with OS [HN & J A Fessler, Fully 3D, 2013]
 [HN & J A Fessler, SPIE MI, 2014]
 [HN & J A Fessler, CT Meeting, 2014]
 [HN & J A Fessler, arXiv:1402.4381, 2014]

- Blind gain correction for X-ray CT image reconstruction [HN & J A Fessler, SPIE MI, 2013]
- Model-based light field reconstruction
- Onclusion and future work

A (10) F (10)

Introduction

Background of X-ray CT and its reconstruction

Fast X-ray CT image reconstruction using VS methods with OS [HN & J A Fessler, Fully 3D, 2013]
[HN & J A Fessler, SPIE MI, 2014]
[HN & J A Fessler, CT Meeting, 2014]
[HN & J A Fessler, arXiv:1402.4381, 2014]

- Blind gain correction for X-ray CT image reconstruction [HN & J A Fessler, SPIE MI, 2013]
- Model-based light field reconstruction
- Conclusion and future work

A (10) N (10)

Introduction

Background of X-ray CT and its reconstruction

Fast X-ray CT image reconstruction using VS methods with OS [HN & J A Fessler, Fully 3D, 2013]
 [HN & J A Fessler, SPIE MI, 2014]
 [HN & J A Fessler, CT Meeting, 2014]
 [HN & J A Fessler, arXiv:1402.4381, 2014]

- Blind gain correction for X-ray CT image reconstruction [HN & J A Fessler, SPIE MI, 2013]
- Model-based light field reconstruction
- Conclusion and future work

< 回 ト < 三 ト < 三 ト

Introduction

Background of X-ray CT and its reconstruction

Fast X-ray CT image reconstruction using VS methods with OS [HN & J A Fessler, Fully 3D, 2013]
 [HN & J A Fessler, SPIE MI, 2014]
 [HN & J A Fessler, CT Meeting, 2014]
 [HN & J A Fessler, arXiv:1402.4381, 2014]

- Blind gain correction for X-ray CT image reconstruction [HN & J A Fessler, SPIE MI, 2013]
- Model-based light field reconstruction
- Onclusion and future work

A (10) A (10) A (10)

Introduction

- Background of X-ray CT and its reconstruction
- Fast X-ray CT image reconstruction using VS methods with OS [HN & J A Fessler, Fully 3D, 2013]
 [HN & J A Fessler, SPIE MI, 2014]
 [HN & J A Fessler, CT Meeting, 2014]
 [HN & J A Fessler, arXiv:1402.4381, 2014]
- Blind gain correction for X-ray CT image reconstruction [HN & J A Fessler, SPIE MI, 2013]
- Model-based light field reconstruction
- Conclusion and future work

A (10) N (10)

- Introduction
- Background of X-ray CT and its reconstruction
- Fast X-ray CT image reconstruction using VS methods with OS [HN & J A Fessler, Fully 3D, 2013]
 [HN & J A Fessler, SPIE MI, 2014]
 [HN & J A Fessler, CT Meeting, 2014]
 [HN & J A Fessler, arXiv:1402.4381, 2014]
- Blind gain correction for X-ray CT image reconstruction [HN & J A Fessler, SPIE MI, 2013]
- Model-based light field reconstruction
- Onclusion and future work

- Introduction
- Background of X-ray CT and its reconstruction
- Fast X-ray CT image reconstruction using VS methods with OS [HN & J A Fessler, Fully 3D, 2013]
 [HN & J A Fessler, SPIE MI, 2014]
 [HN & J A Fessler, CT Meeting, 2014]
 [HN & J A Fessler, arXiv:1402.4381, 2014]
- Blind gain correction for X-ray CT image reconstruction [HN & J A Fessler, SPIE MI, 2013]
- Model-based light field reconstruction
- Onclusion and future work

Introduction

- Background of X-ray CT and its reconstruction
- Fast X-ray CT image reconstruction using VS methods with OS [HN & J A Fessler, Fully 3D, 2013]
 [HN & J A Fessler, SPIE MI, 2014]
 [HN & J A Fessler, CT Meeting, 2014]
 [HN & J A Fessler, arXiv:1402.4381, 2014]
- Blind gain correction for X-ray CT image reconstruction [HN & J A Fessler, SPIE MI, 2013]
- Model-based light field reconstruction
- Onclusion and future work

Outline

Background

- Model-based CT reconstruction
- Fast (2D) CT reconstruction using ADMM

OS-LALM: a splitting-based OS algorithm for PWLS problems

- Linearized AL method with OS acceleration
- Deterministic downward continuation approach
- Low-memory OS-LALM with additional variable splits

3 Experimental results

- Low-dose CT with edge-preserving regularizers
- Sparse-view CT with TV-like regularizers

Conclusion and future work

Outline

Background

- Model-based CT reconstruction
- Fast (2D) CT reconstruction using ADMM

OS-LALM: a splitting-based OS algorithm for PWLS problems

- Linearized AL method with OS acceleration
- Deterministic downward continuation approach
- Low-memory OS-LALM with additional variable splits

Experimental results

- Low-dose CT with edge-preserving regularizers
- Sparse-view CT with TV-like regularizers

4 Conclusion and future work

Outline

Background

Model-based CT reconstruction

• Fast (2D) CT reconstruction using ADMM

OS-LALM: a splitting-based OS algorithm for PWLS problems

- Linearized AL method with OS acceleration
- Deterministic downward continuation approach
- Low-memory OS-LALM with additional variable splits

Experimental results

- Low-dose CT with edge-preserving regularizers
- Sparse-view CT with TV-like regularizers

4 Conclusion and future work

Hung Nien (U of M) Model-based X-ray CT image recon using VS methods with OS 05/19/2014 6 / 58

3

Projection radiography

An imaging technique that uses X-rays to view the internal structure of a non-uniformly composed and opaque object such as the human body.

Projection radiography

An imaging technique that uses X-rays to view the internal structure of a non-uniformly composed and opaque object such as the human body.

Computed tomography

An imaging technique that combines a series of X-ray projections taken from many different angles and computer processing (i.e., reconstruction methods) to create cross-sectional images of the bones and soft tissues inside to the human body.

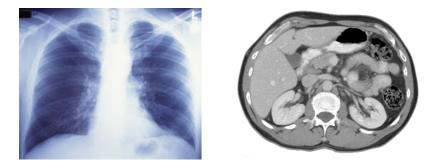


Figure: Chest X-ray image (left) and cross-sectional image of abdomen (right).

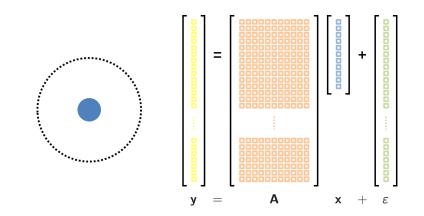
A (10) < A (10) </p>

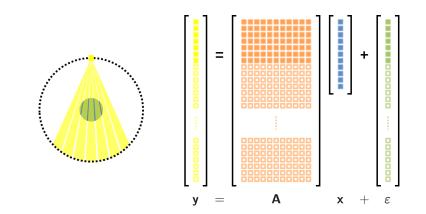
-∢ ∃ ▶

→

- ∢ ∃ ▶

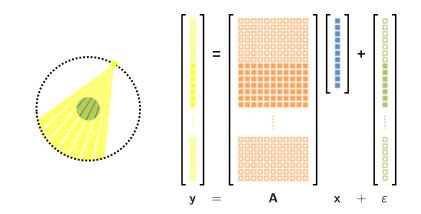
- ∢ ∃ ▶





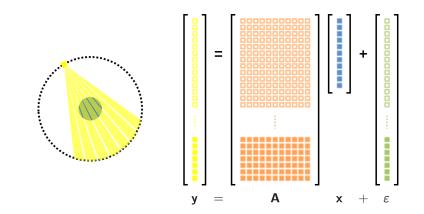
< ∃ >

10 / 58



< ∃ >

10 / 58



< ∃ >

10 / 58

Non-iterative methods

Iterative methods

Hung Nien (U of M) Model-based X-ray CT image recon using VS methods with OS

05/19/2014 11 / 58

• • • • • • • • • • • •

Non-iterative methods

• Direct Fourier reconstruction

Iterative methods

Hung Nien (U of M) Model-based X-ray CT image recon using VS methods with OS

05/19/2014 11 / 58

Non-iterative methods

- Direct Fourier reconstruction
- Filter-backproject (FBP) method

Iterative methods

Hung Nien (U of M) Model-based X-ray CT image recon using VS methods with OS

05/19/2014 11 / 58

< 🗇 🕨 < 🖃 🕨

Non-iterative methods

- Direct Fourier reconstruction
- Filter-backproject (FBP) method
- Very fast (seconds) but prone to noise (medium/high dose)

Iterative methods

Hung Nien (U of M) Model-based X-ray CT image recon using VS methods with OS 05/19/2014 11 / 58

Non-iterative methods

- Direct Fourier reconstruction
- Filter-backproject (FBP) method
- Very fast (seconds) but prone to noise (medium/high dose)

Iterative methods

• Maximum a posteriori (MAP) formulation

Hung Nien (U of M) Model-based X-ray CT image recon using VS methods with OS 05/19/2014 11 / 58

Non-iterative methods

- Direct Fourier reconstruction
- Filter-backproject (FBP) method
- Very fast (seconds) but prone to noise (medium/high dose)

Iterative methods

- Maximum a posteriori (MAP) formulation
- Penalized weighted least-squares (PWLS) formulation [TS⁺07]

$$\hat{\boldsymbol{\mathsf{x}}} \in \arg\min_{\boldsymbol{\mathsf{x}}\in\Omega} \left\{ \Psi(\boldsymbol{\mathsf{x}}) \triangleq \frac{1}{2} \left\| \boldsymbol{\mathsf{y}} - \boldsymbol{\mathsf{A}}\boldsymbol{\mathsf{x}} \right\|_{\boldsymbol{\mathsf{W}}}^2 + \mathsf{R}(\boldsymbol{\mathsf{x}}) \right\}$$

05/19/2014 11 / 58

Figure: Dose reduction: FBP (left), ASiR (middle), and MBIR (right).

Hung Nien (U of M) Model-based X-ray CT image recon using VS methods with OS

05/19/2014 12 / 58

< A > < 3

Non-iterative methods

- Direct Fourier reconstruction
- Filter-backproject (FBP) method
- Very fast (seconds) but prone to noise (medium/high dose)

Iterative methods

- Maximum a posteriori (MAP) formulation
- Penalized weighted least-squares (PWLS) formulation [TS⁺07]

$$\hat{\boldsymbol{\mathsf{x}}} \in \arg\min_{\boldsymbol{\mathsf{x}}\in\Omega} \left\{ \Psi(\boldsymbol{\mathsf{x}}) \triangleq \frac{1}{2} \left\| \boldsymbol{\mathsf{y}} - \boldsymbol{\mathsf{A}}\boldsymbol{\mathsf{x}} \right\|_{\boldsymbol{\mathsf{W}}}^2 + \mathsf{R}(\boldsymbol{\mathsf{x}}) \right\}$$

05/19/2014 13 / 58

Large problem size

- x: $512 \times 512 \times 100 \approx 3 \cdot 10^7$ unknown image volume
- y: 888 \times 32 \times 7000 \approx 2 \cdot 10 8 measured noisy sinogram
- A: $(3 \cdot 10^7) \times (2 \cdot 10^8)$ system matrix
- A is sparse but still too large to store
- Projection Ax and back-projection A'r operations computed on the fly
- Computing gradient $\nabla \Psi(\mathbf{x}) = \mathbf{A}' \mathbf{W} (\mathbf{A}\mathbf{x} \mathbf{y}) + \nabla R(\mathbf{x})$ requires projection and back-projection operations that dominate computation

Large problem size

- x: $512 \times 512 \times 100 \approx 3 \cdot 10^7$ unknown image volume
- y: 888 \times 32 \times 7000 \approx 2 \cdot 10^{8} measured noisy sinogram
- A: $(3 \cdot 10^7) \times (2 \cdot 10^8)$ system matrix
- A is sparse but still too large to store
- $\bullet\,$ Projection Ax and back-projection A'r operations computed on the fly
- Computing gradient $\nabla \Psi(\mathbf{x}) = \mathbf{A}' \mathbf{W} (\mathbf{A}\mathbf{x} \mathbf{y}) + \nabla R(\mathbf{x})$ requires projection and back-projection operations that dominate computation

Enormous dynamic range of transmission data

- The dynamic range of weighting **W** is huge
- A'WA is highly shift-variant, and the problem is very ill-conditioned

Hung Nien (U of M)

05/19/2014 14 / 58

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Non-iterative methods

- Direct Fourier reconstruction
- Filter-backproject (FBP) method
- Very fast (seconds) but prone to noise (medium/high dose)

Iterative methods

- Maximum a posteriori (MAP) formulation
- Penalized weighted least-squares (PWLS) formulation [TS⁺07]

$$\hat{\boldsymbol{\mathsf{x}}} \in \arg\min_{\boldsymbol{\mathsf{x}}\in\Omega} \left\{ \Psi(\boldsymbol{\mathsf{x}}) \triangleq \frac{1}{2} \left\| \boldsymbol{\mathsf{y}} - \boldsymbol{\mathsf{A}} \boldsymbol{\mathsf{x}} \right\|_{\boldsymbol{\mathsf{W}}}^2 + \mathsf{R}(\boldsymbol{\mathsf{x}}) \right\}$$

• Very slow (hours) but noise robust (low dose)

05/19/2014 15 / 58

Non-iterative methods

- Direct Fourier reconstruction
- Filter-backproject (FBP) method
- Very fast (seconds) but prone to noise (medium/high dose)

Fast iterative methods

- Maximum a posteriori (MAP) formulation
- Penalized weighted least-squares (PWLS) formulation [TS⁺07]

$$\hat{\boldsymbol{\mathsf{x}}} \in \arg\min_{\boldsymbol{\mathsf{x}}\in\Omega} \left\{ \Psi(\boldsymbol{\mathsf{x}}) \triangleq \frac{1}{2} \left\| \boldsymbol{\mathsf{y}} - \boldsymbol{\mathsf{A}} \boldsymbol{\mathsf{x}} \right\|_{\boldsymbol{\mathsf{W}}}^2 + \mathsf{R}(\boldsymbol{\mathsf{x}}) \right\}$$

• Fast (minutes) and noise robust (low dose)

05/19/2014 15 / 58

16 / 58

Outline

1 Background

- Model-based CT reconstruction
- Fast (2D) CT reconstruction using ADMM

OS-LALM: a splitting-based OS algorithm for PWLS problems

- Linearized AL method with OS acceleration
- Deterministic downward continuation approach
- Low-memory OS-LALM with additional variable splits

Experimental results

- Low-dose CT with edge-preserving regularizers
- Sparse-view CT with TV-like regularizers

4 Conclusion and future work

Equivalent formulation and split Bregman method

 Hung Nien (U of M)
 Model-based X-ray CT image recon using VS methods with OS
 05/19/2014
 17 / 58

Equivalent formulation and split Bregman method

• PWLS CT reconstruction: $\hat{\mathbf{x}} \in \arg\min_{\mathbf{x}} \left\{ \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{\mathbf{W}}^2 + \Phi(\mathbf{C}\mathbf{x}) \right\}$

Equivalent formulation and split Bregman method

- PWLS CT reconstruction: $\hat{\mathbf{x}} \in \arg\min_{\mathbf{x}} \left\{ \frac{1}{2} \| \mathbf{y} \mathbf{A} \mathbf{x} \|_{\mathbf{W}}^{2} + \Phi(\mathbf{C} \mathbf{x}) \right\}$
- Equivalent formulation [GO09]:

$$(\hat{\mathbf{x}}, \hat{\mathbf{v}}) \in \arg\min_{\mathbf{x}, \mathbf{v}} \left\{ \frac{1}{2} \left\| \mathbf{y} - \mathbf{A} \mathbf{x} \right\|_{\mathbf{W}}^{2} + \Phi(\mathbf{v}) \right\} \text{ s.t. } \mathbf{v} = \mathbf{C} \mathbf{x}$$

Equivalent formulation and split Bregman method

- PWLS CT reconstruction: $\hat{\mathbf{x}} \in \arg\min_{\mathbf{x}} \left\{ \frac{1}{2} \| \mathbf{y} \mathbf{A}\mathbf{x} \|_{\mathbf{W}}^2 + \Phi(\mathbf{C}\mathbf{x}) \right\}$
- Equivalent formulation [GO09]:

$$(\hat{\boldsymbol{x}}, \hat{\boldsymbol{\nu}}) \in \arg\min_{\boldsymbol{x}, \boldsymbol{\nu}} \left\{ \frac{1}{2} \left\| \boldsymbol{y} - \boldsymbol{A} \boldsymbol{x} \right\|_{\boldsymbol{W}}^2 + \boldsymbol{\Phi}(\boldsymbol{\nu}) \right\} \text{ s.t. } \boldsymbol{\nu} = \boldsymbol{C} \boldsymbol{x}$$

• Corresponding (scaled) augmented Lagrangian:

$$\mathcal{L}_{\mathsf{A}}(\mathsf{x},\mathsf{v},\mathsf{e};\eta) riangleq rac{1}{2} \left\| \mathsf{y} - \mathsf{A} \mathsf{x}
ight\|_{\mathsf{W}}^2 + \Phi(\mathsf{v}) + rac{\eta}{2} \left\| \mathsf{C} \mathsf{x} - \mathsf{v} - \mathsf{e}
ight\|_2^2$$

Equivalent formulation and split Bregman method (cont'd)

• Split Bregman iterates [GO09]:

$$\begin{cases} \mathbf{x}^{(k+1)} \in \arg\min_{\mathbf{x}} \left\{ \frac{1}{2} \| \mathbf{y} - \mathbf{A} \mathbf{x} \|_{\mathbf{W}}^{2} + \frac{\eta}{2} \| \mathbf{C} \mathbf{x} - \mathbf{v}^{(k)} - \mathbf{e}^{(k)} \|_{2}^{2} \right\} \\ \mathbf{v}^{(k+1)} \in \arg\min_{\mathbf{v}} \left\{ \Phi(\mathbf{v}) + \frac{\eta}{2} \| \mathbf{C} \mathbf{x}^{(k+1)} - \mathbf{v} - \mathbf{e}^{(k)} \|_{2}^{2} \right\} \\ \mathbf{e}^{(k+1)} = \mathbf{e}^{(k)} - \mathbf{C} \mathbf{x}^{(k+1)} + \mathbf{v}^{(k+1)} \end{cases}$$

Hung Nien (U of M) Model-based X-ray CT image recon using VS methods with OS 05/19/2014 18 / 58

Equivalent formulation and split Bregman method (cont'd)

• Split Bregman iterates [GO09]:

$$\begin{cases} \mathbf{x}^{(k+1)} \in \arg\min_{\mathbf{x}} \left\{ \frac{1}{2} \| \mathbf{y} - \mathbf{A} \mathbf{x} \|_{\mathbf{W}}^{2} + \frac{\eta}{2} \| \mathbf{C} \mathbf{x} - \mathbf{v}^{(k)} - \mathbf{e}^{(k)} \|_{2}^{2} \right\} \\ \mathbf{v}^{(k+1)} \in \arg\min_{\mathbf{v}} \left\{ \Phi(\mathbf{v}) + \frac{\eta}{2} \| \mathbf{C} \mathbf{x}^{(k+1)} - \mathbf{v} - \mathbf{e}^{(k)} \|_{2}^{2} \right\} \\ \mathbf{e}^{(k+1)} = \mathbf{e}^{(k)} - \mathbf{C} \mathbf{x}^{(k+1)} + \mathbf{v}^{(k+1)} \end{cases}$$

Equivalent formulation and split Bregman method (cont'd)

• Split Bregman iterates [GO09]:

$$\begin{cases} \mathbf{x}^{(k+1)} \in \arg\min_{\mathbf{x}} \left\{ \frac{1}{2} \| \mathbf{y} - \mathbf{A} \mathbf{x} \|_{\mathbf{W}}^{2} + \frac{\eta}{2} \| \mathbf{C} \mathbf{x} - \mathbf{v}^{(k)} - \mathbf{e}^{(k)} \|_{2}^{2} \right\} \\ \mathbf{v}^{(k+1)} \in \arg\min_{\mathbf{v}} \left\{ \Phi(\mathbf{v}) + \frac{\eta}{2} \| \mathbf{C} \mathbf{x}^{(k+1)} - \mathbf{v} - \mathbf{e}^{(k)} \|_{2}^{2} \right\} \\ \mathbf{e}^{(k+1)} = \mathbf{e}^{(k)} - \mathbf{C} \mathbf{x}^{(k+1)} + \mathbf{v}^{(k+1)} \end{cases}$$

Equivalent formulation and split Bregman method (cont'd)

• Split Bregman iterates [GO09]:

$$\begin{cases} \mathbf{x}^{(k+1)} \in \arg\min_{\mathbf{x}} \left\{ \frac{1}{2} \| \mathbf{y} - \mathbf{A} \mathbf{x} \|_{\mathbf{W}}^{2} + \frac{\eta}{2} \| \mathbf{C} \mathbf{x} - \mathbf{v}^{(k)} - \mathbf{e}^{(k)} \|_{2}^{2} \right\} \\ \mathbf{v}^{(k+1)} \in \arg\min_{\mathbf{v}} \left\{ \Phi(\mathbf{v}) + \frac{\eta}{2} \| \mathbf{C} \mathbf{x}^{(k+1)} - \mathbf{v} - \mathbf{e}^{(k)} \|_{2}^{2} \right\} \\ \mathbf{e}^{(k+1)} = \mathbf{e}^{(k)} - \mathbf{C} \mathbf{x}^{(k+1)} + \mathbf{v}^{(k+1)} \end{cases}$$

Equivalent formulation and split Bregman method (cont'd)

• Split Bregman iterates [GO09]:

$$\begin{cases} \mathbf{x}^{(k+1)} \in \arg\min_{\mathbf{x}} \left\{ \frac{1}{2} \| \mathbf{y} - \mathbf{A} \mathbf{x} \|_{\mathbf{W}}^{2} + \frac{\eta}{2} \| \mathbf{C} \mathbf{x} - \mathbf{v}^{(k)} - \mathbf{e}^{(k)} \|_{2}^{2} \right\} \\ \mathbf{v}^{(k+1)} \in \arg\min_{\mathbf{v}} \left\{ \Phi(\mathbf{v}) + \frac{\eta}{2} \| \mathbf{C} \mathbf{x}^{(k+1)} - \mathbf{v} - \mathbf{e}^{(k)} \|_{2}^{2} \right\} \\ \mathbf{e}^{(k+1)} = \mathbf{e}^{(k)} - \mathbf{C} \mathbf{x}^{(k+1)} + \mathbf{v}^{(k+1)} \end{cases}$$

Convergent with inexact updates [NF14a]

Equivalent formulation and split Bregman method (cont'd)

• Split Bregman iterates [GO09]:

$$\begin{cases} \mathbf{x}^{(k+1)} \in \arg\min_{\mathbf{x}} \left\{ \frac{1}{2} \| \mathbf{y} - \mathbf{A}\mathbf{x} \|_{\mathbf{W}}^{2} + \frac{\eta}{2} \| \mathbf{C}\mathbf{x} - \mathbf{v}^{(k)} - \mathbf{e}^{(k)} \|_{2}^{2} \right\} \\ \mathbf{v}^{(k+1)} \in \arg\min_{\mathbf{v}} \left\{ \Phi(\mathbf{v}) + \frac{\eta}{2} \| \mathbf{C}\mathbf{x}^{(k+1)} - \mathbf{v} - \mathbf{e}^{(k)} \|_{2}^{2} \right\} \\ \mathbf{e}^{(k+1)} = \mathbf{e}^{(k)} - \mathbf{C}\mathbf{x}^{(k+1)} + \mathbf{v}^{(k+1)} \end{cases}$$

Convergent with inexact updates [NF14a]

• Slow x-update due to the highly shift-variant Hessian $A'WA + \eta C'C$

The idea is ...

Hung Nien (U of M) Model-based X-ray CT image recon using VS methods with OS 05/19/2014 19 / 58

The idea is ...

• In 2D CT, A'WA is highly shift-variant, but A'A is not

 Hung Nien (U of M)
 Model-based X-ray CT image recon using VS methods with OS
 05/19/2014
 19 / 58

The idea is ...

- In 2D CT, A'WA is highly shift-variant, but A'A is not
- Replacing the weighted quadratic function in the x-update with an unweighted one removes most shift-variances of the Hessian

The idea is ...

- In 2D CT, A'WA is highly shift-variant, but A'A is not
- Replacing the weighted quadratic function in the x-update with an unweighted one removes most shift-variances of the Hessian

Alternative formulation and ADMM

• Alternative formulation [RF12]:

$$(\hat{\mathbf{x}}, \hat{\mathbf{u}}, \hat{\mathbf{v}}) \in \arg\min_{\mathbf{x}, \mathbf{u}, \mathbf{v}} \left\{ rac{1}{2} \left\| \mathbf{y} - \mathbf{u}
ight\|_{\mathbf{W}}^2 + \Phi(\mathbf{v})
ight\} \ ext{s.t.} \ \mathbf{u} = \mathbf{A}\mathbf{x}, \mathbf{v} = \mathbf{C}\mathbf{x}$$

Alternative formulation and ADMM (cont'd)

• ADMM iterates [RF12]:

$$\begin{cases} \mathbf{x}^{(k+1)} \in \arg\min_{\mathbf{x}} \left\{ \frac{\rho}{2} \left\| \mathbf{A}\mathbf{x} - \mathbf{u}^{(k)} - \mathbf{d}^{(k)} \right\|_{2}^{2} + \frac{\eta}{2} \left\| \mathbf{C}\mathbf{x} - \mathbf{v}^{(k)} - \mathbf{e}^{(k)} \right\|_{2}^{2} \right\} \\ \mathbf{u}^{(k+1)} \in \arg\min_{\mathbf{u}} \left\{ \frac{1}{2} \left\| \mathbf{y} - \mathbf{u} \right\|_{\mathbf{W}}^{2} + \frac{\rho}{2} \left\| \mathbf{A}\mathbf{x}^{(k+1)} - \mathbf{u} - \mathbf{d}^{(k)} \right\|_{2}^{2} \right\} \\ \mathbf{v}^{(k+1)} \in \arg\min_{\mathbf{v}} \left\{ \Phi(\mathbf{v}) + \frac{\eta}{2} \left\| \mathbf{C}\mathbf{x}^{(k+1)} - \mathbf{v} - \mathbf{e}^{(k)} \right\|_{2}^{2} \right\} \\ \mathbf{d}^{(k+1)} = \mathbf{d}^{(k)} - \mathbf{A}\mathbf{x}^{(k+1)} + \mathbf{u}^{(k+1)} \\ \mathbf{e}^{(k+1)} = \mathbf{e}^{(k)} - \mathbf{C}\mathbf{x}^{(k+1)} + \mathbf{v}^{(k+1)} \end{cases}$$

Hung Nien (U of M)

Model-based X-ray CT image recon using VS methods with OS

05/19/2014 20 / 58

э

< 1[™] >

→ Ξ →

Alternative formulation and ADMM (cont'd)

• ADMM iterates [RF12]:

$$\begin{cases} \mathbf{x}^{(k+1)} \in \arg\min_{\mathbf{x}} \left\{ \frac{\rho}{2} \left\| \mathbf{A}\mathbf{x} - \mathbf{u}^{(k)} - \mathbf{d}^{(k)} \right\|_{2}^{2} + \frac{\eta}{2} \left\| \mathbf{C}\mathbf{x} - \mathbf{v}^{(k)} - \mathbf{e}^{(k)} \right\|_{2}^{2} \right\} \\ \mathbf{u}^{(k+1)} \in \arg\min_{\mathbf{u}} \left\{ \frac{1}{2} \left\| \mathbf{y} - \mathbf{u} \right\|_{\mathbf{W}}^{2} + \frac{\rho}{2} \left\| \mathbf{A}\mathbf{x}^{(k+1)} - \mathbf{u} - \mathbf{d}^{(k)} \right\|_{2}^{2} \right\} \\ \mathbf{v}^{(k+1)} \in \arg\min_{\mathbf{v}} \left\{ \Phi(\mathbf{v}) + \frac{\eta}{2} \left\| \mathbf{C}\mathbf{x}^{(k+1)} - \mathbf{v} - \mathbf{e}^{(k)} \right\|_{2}^{2} \right\} \\ \mathbf{d}^{(k+1)} = \mathbf{d}^{(k)} - \mathbf{A}\mathbf{x}^{(k+1)} + \mathbf{u}^{(k+1)} \\ \mathbf{e}^{(k+1)} = \mathbf{e}^{(k)} - \mathbf{C}\mathbf{x}^{(k+1)} + \mathbf{v}^{(k+1)} \end{cases}$$

Hung Nien (U of M) Model-based X-ray

Model-based X-ray CT image recon using VS methods with OS

05/19/2014 20 / 58

э

< 1[™] >

→ Ξ →

Alternative formulation and ADMM (cont'd)

• ADMM iterates [RF12]:

$$\begin{cases} \mathbf{x}^{(k+1)} \in \arg\min_{\mathbf{x}} \left\{ \frac{\rho}{2} \left\| \mathbf{A}\mathbf{x} - \mathbf{u}^{(k)} - \mathbf{d}^{(k)} \right\|_{2}^{2} + \frac{\eta}{2} \left\| \mathbf{C}\mathbf{x} - \mathbf{v}^{(k)} - \mathbf{e}^{(k)} \right\|_{2}^{2} \right\} \\ \mathbf{u}^{(k+1)} \in \arg\min_{\mathbf{u}} \left\{ \frac{1}{2} \left\| \mathbf{y} - \mathbf{u} \right\|_{\mathbf{W}}^{2} + \frac{\rho}{2} \left\| \mathbf{A}\mathbf{x}^{(k+1)} - \mathbf{u} - \mathbf{d}^{(k)} \right\|_{2}^{2} \right\} \\ \mathbf{v}^{(k+1)} \in \arg\min_{\mathbf{v}} \left\{ \Phi(\mathbf{v}) + \frac{\eta}{2} \left\| \mathbf{C}\mathbf{x}^{(k+1)} - \mathbf{v} - \mathbf{e}^{(k)} \right\|_{2}^{2} \right\} \\ \mathbf{d}^{(k+1)} = \mathbf{d}^{(k)} - \mathbf{A}\mathbf{x}^{(k+1)} + \mathbf{u}^{(k+1)} \\ \mathbf{e}^{(k+1)} = \mathbf{e}^{(k)} - \mathbf{C}\mathbf{x}^{(k+1)} + \mathbf{v}^{(k+1)} \end{cases}$$

Hung Nien (U of M) Model-based X-ra

Model-based X-ray CT image recon using VS methods with OS

05/19/2014 20 / 58

э

< 🗇 🕨

→ Ξ →

Alternative formulation and ADMM (cont'd)

• ADMM iterates [RF12]:

$$\begin{cases} \mathbf{x}^{(k+1)} \in \arg\min_{\mathbf{x}} \left\{ \frac{\rho}{2} \| \mathbf{A}\mathbf{x} - \mathbf{u}^{(k)} - \mathbf{d}^{(k)} \|_{2}^{2} + \frac{\eta}{2} \| \mathbf{C}\mathbf{x} - \mathbf{v}^{(k)} - \mathbf{e}^{(k)} \|_{2}^{2} \right\} \\ \mathbf{u}^{(k+1)} \in \arg\min_{\mathbf{u}} \left\{ \frac{1}{2} \| \mathbf{y} - \mathbf{u} \|_{\mathbf{W}}^{2} + \frac{\rho}{2} \| \mathbf{A}\mathbf{x}^{(k+1)} - \mathbf{u} - \mathbf{d}^{(k)} \|_{2}^{2} \right\} \\ \mathbf{v}^{(k+1)} \in \arg\min_{\mathbf{v}} \left\{ \Phi(\mathbf{v}) + \frac{\eta}{2} \| \mathbf{C}\mathbf{x}^{(k+1)} - \mathbf{v} - \mathbf{e}^{(k)} \|_{2}^{2} \right\} \\ \mathbf{d}^{(k+1)} = \mathbf{d}^{(k)} - \mathbf{A}\mathbf{x}^{(k+1)} + \mathbf{u}^{(k+1)} \\ \mathbf{e}^{(k+1)} = \mathbf{e}^{(k)} - \mathbf{C}\mathbf{x}^{(k+1)} + \mathbf{v}^{(k+1)} \end{cases}$$

• Convergent with inexact updates [AB⁺11]

Hung Nien (U of M)

Model-based X-ray CT image recon using VS methods with OS

05/19/2014 20 / 58

★ ∃ >

< 一型

Alternative formulation and ADMM (cont'd)

• ADMM iterates [RF12]:

$$\begin{cases} \mathbf{x}^{(k+1)} \in \arg\min_{\mathbf{x}} \left\{ \frac{\rho}{2} \| \mathbf{A}\mathbf{x} - \mathbf{u}^{(k)} - \mathbf{d}^{(k)} \|_{2}^{2} + \frac{\eta}{2} \| \mathbf{C}\mathbf{x} - \mathbf{v}^{(k)} - \mathbf{e}^{(k)} \|_{2}^{2} \right\} \\ \mathbf{u}^{(k+1)} \in \arg\min_{\mathbf{u}} \left\{ \frac{1}{2} \| \mathbf{y} - \mathbf{u} \|_{\mathbf{W}}^{2} + \frac{\rho}{2} \| \mathbf{A}\mathbf{x}^{(k+1)} - \mathbf{u} - \mathbf{d}^{(k)} \|_{2}^{2} \right\} \\ \mathbf{v}^{(k+1)} \in \arg\min_{\mathbf{v}} \left\{ \Phi(\mathbf{v}) + \frac{\eta}{2} \| \mathbf{C}\mathbf{x}^{(k+1)} - \mathbf{v} - \mathbf{e}^{(k)} \|_{2}^{2} \right\} \\ \mathbf{d}^{(k+1)} = \mathbf{d}^{(k)} - \mathbf{A}\mathbf{x}^{(k+1)} + \mathbf{u}^{(k+1)} \\ \mathbf{e}^{(k+1)} = \mathbf{e}^{(k)} - \mathbf{C}\mathbf{x}^{(k+1)} + \mathbf{v}^{(k+1)} \end{cases}$$

- Convergent with inexact updates [AB⁺11]
- $\rho A'A + \eta C'C$ can be well preconditioned by an appropriate circulant preconditioner in 2D CT

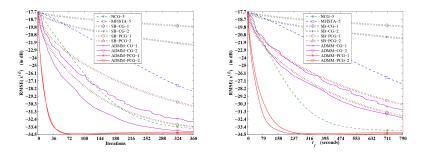


Figure: 2D NCAT: RMS errors as a function of iteration (left) and time (right).

-

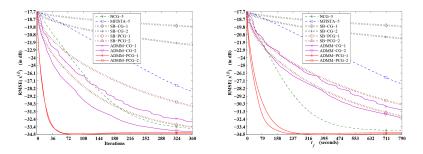


Figure: 2D NCAT: RMS errors as a function of iteration (left) and time (right).

The fact is ...

A'A is still highly shift-variant in 3D CT due to the different geometries and scan trajectories, so this method is still slow in 3D CT

< < p>< < p>

Outline

Background

- Model-based CT reconstruction
- Fast (2D) CT reconstruction using ADMM

OS-LALM: a splitting-based OS algorithm for PWLS problems

- Linearized AL method with OS acceleration
- Deterministic downward continuation approach
- Low-memory OS-LALM with additional variable splits

Experimental results

- Low-dose CT with edge-preserving regularizers
- Sparse-view CT with TV-like regularizers

4 Conclusion and future work

Hung Nien (U of M) Model-based X-ray CT image recon using VS methods with OS 05/

05/19/2014 22 / 58

Outline

Background

- Model-based CT reconstruction
- Fast (2D) CT reconstruction using ADMM

OS-LALM: a splitting-based OS algorithm for PWLS problems

• Linearized AL method with OS acceleration

- Deterministic downward continuation approach
- Low-memory OS-LALM with additional variable splits

Experimental results

- Low-dose CT with edge-preserving regularizers
- Sparse-view CT with TV-like regularizers

4 Conclusion and future work

Hung Nien (U of M) Model-based X-ray CT image recon using VS methods with OS 05,

Linearized AL method with OS acceleration

Motivation

What's wrong with ADMM in CT recon?

Hung Nien (U of M) Model-based X-ray CT image recon using VS methods with OS 05/19/2014 24 / 58

▲ 同 ▶ → 三 ▶

Motivation

What's wrong with ADMM in CT recon?

• Image update is non-trivial

What's wrong with ADMM in CT recon?

- Image update is non-trivial
- Memory burden of difference images is high

What's wrong with ADMM in CT recon?

- Image update is non-trivial
- Memory burden of difference images is high
- Ordered-subsets (OS) acceleration is not applicable

What's wrong with ADMM in CT recon?

- Image update is non-trivial
- Memory burden of difference images is high
- Ordered-subsets (OS) acceleration is not applicable

Possible solution?

• Proposed formulation [NF13]:

$$(\hat{\mathbf{x}}, \hat{\mathbf{u}}) \in \arg\min_{\mathbf{x} \in \Omega, \mathbf{u}} \left\{ \frac{1}{2} \left\| \mathbf{W}^{1/2} \mathbf{y} - \mathbf{u} \right\|_{2}^{2} + \mathsf{R}(\mathbf{x}) \right\} \text{ s.t. } \mathbf{u} = \mathbf{W}^{1/2} \mathsf{A} \mathbf{x}$$

Hung Nien (U of M)

Model-based X-ray CT image recon using VS methods with OS

What's wrong with ADMM in CT recon?

- Image update is non-trivial
- Memory burden of difference images is high
- Ordered-subsets (OS) acceleration is not applicable

Possible solution?

• Proposed formulation [NF13]:

$$(\hat{\boldsymbol{x}}, \hat{\boldsymbol{u}}) \in \arg\min_{\boldsymbol{x}, \boldsymbol{u}} \left\{ \frac{1}{2} \left\| \tilde{\boldsymbol{y}} - \boldsymbol{u} \right\|_2^2 + h(\boldsymbol{x}) \right\} \text{ s.t. } \boldsymbol{u} = \tilde{\boldsymbol{A}} \boldsymbol{x}$$

Hung Nien (U of M)

Model-based X-ray CT image recon using VS methods with OS

What's wrong with ADMM in CT recon?

- Image update is non-trivial
- Memory burden of difference images is high
- Ordered-subsets (OS) acceleration is not applicable

Possible solution?

• Proposed formulation [NF13]:

$$(\hat{\mathbf{x}}, \hat{\mathbf{u}}) \in \arg\min_{\mathbf{x}, \mathbf{u}} \left\{ rac{1}{2} \left\| \tilde{\mathbf{y}} - \mathbf{u}
ight\|_2^2 + h(\mathbf{x})
ight\} \ ext{s.t.} \ \mathbf{u} = ilde{\mathbf{A}} \mathbf{x}$$

Image update:

$$\mathbf{x}^{(k+1)} \in rg\min_{\mathbf{x}} \left\{ h(\mathbf{x}) + rac{
ho}{2} \left\| \tilde{\mathbf{A}} \mathbf{x} - \mathbf{u}^{(k)} - \mathbf{d}^{(k)}
ight\|_2^2
ight\}$$

What's wrong with ADMM in CT recon?

- Image update is non-trivial
- Memory burden of difference images is high
- Ordered-subsets (OS) acceleration is not applicable

Possible solution?

• Proposed formulation [NF13]:

$$(\hat{\mathbf{x}}, \hat{\mathbf{u}}) \in \arg\min_{\mathbf{x}, \mathbf{u}} \left\{ rac{1}{2} \left\| \tilde{\mathbf{y}} - \mathbf{u}
ight\|_2^2 + h(\mathbf{x})
ight\} \ ext{s.t.} \ \mathbf{u} = \tilde{\mathbf{A}} \mathbf{x}$$

Image update:

$$\mathbf{x}^{(k+1)} \in \arg\min_{\mathbf{x}} \left\{ h(\mathbf{x}) + \underbrace{\frac{\rho}{2} \| \tilde{\mathbf{A}} \mathbf{x} - \mathbf{u}^{(k)} - \mathbf{d}^{(k)} \|_{2}^{2}} \right\}$$

Hung Nien (U of M)

Linearized AL method with OS acceleration

Inexact linearized AL method

The idea is ...

Linearized AL method and proposed variants

Hung Nien (U of M) Model-based X-ray CT image recon using VS methods with OS

The idea is ...

• Majorizing
$$\theta_k(\mathbf{x}) \triangleq \frac{\rho}{2} \|\tilde{\mathbf{A}}\mathbf{x} - \mathbf{u}^{(k)} - \mathbf{d}^{(k)}\|_2^2$$
 simplifies image updates

Linearized AL method and proposed variants

Hung Nien (U of M) Model-based X-ray CT image recon using VS methods with OS

The idea is ...

• Majorizing
$$\theta_k(\mathbf{x}) \triangleq \frac{\rho}{2} \|\tilde{\mathbf{A}}\mathbf{x} - \mathbf{u}^{(k)} - \mathbf{d}^{(k)}\|_2^2$$
 simplifies image updates

Linearized AL method and proposed variants

• Linearized AL method

$$\begin{cases} \mathbf{x}^{(k+1)} \in \arg\min_{\mathbf{x}} \left\{ h(\mathbf{x}) + \breve{\theta}_{k}(\mathbf{x};\mathbf{x}^{(k)}) \right\} \\ \mathbf{u}^{(k+1)} \in \arg\min_{\mathbf{u}} \left\{ \frac{1}{2} \| \widetilde{\mathbf{y}} - \mathbf{u} \|_{2}^{2} + \frac{\rho}{2} \| \widetilde{\mathbf{A}} \mathbf{x}^{(k+1)} - \mathbf{u} - \mathbf{d}^{(k)} \|_{2}^{2} \right\} \\ \mathbf{d}^{(k+1)} = \mathbf{d}^{(k)} - \widetilde{\mathbf{A}} \mathbf{x}^{(k+1)} + \mathbf{u}^{(k+1)} \end{cases}$$

Hung Nien (U of M)

Model-based X-ray CT image recon using VS methods with OS

The idea is ...

• Majorizing
$$\theta_k(\mathbf{x}) \triangleq \frac{\rho}{2} \|\tilde{\mathbf{A}}\mathbf{x} - \mathbf{u}^{(k)} - \mathbf{d}^{(k)}\|_2^2$$
 simplifies image updates

Linearized AL method and proposed variants

• Linearized AL method

$$\begin{cases} \mathbf{x}^{(k+1)} \in \arg\min_{\mathbf{x}} \left\{ h(\mathbf{x}) + \breve{\theta}_{k}(\mathbf{x};\mathbf{x}^{(k)}) \right\} \\ \mathbf{u}^{(k+1)} \in \arg\min_{\mathbf{u}} \left\{ \frac{1}{2} \| \widetilde{\mathbf{y}} - \mathbf{u} \|_{2}^{2} + \frac{\rho}{2} \| \widetilde{\mathbf{A}} \mathbf{x}^{(k+1)} - \mathbf{u} - \mathbf{d}^{(k)} \|_{2}^{2} \right\} \\ \mathbf{d}^{(k+1)} = \mathbf{d}^{(k)} - \widetilde{\mathbf{A}} \mathbf{x}^{(k+1)} + \mathbf{u}^{(k+1)} \end{cases}$$

$$\check{\theta}_{k}(\mathbf{x};\mathbf{x}^{(k)}) \triangleq \theta_{k}(\mathbf{x}^{(k)}) + \langle \nabla \theta_{k}(\mathbf{x}^{(k)}), \mathbf{x} - \mathbf{x}^{(k)} \rangle + \frac{\rho L}{2} \|\mathbf{x} - \mathbf{x}^{(k)}\|_{2}^{2}$$

The idea is ...

• Majorizing
$$\theta_k(\mathbf{x}) \triangleq \frac{\rho}{2} \|\tilde{\mathbf{A}}\mathbf{x} - \mathbf{u}^{(k)} - \mathbf{d}^{(k)}\|_2^2$$
 simplifies image updates

Linearized AL method and proposed variants

• Linearized AL method

$$\begin{cases} \mathbf{x}^{(k+1)} \in \arg\min_{\mathbf{x}} \left\{ h(\mathbf{x}) + \frac{\rho L}{2} \| \mathbf{x} - (\mathbf{x}^{(k)} - (\rho^{-1}t) \nabla \theta_k(\mathbf{x}^{(k)})) \|_2^2 \right\} \\ \mathbf{u}^{(k+1)} \in \arg\min_{\mathbf{u}} \left\{ \frac{1}{2} \| \tilde{\mathbf{y}} - \mathbf{u} \|_2^2 + \frac{\rho}{2} \| \tilde{\mathbf{A}} \mathbf{x}^{(k+1)} - \mathbf{u} - \mathbf{d}^{(k)} \|_2^2 \right\} \\ \mathbf{d}^{(k+1)} = \mathbf{d}^{(k)} - \tilde{\mathbf{A}} \mathbf{x}^{(k+1)} + \mathbf{u}^{(k+1)} \end{cases}$$

$$\check{\theta}_{k}(\mathbf{x};\mathbf{x}^{(k)}) \triangleq \theta_{k}(\mathbf{x}^{(k)}) + \langle \nabla \theta_{k}(\mathbf{x}^{(k)}), \mathbf{x} - \mathbf{x}^{(k)} \rangle + \frac{\rho L}{2} \|\mathbf{x} - \mathbf{x}^{(k)}\|_{2}^{2}$$

The idea is ...

- Majorizing $\theta_k(\mathbf{x}) \triangleq \frac{\rho}{2} \| \tilde{\mathbf{A}} \mathbf{x} \mathbf{u}^{(k)} \mathbf{d}^{(k)} \|_2^2$ simplifies image updates
- Quadratic data-fitting term makes the u-updates linear

Linearized AL method and proposed variants

Linearized AL method

$$\begin{cases} \mathbf{x}^{(k+1)} \in \arg\min_{\mathbf{x}} \left\{ h(\mathbf{x}) + \frac{\rho L}{2} \| \mathbf{x} - (\mathbf{x}^{(k)} - (\rho^{-1}t) \nabla \theta_k(\mathbf{x}^{(k)})) \|_2^2 \right\} \\ \mathbf{u}^{(k+1)} \in \arg\min_{\mathbf{u}} \left\{ \frac{1}{2} \| \mathbf{\tilde{y}} - \mathbf{u} \|_2^2 + \frac{\rho}{2} \| \mathbf{\tilde{A}} \mathbf{x}^{(k+1)} - \mathbf{u} - \mathbf{d}^{(k)} \|_2^2 \right\} \\ \mathbf{d}^{(k+1)} = \mathbf{d}^{(k)} - \mathbf{\tilde{A}} \mathbf{x}^{(k+1)} + \mathbf{u}^{(k+1)} \end{cases}$$

$$\check{\theta}_{k}(\mathbf{x};\mathbf{x}^{(k)}) \triangleq \theta_{k}(\mathbf{x}^{(k)}) + \langle \nabla \theta_{k}(\mathbf{x}^{(k)}), \mathbf{x} - \mathbf{x}^{(k)} \rangle + \frac{\rho L}{2} \|\mathbf{x} - \mathbf{x}^{(k)}\|_{2}^{2}$$

The idea is ...

- Majorizing $\theta_k(\mathbf{x}) \triangleq \frac{\rho}{2} \| \tilde{\mathbf{A}} \mathbf{x} \mathbf{u}^{(k)} \mathbf{d}^{(k)} \|_2^2$ simplifies image updates
- Quadratic data-fitting term makes the u-updates linear

Linearized AL method and proposed variants

Linearized AL method

$$\begin{cases} \mathbf{x}^{(k+1)} \in \arg\min_{\mathbf{x}} \left\{ h(\mathbf{x}) + \frac{\rho L}{2} \| \mathbf{x} - (\mathbf{x}^{(k)} - (\rho^{-1}t) \nabla \theta_k(\mathbf{x}^{(k)})) \|_2^2 \right\} \\ \mathbf{u}^{(k+1)} = \frac{\rho}{\rho+1} (\tilde{\mathbf{A}} \mathbf{x}^{(k+1)} - \mathbf{d}^{(k)}) + \frac{1}{\rho+1} \tilde{\mathbf{y}} \\ \mathbf{d}^{(k+1)} = \mathbf{d}^{(k)} - \tilde{\mathbf{A}} \mathbf{x}^{(k+1)} + \mathbf{u}^{(k+1)} \end{cases}$$

$$\check{\theta}_{k}(\mathbf{x};\mathbf{x}^{(k)}) \triangleq \theta_{k}(\mathbf{x}^{(k)}) + \langle \nabla \theta_{k}(\mathbf{x}^{(k)}), \mathbf{x} - \mathbf{x}^{(k)} \rangle + \frac{\rho L}{2} \|\mathbf{x} - \mathbf{x}^{(k)}\|_{2}^{2}$$

Inexact linearized AL method

Linearized AL method and proposed variants (cont'd)

• Gradient-based linearized AL method [NF14b]:

$$\begin{cases} \mathbf{s}^{(k+1)} = \rho \nabla \ell(\mathbf{x}^{(k)}) + (1-\rho) \, \mathbf{g}^{(k)} \\ \mathbf{x}^{(k+1)} \in \operatorname{prox}_{(\rho^{-1}t)h}(\mathbf{x}^{(k)} - (\rho^{-1}t) \, \mathbf{s}^{(k+1)}) \\ \mathbf{g}^{(k+1)} = \frac{\rho}{\rho+1} \nabla \ell(\mathbf{x}^{(k+1)}) + \frac{1}{\rho+1} \mathbf{g}^{(k)} \end{cases}$$

Inexact linearized AL method

Linearized AL method and proposed variants (cont'd)

• Gradient-based linearized AL method [NF14b]:

$$\begin{cases} \mathbf{s}^{(k+1)} = \rho \nabla \ell (\mathbf{x}^{(k)}) + (1-\rho) \, \mathbf{g}^{(k)} \\ \mathbf{x}^{(k+1)} \in \operatorname{prox}_{(\rho^{-1}t)h} (\mathbf{x}^{(k)} - (\rho^{-1}t) \, \mathbf{s}^{(k+1)}) \\ \mathbf{g}^{(k+1)} = \frac{\rho}{\rho+1} \nabla \ell (\mathbf{x}^{(k+1)}) + \frac{1}{\rho+1} \mathbf{g}^{(k)} \end{cases}$$

 Hung Nien (U of M)
 Model-based X-ray CT image recon using VS methods with OS
 05/19/2014
 26 / 58

Linearized AL method and proposed variants (cont'd)

• Gradient-based linearized AL method [NF14b]:

$$\begin{cases} \mathbf{s}^{(k+1)} = \rho \nabla \ell (\mathbf{x}^{(k)}) + (1-\rho) \, \mathbf{g}^{(k)} \\ \mathbf{x}^{(k+1)} \in \operatorname{prox}_{(\rho^{-1}t)h} (\mathbf{x}^{(k)} - (\rho^{-1}t) \, \mathbf{s}^{(k+1)}) \\ \mathbf{g}^{(k+1)} = \frac{\rho}{\rho+1} \nabla \ell (\mathbf{x}^{(k+1)}) + \frac{1}{\rho+1} \mathbf{g}^{(k)} \end{cases}$$

• Linearized AL method with OS acceleration (*M* subsets) [NF14b]:

$$\begin{cases} \mathbf{s}^{(k,m+1)} = \rho M \nabla \ell_m(\mathbf{x}^{(k,m)}) + (1-\rho) \, \mathbf{g}^{(k,m)} \\ \mathbf{x}^{(k,m+1)} \in \operatorname{prox}_{(\rho^{-1}t)h}(\mathbf{x}^{(k,m)} - (\rho^{-1}t) \, \mathbf{s}^{(k,m+1)}) \\ \mathbf{g}^{(k,m+1)} = \frac{\rho}{\rho+1} M \nabla \ell_{m+1}(\mathbf{x}^{(k,m+1)}) + \frac{1}{\rho+1} \mathbf{g}^{(k,m)} \end{cases}$$

Hung Nien (U of M)

Model-based X-ray CT image recon using VS methods with OS

Linearized AL method and proposed variants (cont'd)

• Gradient-based linearized AL method [NF14b]:

$$\begin{cases} \mathbf{s}^{(k+1)} = \rho \nabla \ell (\mathbf{x}^{(k)}) + (1-\rho) \, \mathbf{g}^{(k)} \\ \mathbf{x}^{(k+1)} \in \operatorname{prox}_{(\rho^{-1}t)h} (\mathbf{x}^{(k)} - (\rho^{-1}t) \, \mathbf{s}^{(k+1)}) \\ \mathbf{g}^{(k+1)} = \frac{\rho}{\rho+1} \nabla \ell (\mathbf{x}^{(k+1)}) + \frac{1}{\rho+1} \mathbf{g}^{(k)} \end{cases}$$

• Linearized AL method with OS acceleration (*M* subsets) [NF14b]:

$$\begin{cases} \mathbf{s}^{(k,m+1)} = \rho M \nabla \ell_m(\mathbf{x}^{(k,m)}) + (1-\rho) \, \mathbf{g}^{(k,m)} \\ \mathbf{x}^{(k,m+1)} \in \operatorname{prox}_{(\rho^{-1}t)h}(\mathbf{x}^{(k,m)} - (\rho^{-1}t) \, \mathbf{s}^{(k,m+1)}) \\ \mathbf{g}^{(k,m+1)} = \frac{\rho}{\rho+1} M \nabla \ell_{m+1}(\mathbf{x}^{(k,m+1)}) + \frac{1}{\rho+1} \mathbf{g}^{(k,m)} \end{cases}$$

• Inexact updates? Convergence rate? Many subsets? [NF14d]

Hung Nien (U of M)

Linearized AL method and proposed variants (cont'd)

• Gradient-based linearized AL method [NF14b]:

$$\begin{cases} \mathbf{s}^{(k+1)} = \rho \nabla \ell (\mathbf{x}^{(k)}) + (1-\rho) \, \mathbf{g}^{(k)} \\ \mathbf{x}^{(k+1)} \in \operatorname{prox}_{(\rho^{-1}t)h} (\mathbf{x}^{(k)} - (\rho^{-1}t) \, \mathbf{s}^{(k+1)}) \\ \mathbf{g}^{(k+1)} = \frac{\rho}{\rho+1} \nabla \ell (\mathbf{x}^{(k+1)}) + \frac{1}{\rho+1} \mathbf{g}^{(k)} \end{cases}$$

• Linearized AL method with OS acceleration (*M* subsets) [NF14b]:

$$\begin{cases} \mathbf{s}^{(k,m+1)} = \rho M \nabla \ell_m(\mathbf{x}^{(k,m)}) + (1-\rho) \, \mathbf{g}^{(k,m)} \\ \mathbf{x}^{(k,m+1)} \in \operatorname{prox}_{(\rho^{-1}t)h}(\mathbf{x}^{(k,m)} - (\rho^{-1}t) \, \mathbf{s}^{(k,m+1)}) \\ \mathbf{g}^{(k,m+1)} = \frac{\rho}{\rho+1} M \nabla \ell_{m+1}(\mathbf{x}^{(k,m+1)}) + \frac{1}{\rho+1} \mathbf{g}^{(k,m)} \end{cases}$$

Inexact updates? Convergence rate? Many subsets? [NF14d]

Hung Nien (U of M)

Linearized AL method and proposed variants (cont'd)

• Gradient-based linearized AL method [NF14b]:

$$\begin{cases} \mathbf{s}^{(k+1)} = \rho \nabla \ell (\mathbf{x}^{(k)}) + (1-\rho) \, \mathbf{g}^{(k)} \\ \mathbf{x}^{(k+1)} \in \operatorname{prox}_{(\rho^{-1}t)h} (\mathbf{x}^{(k)} - (\rho^{-1}t) \, \mathbf{s}^{(k+1)}) \\ \mathbf{g}^{(k+1)} = \frac{\rho}{\rho+1} \nabla \ell (\mathbf{x}^{(k+1)}) + \frac{1}{\rho+1} \mathbf{g}^{(k)} \end{cases}$$

• Linearized AL method with OS acceleration (*M* subsets) [NF14b]:

$$\begin{cases} \mathbf{s}^{(k,m+1)} = \rho M \nabla \ell_m(\mathbf{x}^{(k,m)}) + (1-\rho) \, \mathbf{g}^{(k,m)} \\ \mathbf{x}^{(k,m+1)} \in \operatorname{prox}_{(\rho^{-1}t)h}(\mathbf{x}^{(k,m)} - (\rho^{-1}t) \, \mathbf{s}^{(k,m+1)}) \\ \mathbf{g}^{(k,m+1)} = \frac{\rho}{\rho+1} M \nabla \ell_{m+1}(\mathbf{x}^{(k,m+1)}) + \frac{1}{\rho+1} \mathbf{g}^{(k,m)} \end{cases}$$

Inexact updates? Convergence rate? Many subsets? [NF14d]

Hung Nien (U of M)

Linearized AL method and proposed variants (cont'd)

• Gradient-based linearized AL method [NF14b]:

$$\begin{cases} \mathbf{s}^{(k+1)} = \rho \nabla \ell (\mathbf{x}^{(k)}) + (1-\rho) \, \mathbf{g}^{(k)} \\ \mathbf{x}^{(k+1)} \in \operatorname{prox}_{(\rho^{-1}t)h} (\mathbf{x}^{(k)} - (\rho^{-1}t) \, \mathbf{s}^{(k+1)}) \\ \mathbf{g}^{(k+1)} = \frac{\rho}{\rho+1} \nabla \ell (\mathbf{x}^{(k+1)}) + \frac{1}{\rho+1} \mathbf{g}^{(k)} \end{cases}$$

• Linearized AL method with OS acceleration (*M* subsets) [NF14b]:

$$\begin{cases} \mathbf{s}^{(k,m+1)} = \rho M \nabla \ell_m(\mathbf{x}^{(k,m)}) + (1-\rho) \, \mathbf{g}^{(k,m)} \\ \mathbf{x}^{(k,m+1)} \in \operatorname{prox}_{(\rho^{-1}t)h}(\mathbf{x}^{(k,m)} - (\rho^{-1}t) \, \mathbf{s}^{(k,m+1)}) \\ \mathbf{g}^{(k,m+1)} = \frac{\rho}{\rho+1} M \nabla \ell_{m+1}(\mathbf{x}^{(k,m+1)}) + \frac{1}{\rho+1} \mathbf{g}^{(k,m)} \end{cases}$$

• Inexact updates? Convergence rate? Many subsets? [NF14d]

Hung Nien (U of M)

Outline

Background

- Model-based CT reconstruction
- Fast (2D) CT reconstruction using ADMM

OS-LALM: a splitting-based OS algorithm for PWLS problems

Linearized AL method with OS acceleration

• Deterministic downward continuation approach

Low-memory OS-LALM with additional variable splits

Experimental results

- Low-dose CT with edge-preserving regularizers
- Sparse-view CT with TV-like regularizers

4 Conclusion and future work

Hung Nien (U of M) Model-based X-ray CT image recon using VS methods with OS 05

05/19/2014 27 / 58

Faster convergence using continuation

An inconvenient truth ... of ADMM

Hung Nien (U of M) Model-based X-ray CT image recon using VS methods with OS 05/19/2014 28 / 58

An inconvenient truth ... of ADMM

ADMM is convergent for any fixed penalty parameter

An inconvenient truth ... of ADMM

- ADMM is convergent for any fixed penalty parameter
- But, it is fast only if the penalty parameter is chosen appropriately

An inconvenient truth ... of ADMM

- ADMM is convergent for any fixed penalty parameter
- But, it is fast only if the penalty parameter is chosen appropriately
- Choosing the optimal parameter is still an open problem

28 / 58

Faster convergence using continuation

An inconvenient truth ... of ADMM

- ADMM is convergent for any fixed penalty parameter
- But, it is fast only if the penalty parameter is chosen appropriately
- Choosing the optimal parameter is still an open problem

Any alternative?

 Hung Nien (U of M)
 Model-based X-ray CT image recon using VS methods with OS
 05/19/2014

An inconvenient truth ... of ADMM

- ADMM is convergent for any fixed penalty parameter
- But, it is fast only if the penalty parameter is chosen appropriately
- Choosing the optimal parameter is still an open problem

Any alternative?

• Yes, continuation!

An inconvenient truth ... of ADMM

- ADMM is convergent for any fixed penalty parameter
- But, it is fast only if the penalty parameter is chosen appropriately
- Choosing the optimal parameter is still an open problem

Any alternative?

- Yes, continuation!
- Recall the proximal-gradient image update:

$$\mathbf{x}^{(k+1)} \in \operatorname{prox}_{(\rho^{-1}t)h} (\mathbf{x}^{(k)} - (\rho^{-1}t) \mathbf{s}^{(k+1)})$$

Hung Nien (U of M)

Model-based X-ray CT image recon using VS methods with OS

An inconvenient truth ... of ADMM

- ADMM is convergent for any fixed penalty parameter
- But, it is fast only if the penalty parameter is chosen appropriately
- Choosing the optimal parameter is still an open problem

Any alternative?

- Yes, continuation!
- Recall the proximal-gradient image update:

$$\mathbf{x}^{(k+1)} \in \operatorname{prox}_{(\rho^{-1}t)h}(\mathbf{x}^{(k)} - (\rho^{-1}t) \mathbf{s}^{(k+1)})$$

Hung Nien (U of M)

Model-based X-ray CT image recon using VS methods with OS

An inconvenient truth ... of ADMM

- ADMM is convergent for any fixed penalty parameter
- But, it is fast only if the penalty parameter is chosen appropriately
- Choosing the optimal parameter is still an open problem

Any alternative?

- Yes, continuation!
- Recall the proximal-gradient image update:

$$\mathbf{x}^{(k+1)} \in \operatorname{prox}_{(\rho^{-1}t)h}(\mathbf{x}^{(k)} - (\rho^{-1}t) \mathbf{s}^{(k+1)})$$

• We can adjust the step size by varying the penalty parameter

An inconvenient truth ... of ADMM

- ADMM is convergent for any fixed penalty parameter
- But, it is fast only if the penalty parameter is chosen appropriately
- Choosing the optimal parameter is still an open problem

Any alternative?

- Yes, continuation!
- Recall the proximal-gradient image update:

$$\mathbf{x}^{(k+1)} \in \operatorname{prox}_{(\rho^{-1}t)h}(\mathbf{x}^{(k)} - (\rho^{-1}t) \mathbf{s}^{(k+1)})$$

• We can adjust the step size by varying the penalty parameter (How?)

A I > A I > A

Faster convergence using continuation

Deterministic downward continuation

Hung Nien (U of M) Model-based X-ray CT image recon using VS methods with OS 05/19/2014 29 / 58

Deterministic downward continuation

• Decreasing ρ_k compensates the shrinkage of step length

 Hung Nien (U of M)
 Model-based X-ray CT image recon using VS methods with OS
 05/19/2014
 29 / 58

Deterministic downward continuation

- Decreasing ρ_k compensates the shrinkage of step length
- Decreasing ρ_k too fast could make the algorithm unstable or diverge

Deterministic downward continuation

- Decreasing ρ_k compensates the shrinkage of step length
- Decreasing ρ_k too fast could make the algorithm unstable or diverge
- The designed sequence [NF14d]:

$$ho_k = egin{cases} 1 & ext{, if } k = 0 \ rac{\pi}{k+1} \sqrt{1 - \left(rac{\pi}{2k+2}
ight)^2} & ext{, otherwise} \end{cases}$$

 Hung Nien (U of M)
 Model-based X-ray CT image recon using VS methods with OS
 05/19/2014
 29 / 58

Deterministic downward continuation

- Decreasing ρ_k compensates the shrinkage of step length
- Decreasing ρ_k too fast could make the algorithm unstable or diverge
- The designed sequence [NF14d]:

$$\rho_k = \begin{cases} 1 & \text{, if } k = 0 \\ \frac{\pi}{k+1} \sqrt{1 - \left(\frac{\pi}{2k+2}\right)^2} & \text{, otherwise} \end{cases}$$

Inspired by a second-order recursive system analysis Derivation

Deterministic downward continuation

- Decreasing ρ_k compensates the shrinkage of step length
- Decreasing ρ_k too fast could make the algorithm unstable or diverge
- The designed sequence [NF14d]:

$$ho_k = egin{cases} 1 & ext{, if } k = 0 \ rac{\pi}{k+1} \sqrt{1 - \left(rac{\pi}{2k+2}
ight)^2} & ext{, otherwise} \end{cases}$$

- Inspired by a second-order recursive system analysis Derivation
- ullet An adaptive restart condition takes care of the dependence on $ilde{f A}$

Outline

Background

- Model-based CT reconstruction
- Fast (2D) CT reconstruction using ADMM

2 OS-LALM: a splitting-based OS algorithm for PWLS problems

- Linearized AL method with OS acceleration
- Deterministic downward continuation approach
- Low-memory OS-LALM with additional variable splits

Experimental results

- Low-dose CT with edge-preserving regularizers
- Sparse-view CT with TV-like regularizers

4 Conclusion and future work

Hung Nien (U of M) Model-based X-ray CT image recon using VS methods with OS 0

05/19/2014 30 / 58

Low-memory OS-LALM with additional variable splits

OS-LALM with an additional VS

Is additional VS really beneficial?

OS-LALM with an additional VS

Is additional VS really beneficial?

• ℓ_1 -regularization (compressed sensing)

OS-LALM with an additional VS

Is additional VS really beneficial?

- ℓ_1 -regularization (compressed sensing)
- TV-regularization (sparse-view CT)

OS-LALM with an additional VS

Is additional VS really beneficial?

- ℓ_1 -regularization (compressed sensing)
- TV-regularization (sparse-view CT)
- Smooth regularizer with very high curvature (corner-rounding)

Is additional VS really beneficial?

- ℓ_1 -regularization (compressed sensing)
- TV-regularization (sparse-view CT)
- Smooth regularizer with very high curvature (corner-rounding)

CT reconstruction with "high-memory" VS

• PWLS formulation:

$$\hat{\boldsymbol{\mathsf{x}}} \in \arg\min_{\boldsymbol{\mathsf{x}}\in\Omega} \left\{ \tfrac{1}{2} \big\| \tilde{\boldsymbol{\mathsf{y}}} - \tilde{\boldsymbol{\mathsf{A}}} \boldsymbol{\mathsf{x}} \big\|_2^2 + \Phi(\boldsymbol{\mathsf{C}}\boldsymbol{\mathsf{x}}) \right\}$$

Hung Nien (U of M)

Model-based X-ray CT image recon using VS methods with OS

05/19/2014 31 / 58

Is additional VS really beneficial?

- ℓ_1 -regularization (compressed sensing)
- TV-regularization (sparse-view CT)
- Smooth regularizer with very high curvature (corner-rounding)

CT reconstruction with "high-memory" VS

• PWLS formulation:

$$\hat{\boldsymbol{\mathsf{x}}} \in \arg\min_{\boldsymbol{\mathsf{x}}\in\Omega} \left\{ \tfrac{1}{2} \big\| \tilde{\boldsymbol{\mathsf{y}}} - \tilde{\boldsymbol{\mathsf{A}}} \boldsymbol{\mathsf{x}} \big\|_2^2 + \Phi(\boldsymbol{\mathsf{C}}\boldsymbol{\mathsf{x}}) \right\}$$

• Equivalent formulation [NF14c]:

$$(\hat{\mathbf{x}}, \hat{\mathbf{u}}, \hat{\mathbf{v}}) \in \arg\min_{\mathbf{x} \in \Omega, \mathbf{u}, \mathbf{v}} \left\{ \frac{1}{2} \left\| \mathbf{\tilde{y}} - \mathbf{u} \right\|_2^2 + \Phi(\mathbf{v}) \right\} \text{ s.t. } \mathbf{u} = \mathbf{\tilde{A}} \mathbf{x}, \mathbf{v} = \mathbf{C} \mathbf{x}$$

Hung Nien (U of M)

05/19/2014 31 / 58

"High-memory" OS-LALM

$$\begin{cases} \mathbf{s}^{(k+1)} = \rho \nabla \ell(\mathbf{x}^{(k)}) + (1-\rho) \, \mathbf{g}^{(k)} \\ \boldsymbol{\sigma}^{(k+1)} = \bar{\eta} \, \mathbf{C}' \big(\mathbf{C} \mathbf{x}^{(k)} - \mathbf{v}^{(k)} - \mathbf{e}^{(k)} \big) \\ \mathbf{x}^{(k+1)} = \Big[\mathbf{x}^{(k)} - \frac{1}{\rho L_1 + \bar{\eta} L_2} \left(\mathbf{s}^{(k+1)} + \boldsymbol{\sigma}^{(k+1)} \right) \Big]_{\Omega} \\ \mathbf{g}^{(k+1)} = \frac{\rho}{\rho+1} \nabla \ell \big(\mathbf{x}^{(k+1)} \big) + \frac{1}{\rho+1} \mathbf{g}^{(k)} \\ \mathbf{v}^{(k+1)} \in \operatorname{prox}_{\bar{\eta}^{-1} \Phi} \big(\mathbf{C} \mathbf{x}^{(k+1)} - \mathbf{e}^{(k)} \big) \\ \mathbf{e}^{(k+1)} = \mathbf{e}^{(k)} - \mathbf{C} \mathbf{x}^{(k+1)} + \mathbf{v}^{(k+1)} \end{cases}$$

Hung Nien (U of M) Model-based X-ray CT image recon using VS methods with OS 05/19/2014 32 / 58

"High-memory" OS-LALM

$$\begin{cases} \mathbf{s}^{(k+1)} = \rho \nabla \ell (\mathbf{x}^{(k)}) + (1-\rho) \, \mathbf{g}^{(k)} \\ \boldsymbol{\sigma}^{(k+1)} = \bar{\eta} \, \mathbf{C}' (\mathbf{C} \mathbf{x}^{(k)} - \mathbf{v}^{(k)} - \mathbf{e}^{(k)}) \\ \mathbf{x}^{(k+1)} = \left[\mathbf{x}^{(k)} - \frac{1}{\rho L_1 + \bar{\eta} L_2} \left(\mathbf{s}^{(k+1)} + \boldsymbol{\sigma}^{(k+1)} \right) \right]_{\Omega} \\ \mathbf{g}^{(k+1)} = \frac{\rho}{\rho + 1} \nabla \ell \left(\mathbf{x}^{(k+1)} \right) + \frac{1}{\rho + 1} \mathbf{g}^{(k)} \\ \mathbf{v}^{(k+1)} \in \operatorname{prox}_{\bar{\eta}^{-1} \Phi} \left(\mathbf{C} \mathbf{x}^{(k+1)} - \mathbf{e}^{(k)} \right) \\ \mathbf{e}^{(k+1)} = \mathbf{e}^{(k)} - \mathbf{C} \mathbf{x}^{(k+1)} + \mathbf{v}^{(k+1)} \end{cases}$$

• Gradient descent-like algorithm with adjustable step sizes

"High-memory" OS-LALM

$$\begin{cases} \mathbf{s}^{(k+1)} = \rho \nabla \ell(\mathbf{x}^{(k)}) + (1-\rho) \, \mathbf{g}^{(k)} \\ \boldsymbol{\sigma}^{(k+1)} = \bar{\eta} \, \mathbf{C}' \big(\mathbf{C} \mathbf{x}^{(k)} - \mathbf{v}^{(k)} - \mathbf{e}^{(k)} \big) \\ \mathbf{x}^{(k+1)} = \left[\mathbf{x}^{(k)} - \frac{1}{\rho L_1 + \bar{\eta} L_2} \left(\mathbf{s}^{(k+1)} + \boldsymbol{\sigma}^{(k+1)} \right) \right]_{\Omega} \\ \mathbf{g}^{(k+1)} = \frac{\rho}{\rho+1} \nabla \ell \big(\mathbf{x}^{(k+1)} \big) + \frac{1}{\rho+1} \mathbf{g}^{(k)} \\ \mathbf{v}^{(k+1)} \in \operatorname{prox}_{\bar{\eta}^{-1} \Phi} \big(\mathbf{C} \mathbf{x}^{(k+1)} - \mathbf{e}^{(k)} \big) \\ \mathbf{e}^{(k+1)} = \mathbf{e}^{(k)} - \mathbf{C} \mathbf{x}^{(k+1)} + \mathbf{v}^{(k+1)} \end{cases}$$

Gradient descent-like algorithm with adjustable step sizes
Φ can be either smooth or non-smooth (with efficient prox_Φ)

"High-memory" OS-LALM

$$\begin{cases} \mathbf{s}^{(k+1)} = \rho \nabla \ell(\mathbf{x}^{(k)}) + (1-\rho) \, \mathbf{g}^{(k)} \\ \boldsymbol{\sigma}^{(k+1)} = \bar{\eta} \, \mathbf{C}' \big(\mathbf{C} \mathbf{x}^{(k)} - \mathbf{v}^{(k)} - \mathbf{e}^{(k)} \big) \\ \mathbf{x}^{(k+1)} = \left[\mathbf{x}^{(k)} - \frac{1}{\rho L_1 + \bar{\eta} L_2} \left(\mathbf{s}^{(k+1)} + \boldsymbol{\sigma}^{(k+1)} \right) \right]_{\Omega} \\ \mathbf{g}^{(k+1)} = \frac{\rho}{\rho+1} \nabla \ell \big(\mathbf{x}^{(k+1)} \big) + \frac{1}{\rho+1} \mathbf{g}^{(k)} \\ \mathbf{v}^{(k+1)} \in \operatorname{prox}_{\bar{\eta}^{-1} \Phi} \big(\mathbf{C} \mathbf{x}^{(k+1)} - \mathbf{e}^{(k)} \big) \\ \mathbf{e}^{(k+1)} = \mathbf{e}^{(k)} - \mathbf{C} \mathbf{x}^{(k+1)} + \mathbf{v}^{(k+1)} \end{cases}$$

- Gradient descent-like algorithm with adjustable step sizes
- Φ can be either smooth or non-smooth (with efficient prox_{Φ})
- Requires two extra image volumes for each direction

"High-memory" OS-LALM

$$\begin{cases} \mathbf{s}^{(k+1)} = \rho \nabla \ell(\mathbf{x}^{(k)}) + (1-\rho) \, \mathbf{g}^{(k)} \\ \boldsymbol{\sigma}^{(k+1)} = \bar{\eta} \, \mathbf{C}'(\mathbf{C}\mathbf{x}^{(k)} - \mathbf{v}^{(k)} - \mathbf{e}^{(k)}) \\ \mathbf{x}^{(k+1)} = \left[\mathbf{x}^{(k)} - \frac{1}{\rho L_1 + \bar{\eta} L_2} \left(\mathbf{s}^{(k+1)} + \boldsymbol{\sigma}^{(k+1)} \right) \right]_{\Omega} \\ \mathbf{g}^{(k+1)} = \frac{\rho}{\rho + 1} \nabla \ell(\mathbf{x}^{(k+1)}) + \frac{1}{\rho + 1} \mathbf{g}^{(k)} \\ \mathbf{v}^{(k+1)} \in \operatorname{prox}_{\bar{\eta}^{-1} \Phi}(\mathbf{C}\mathbf{x}^{(k+1)} - \mathbf{e}^{(k)}) \\ \mathbf{e}^{(k+1)} = \mathbf{e}^{(k)} - \mathbf{C}\mathbf{x}^{(k+1)} + \mathbf{v}^{(k+1)} \end{cases}$$

- Gradient descent-like algorithm with adjustable step sizes
- Φ can be either smooth or non-smooth (with efficient $\operatorname{prox}_{\Phi}$)
- Requires two extra image volumes for each direction
- Remarkable memory and computational overhead

Hung Nien (U of M)

< ロ > < 同 > < 三 > < 三

Low-memory OS-LALM with "compressed" VS

The idea is ...

Hung Nien (U of M) Model-based X-ray CT image recon using VS methods with OS 05/19/2014 33 / 58

The idea is ...

 \bullet The auxiliary variables v and e can be large, but $C^\prime v$ and $C^\prime e$ are not

 Hung Nien (U of M)
 Model-based X-ray CT image recon using VS methods with OS
 05/19/2014
 33 / 58

The idea is ...

- The auxiliary variables ${\bf v}$ and ${\bf e}$ can be large, but ${\bf C}'{\bf v}$ and ${\bf C}'{\bf e}$ are not
- Majoirzing Φ makes all **v** and **e**-related updates linear!

The idea is ...

- The auxiliary variables **v** and **e** can be large, but $\mathbf{C'v}$ and $\mathbf{C'e}$ are not
- Majoirzing Φ makes all v- and e-related updates linear!

"Low-memory" OS-LALM

• At the *k*th iteration, replace Φ by

$$\check{\Phi}ig(\mathbf{v};\mathbf{C}\mathbf{x}^{(k+1)}ig) \propto \mathbf{v}'
abla \Phiig(\mathbf{C}\mathbf{x}^{(k+1)}ig) + rac{L_{\Phi}}{2} \left\|\mathbf{v} - \mathbf{C}\mathbf{x}^{(k+1)}
ight\|_2^2$$

33 / 58

Low-memory OS-LALM with "compressed" VS

The idea is ...

- The auxiliary variables \mathbf{v} and \mathbf{e} can be large, but $\mathbf{C'v}$ and $\mathbf{C'e}$ are not
- Majoirzing Φ makes all v- and e-related updates linear!

"Low-memory" OS-LALM

• At the *k*th iteration, replace Φ by

$$reve{\Phi}ig(\mathbf{v};\mathbf{C}\mathbf{x}^{(k+1)}ig) \propto \mathbf{v}'
abla \Phiig(\mathbf{C}\mathbf{x}^{(k+1)}ig) + rac{L_\Phi}{2} \left\|\mathbf{v} - \mathbf{C}\mathbf{x}^{(k+1)}
ight\|_2^2$$

• The v-update has a linear approximate solution:

$$\mathbf{v}^{(k+1)} \approx \mathbf{C}\mathbf{x}^{(k+1)} - \left(\frac{\bar{\eta}}{\bar{\eta}+L_{\Phi}}\mathbf{e}^{(k)} + \frac{L_{\Phi}}{\bar{\eta}+L_{\Phi}}L_{\Phi}^{-1}\nabla\Phi(\mathbf{C}x^{(k+1)})\right)$$

"Low-memory" OS-LALM (cont'd)

4

$$\begin{cases} \mathbf{s}^{(k+1)} = \rho \nabla \ell (\mathbf{x}^{(k)}) + (1-\rho) \, \mathbf{g}^{(k)} \\ \boldsymbol{\sigma}^{(k+1)} = \eta \left(\bar{\mathbf{v}}^{(k)} - \tilde{\mathbf{e}}^{(k)} \right) \\ \mathbf{x}^{(k+1)} = \left[\mathbf{x}^{(k)} - \frac{1}{\rho L_1 + \eta L_\Phi L_2} \left(\mathbf{s}^{(k+1)} + \boldsymbol{\sigma}^{(k+1)} \right) \right]_{\Omega} \\ \mathbf{g}^{(k+1)} = \frac{\rho}{\rho+1} \nabla \ell \left(\mathbf{x}^{(k+1)} \right) + \frac{1}{\rho+1} \mathbf{g}^{(k)} \\ \bar{\mathbf{v}}^{(k+1)} = \frac{\eta}{\eta+1} \tilde{\mathbf{e}}^{(k)} + \frac{1}{\eta+1} \nabla \mathbf{R} \left(\mathbf{x}^{(k+1)} \right) \\ \tilde{\mathbf{e}}^{(k+1)} = \tilde{\mathbf{e}}^{(k)} - \bar{\mathbf{v}}^{(k+1)} \end{cases}$$

Hung Nien (U of M) Model-based X-ray CT image recon using VS methods with OS

э

-

< 17 ▶

★ ∃ >

Low-memory OS-LALM with "compressed" VS

"Low-memory" OS-LALM (cont'd)

$$\begin{cases} \mathbf{s}^{(k+1)} = \rho \nabla \ell (\mathbf{x}^{(k)}) + (1-\rho) \, \mathbf{g}^{(k)} \\ \boldsymbol{\sigma}^{(k+1)} = \eta \left(\bar{\mathbf{v}}^{(k)} - \tilde{\mathbf{e}}^{(k)} \right) \\ \mathbf{x}^{(k+1)} = \left[\mathbf{x}^{(k)} - \frac{1}{\rho L_1 + \eta L_{\Phi} L_2} \left(\mathbf{s}^{(k+1)} + \boldsymbol{\sigma}^{(k+1)} \right) \right]_{\Omega} \\ \mathbf{g}^{(k+1)} = \frac{\rho}{\rho + 1} \nabla \ell \left(\mathbf{x}^{(k+1)} \right) + \frac{1}{\rho + 1} \mathbf{g}^{(k)} \\ \bar{\mathbf{v}}^{(k+1)} = \frac{\eta}{\eta + 1} \tilde{\mathbf{e}}^{(k)} + \frac{1}{\eta + 1} \nabla \mathcal{R} \left(\mathbf{x}^{(k+1)} \right) \\ \tilde{\mathbf{e}}^{(k+1)} = \tilde{\mathbf{e}}^{(k)} - \bar{\mathbf{v}}^{(k+1)} \end{cases}$$

• Suppose Φ is smooth, and $\nabla \Phi$ is L_{Φ} -Lipschitz

 Hung Nien (U of M)
 Model-based X-ray CT image recon using VS methods with OS
 05/19/2014
 34 / 58

< A

Low-memory OS-LALM with "compressed" VS

"Low-memory" OS-LALM (cont'd)

$$\begin{cases} \mathbf{s}^{(k+1)} = \rho \nabla \ell (\mathbf{x}^{(k)}) + (1-\rho) \, \mathbf{g}^{(k)} \\ \boldsymbol{\sigma}^{(k+1)} = \eta \left(\bar{\mathbf{v}}^{(k)} - \tilde{\mathbf{e}}^{(k)} \right) \\ \mathbf{x}^{(k+1)} = \left[\mathbf{x}^{(k)} - \frac{1}{\rho L_1 + \eta L_{\Phi} L_2} \left(\mathbf{s}^{(k+1)} + \boldsymbol{\sigma}^{(k+1)} \right) \right]_{\Omega} \\ \mathbf{g}^{(k+1)} = \frac{\rho}{\rho + 1} \nabla \ell \left(\mathbf{x}^{(k+1)} \right) + \frac{1}{\rho + 1} \mathbf{g}^{(k)} \\ \bar{\mathbf{v}}^{(k+1)} = \frac{\eta}{\eta + 1} \tilde{\mathbf{e}}^{(k)} + \frac{1}{\eta + 1} \nabla \mathbf{R} \left(\mathbf{x}^{(k+1)} \right) \\ \tilde{\mathbf{e}}^{(k+1)} = \tilde{\mathbf{e}}^{(k)} - \bar{\mathbf{v}}^{(k+1)} \end{cases}$$

• Suppose Φ is smooth, and $\nabla \Phi$ is L_{Φ} -Lipschitz

No explicit proximal mapping is in the updates

"Low-memory" OS-LALM (cont'd)

$$\begin{cases} \mathbf{s}^{(k+1)} = \rho \nabla \ell (\mathbf{x}^{(k)}) + (1-\rho) \, \mathbf{g}^{(k)} \\ \boldsymbol{\sigma}^{(k+1)} = \eta \left(\bar{\mathbf{v}}^{(k)} - \tilde{\mathbf{e}}^{(k)} \right) \\ \mathbf{x}^{(k+1)} = \left[\mathbf{x}^{(k)} - \frac{1}{\rho L_1 + \eta L_{\Phi} L_2} \left(\mathbf{s}^{(k+1)} + \boldsymbol{\sigma}^{(k+1)} \right) \right]_{\Omega} \\ \mathbf{g}^{(k+1)} = \frac{\rho}{\rho + 1} \nabla \ell \left(\mathbf{x}^{(k+1)} \right) + \frac{1}{\rho + 1} \mathbf{g}^{(k)} \\ \bar{\mathbf{v}}^{(k+1)} = \frac{\eta}{\eta + 1} \tilde{\mathbf{e}}^{(k)} + \frac{1}{\eta + 1} \nabla \mathbf{R} \left(\mathbf{x}^{(k+1)} \right) \\ \tilde{\mathbf{e}}^{(k+1)} = \tilde{\mathbf{e}}^{(k)} - \bar{\mathbf{v}}^{(k+1)} \end{cases}$$

- Suppose Φ is smooth, and $\nabla \Phi$ is L_{Φ} -Lipschitz
- No explicit proximal mapping is in the updates
- Requires only two extra image volumes for all directions

Hung Nien (U of M)

05/19/2014 34 / 58

▲ 同 ト ▲ 戸 ト

Outline

Background

- Model-based CT reconstruction
- Fast (2D) CT reconstruction using ADMM

OS-LALM: a splitting-based OS algorithm for PWLS problems

- Linearized AL method with OS acceleration
- Deterministic downward continuation approach
- Low-memory OS-LALM with additional variable splits

3 Experimental results

- Low-dose CT with edge-preserving regularizers
- Sparse-view CT with TV-like regularizers

4 Conclusion and future work

Hung Nien (U of M) Model-based X-ray CT image recon using VS methods with OS 05/19/2014

35 / 58

Setup and notation

Hung Nien (U of M) Model-based X-ray CT image recon using VS methods with OS 05/19/2014 36 / 58

<ロ> (日) (日) (日) (日) (日)

2

Setup and notation

OS configuration

- OS with the bit-reversal order
- Separable quadratic surrogate with Hessian $D_L \triangleq \text{diag}\{A'WA1\}$

Setup and notation

OS configuration

- OS with the bit-reversal order
- Separable quadratic surrogate with Hessian $D_L \triangleq diag\{A'WA1\}$

Naming conventions

- OS-SQS-M: the standard OS algorithm [EF99]
- OS-Nes05-M: the state-of-the-art OS+momentum algorithm [KR+13]
- OS-LALM-*M*-*ρ*-*n*: the proposed one-split algorithm [NF14b; NF14d]
- OS-LALM-*M*-c- η (low-mem): the proposed two-split algorithm

Outline

Background

- Model-based CT reconstruction
- Fast (2D) CT reconstruction using ADMM

OS-LALM: a splitting-based OS algorithm for PWLS problems

- Linearized AL method with OS acceleration
- Deterministic downward continuation approach
- Low-memory OS-LALM with additional variable splits

3 Experimental results

- Low-dose CT with edge-preserving regularizers
- Sparse-view CT with TV-like regularizers

4 Conclusion and future work

Hung Nien (U of M) Model-based X-ray CT image recon using VS methods with OS 05,

05/19/2014 37 / 58

Specification

- Image size: $512 \times 512 \times 109$
- Sinogram size: $888 \times 32 \times 7146$ (about 7 turns, pitch = 0.5)

Specification

- Image size: $512 \times 512 \times 109$
- Sinogram size: $888 \times 32 \times 7146$ (about 7 turns, pitch = 0.5)

Figure: Shoulder: the initial FBP image (left), the reference reconstruction (middle), and the reconstructed image using OS-LALM after 30 iterations (right).

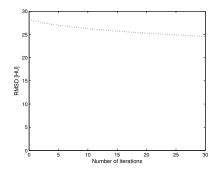


Figure: Shoulder: RMS differences as a function of iteration using different OS-based algorithms with 20 subsets (left) and 40 subsets (right).



Figure: Shoulder: RMS differences as a function of iteration using different OS-based algorithms with 20 subsets (left) and 40 subsets (right).



Figure: Shoulder: RMS differences as a function of iteration using different OS-based algorithms with 20 subsets (left) and 40 subsets (right).

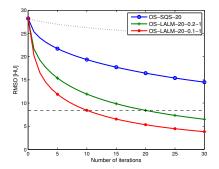


Figure: Shoulder: RMS differences as a function of iteration using different OS-based algorithms with 20 subsets (left) and 40 subsets (right).

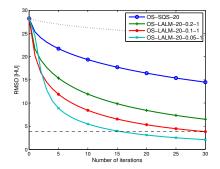


Figure: Shoulder: RMS differences as a function of iteration using different OS-based algorithms with 20 subsets (left) and 40 subsets (right).

→ Ξ →

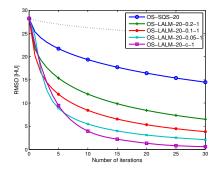


Figure: Shoulder: RMS differences as a function of iteration using different OS-based algorithms with 20 subsets (left) and 40 subsets (right).

Image: A image: A

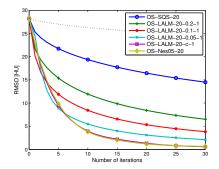


Figure: Shoulder: RMS differences as a function of iteration using different OS-based algorithms with 20 subsets (left) and 40 subsets (right).

A (10) A (10) A (10)

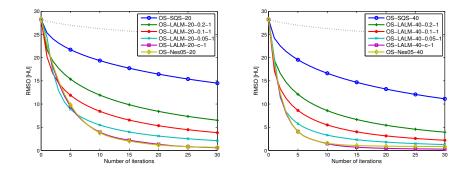


Figure: Shoulder: RMS differences as a function of iteration using different OS-based algorithms with 20 subsets (left) and 40 subsets (right).

(日) (同) (三) (三)

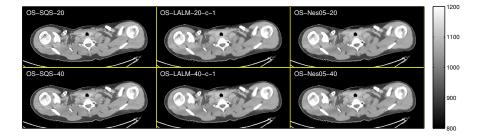


Figure: Shoulder: reconstructed images using different OS-based algorithms after 30 iterations.

Image: A match a ma

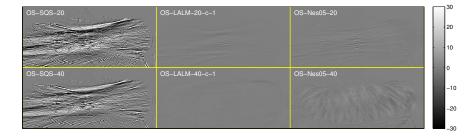


Figure: Shoulder: difference images of the reconstructed images using different OS-based algorithms after 30 iterations.

Hung Nien (U of M) Model-based X-ray CT image recon using VS methods with OS 05/19/2014 41 / 58

GE performance phantom axial scan

Specification

- Image size: $1024 \times 1024 \times 90$
- Sinogram size: $888 \times 64 \times 984$ (less view redundancy, cf. helical scan)

GE performance phantom axial scan

Specification

- Image size: $1024 \times 1024 \times 90$
- Sinogram size: $888 \times 64 \times 984$ (less view redundancy, cf. helical scan)

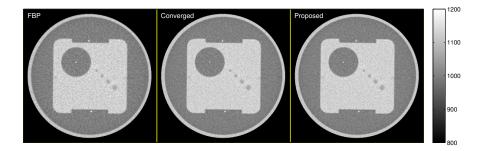


Figure: GEPP: the initial FBP image (left), the reference reconstruction (middle), and the reconstructed image using OS-LALM after 30 iterations (right).

Hung Nien (U of M)

Model-based X-ray CT image recon using VS methods with OS

05/19/2014 42 / 58

GE performance phantom axial scan

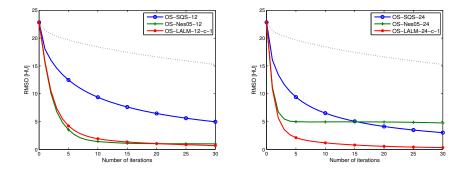


Figure: GEPP: RMS differences as a function of iteration using different OS-based algorithms with 12 subsets (left) and 24 subsets (right).

GE performance phantom axial scan

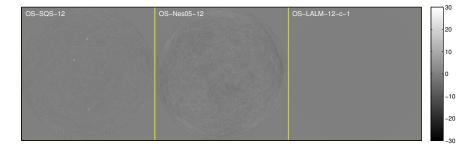


Figure: GEPP: difference images of the reconstructed images using different OS-based algorithms with 12 subsets after 30 iterations.

Hung Nien (U of M) Model-based X-ray CT image recon using VS methods with OS 05/19/2014 44 / 58

GE performance phantom axial scan

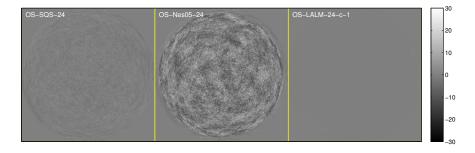


Figure: GEPP: difference images of the reconstructed images using different OS-based algorithms with 24 subsets after 30 iterations.

Hung Nien (U of M) Model-based X-ray CT image recon using VS methods with OS 05/19/2014 45 / 58

A I > A I > A

46 / 58

Outline

Background

- Model-based CT reconstruction
- Fast (2D) CT reconstruction using ADMM

OS-LALM: a splitting-based OS algorithm for PWLS problems

- Linearized AL method with OS acceleration
- Deterministic downward continuation approach
- Low-memory OS-LALM with additional variable splits

3 Experimental results

- Low-dose CT with edge-preserving regularizers
- Sparse-view CT with TV-like regularizers

4 Conclusion and future work

Hung Nien (U of M) Model-based X-ray CT image recon using VS methods with OS 05/19/2014

Specification

- Image size: $718 \times 718 \times 122$
- Sinogram size: 888 × 64 × 81 (about 12.6% views are used)

Specification

- Image size: $718 \times 718 \times 122$
- Sinogram size: $888 \times 64 \times 81$ (about 12.6% views are used)

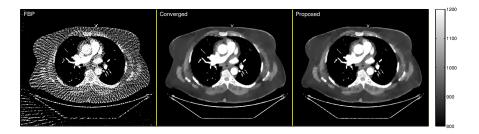


Figure: Chest: the initial FBP image (left), the reference reconstruction (middle), and the reconstructed image using OS-LALM after 100 iterations (right).

A B A B
 A B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

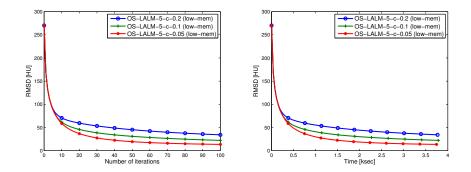


Figure: Chest: RMS differences as a function of iteration (left) and time (right) using OS-LALM with M = 5 and different values of η .

-

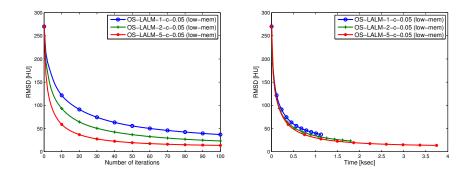


Figure: Chest: RMS differences as a function of iteration (left) and time (right) using OS-LALM with different values of M and $\eta = 0.05$.

< □ > < □ > < □ > < □ >

э.

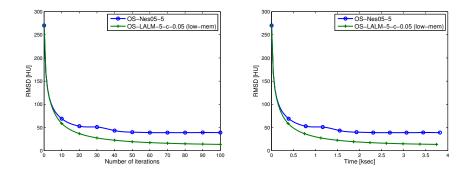


Figure: Chest: RMS differences as a function of iteration (left) and time (right) using different OS-based algorithms with M = 5.

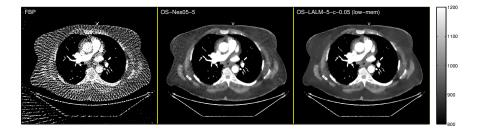


Figure: Chest: reconstructed images using different OS-based algorithms with M = 5 after 100 iterations.

Hung Nien (U of M) Model-based X-ray CT image recon using VS methods with OS 05/19/2014 51 / 58

Outline

Background

- Model-based CT reconstruction
- Fast (2D) CT reconstruction using ADMM

OS-LALM: a splitting-based OS algorithm for PWLS problems

- Linearized AL method with OS acceleration
- Deterministic downward continuation approach
- Low-memory OS-LALM with additional variable splits

Experimental results

- Low-dose CT with edge-preserving regularizers
- Sparse-view CT with TV-like regularizers

4 Conclusion and future work

 Hung Nien (U of M)
 Model-based X-ray CT image recon using VS methods with OS
 05/19/2014

52 / 58

Conclusion

 Hung Nien (U of M)
 Model-based X-ray CT image recon using VS methods with OS
 05/19/2014
 53 / 58

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

3

Conclusion

We proposed ...

- A splitting-based OS algorithm, OS-LALM, for solving PWLS X-ray CT image reconstruction problems
- A deterministic downward continuation approach for accelerating the proposed algorithm
- A low-memory variant of the proposed algorithm when considering additional variable splits

Conclusion

We proposed ...

- A splitting-based OS algorithm, OS-LALM, for solving PWLS X-ray CT image reconstruction problems
- A deterministic downward continuation approach for accelerating the proposed algorithm
- A low-memory variant of the proposed algorithm when considering additional variable splits

Experimental results showed that ...

- The proposed algorithm significantly accelerates the convergence of X-ray CT image reconstruction with negligible overhead
- The proposed algorithm is stable when using many subsets for OS acceleration

05/19/2014 53 / 58

▲ @ ▶ < ∃ ▶</p>

Future work

・ロト ・四ト ・ヨト ・ヨト

= 990

Future work

Theory

- Convergence analysis of OS-LALM when M > 1
- Convergence analysis of OS-LALM with downward continuation
- Optimal downward continuation and restart condition
- Convergence analysis of low-mem OS-LALM
- Parameter selection for low-mem OS-LALM

Future work

Theory

- Convergence analysis of OS-LALM when M > 1
- Convergence analysis of OS-LALM with downward continuation
- Optimal downward continuation and restart condition
- Convergence analysis of low-mem OS-LALM
- Parameter selection for low-mem OS-LALM

Extension

- Non-quadratic data-fitting term
- Low-mem OS-LALM with non-smooth potential functions

54 / 58

References I

- [AB+11] M. V. Afonso, J. M. Bioucas-Dias, and M. A. T. Figueiredo.
 "An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems". In: *IEEE Trans. Im. Proc.* 20.3 (Mar. 2011), pp. 681–95.
- [EF99] H. Erdoğan and J. A. Fessler. "Ordered subsets algorithms for transmission tomography". In: *Phys. Med. Biol.* 44.11 (Nov. 1999), pp. 2835–51.
- [GO09] T. Goldstein and S. Osher. "The split Bregman method for L1-regularized problems". In: SIAM J. Imaging Sci. 2.2 (2009), pp. 323–43.
- [KR+13] D. Kim, S. Ramani, and J. A. Fessler. "Accelerating X-ray CT ordered subsets image reconstruction with Nesterov's first-order methods". In: Proc. Intl. Mtg. on Fully 3D Image Recon. in Rad. and Nuc. Med. 2013, pp. 22–5.

Hung Nien (U of M)

Model-based X-ray CT image recon using VS methods with OS

05/19/2014 55 / 58

イロト イポト イヨト イヨト

References II

- [NF13] H. Nien and J. A. Fessler. "Combining augmented Lagrangian method with ordered subsets for X-ray CT reconstruction". In: *Proc. Intl. Mtg. on Fully 3D Image Recon. in Rad. and Nuc. Med.* 2013, pp. 280–3.
- [NF14a] H. Nien and J. A. Fessler. "A convergence proof of the split Bregman method for regularized least-squares problems". In: arXiv: 1402.4371 (2014).
- [NF14b] H. Nien and J. A. Fessler. "Accelerating ordered-subsets X-ray CT image reconstruction using the linearized augmented Lagrangian framework". In: Proc. SPIE 9033 Medical Imaging 2014: Phys. Med. Im. To appear. 2014.
- [NF14c] H. Nien and J. A. Fessler. "Fast splitting-based ordered-subsets X-ray CT image reconstruction". In: Proc. 3rd Intl. Mtg. on image formation in X-ray CT. Submitted. 2014.

Hung Nien (U of M)

05/19/2014 56 / 58

- 4 同 6 4 日 6 4 日 6

References III

- [NF14d] H. Nien and J. A. Fessler. "Fast X-ray CT image reconstruction using the linearized augmented Lagrangian method with ordered subsets". In: arXiv: 1402.4381 (2014).
- [RF12] S. Ramani and J. A. Fessler. "A splitting-based iterative algorithm for accelerated statistical X-ray CT reconstruction".
 In: *IEEE Trans. Med. Imag.* 31.3 (Mar. 2012), pp. 677–88.
- [TS⁺07] J-B. Thibault et al. "A three-dimensional statistical approach to improved image quality for multi-slice helical CT". In: *Med. Phys.* 34.11 (Nov. 2007), pp. 4526–44.

THANK YOU!

any question?

(日) (周) (三) (三)

3

58 / 58

 Hung Nien (U of M)
 Model-based X-ray CT image recon using VS methods with OS
 05/19/2014

Minimize a quadratic function

Hung Nien (U of M)

Model-based X-ray CT image recon using VS methods with OS

05/19/2014 58 / 58

Minimize a quadratic function

• Simple quadratic programming:

$$\hat{\mathbf{x}} \in rgmin_{\mathbf{x}} rac{1}{2} \|\mathbf{A}\mathbf{x}\|_2^2$$

Minimize a quadratic function

• Simple quadratic programming:

$$\hat{\mathbf{x}} \in \arg\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{A}\mathbf{x}\|_2^2$$

• Let $V\Lambda V'$ be the EVD of A'A, where $0 < \mu = \lambda_1 \leq \ldots \leq \lambda_n = L$

Minimize a quadratic function

• Simple quadratic programming:

$$\hat{\mathbf{x}} \in \arg\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{A}\mathbf{x}\|_2^2$$

- Let $V\Lambda V'$ be the EVD of A'A, where $0 < \mu = \lambda_1 \leq \ldots \leq \lambda_n = L$
- LALM iterates (with a fixed ρ):

$$\begin{cases} \mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - (1/L) \left(\mathbf{V} \mathbf{\Lambda} \mathbf{V}' \mathbf{x}^{(k)} + (\rho^{-1} - 1) \mathbf{g}^{(k)} \right) \\ \mathbf{g}^{(k+1)} = \frac{\rho}{\rho+1} \mathbf{V} \mathbf{\Lambda} \mathbf{V}' \mathbf{x}^{(k+1)} + \frac{1}{\rho+1} \mathbf{g}^{(k)} \end{cases}$$

Hung Nien (U of M)

Model-based X-ray CT image recon using VS methods with OS

Minimize a quadratic function

• Simple quadratic programming:

$$\hat{\mathbf{x}} \in \arg\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{A}\mathbf{x}\|_2^2$$

- Let $V\Lambda V'$ be the EVD of A'A, where $0 < \mu = \lambda_1 \leq \ldots \leq \lambda_n = L$
- LALM iterates (with a fixed ρ):

$$\begin{cases} \mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - (1/L) \left(\mathbf{V} \mathbf{\Lambda} \mathbf{V}' \mathbf{x}^{(k)} + (\rho^{-1} - 1) \mathbf{g}^{(k)} \right) \\ \mathbf{g}^{(k+1)} = \frac{\rho}{\rho + 1} \mathbf{V} \mathbf{\Lambda} \mathbf{V}' \mathbf{x}^{(k+1)} + \frac{1}{\rho + 1} \mathbf{g}^{(k)} \end{cases}$$

• The diagonalized system $\bar{\mathbf{x}} \triangleq \mathbf{V}'\mathbf{x}$ and $\bar{\mathbf{g}} \triangleq \mathbf{V}'\mathbf{g}$ satisfies a 2nd-order recursive system determined by the characteristic polynomial:

$$(1+\rho) r^2 - 2 (1-\lambda_i/L+\rho/2) r + (1-\lambda_i/L)$$

Hung Nien (U of M)

05/19/2014 58 / 58

System behaviors based on the value of ρ

 Hung Nien (U of M)
 Model-based X-ray CT image recon using VS methods with OS
 05/19/2014
 58 / 58

System behaviors based on the value of ρ Let

$$ho_i^{\star} \triangleq 2\sqrt{rac{\lambda_i}{L}\left(1-rac{\lambda_i}{L}
ight)}$$

Hung Nien (U of M) Model-based X-ray CT image recon using VS methods with OS 05/19/2014 58 / 58

▲ □ ► ▲ □ ► ▲

System behaviors based on the value of ρ Let

$$ho_i^{\star} \triangleq 2\sqrt{rac{\lambda_i}{L}\left(1-rac{\lambda_i}{L}
ight)}$$

•
$$\rho = \rho_i^{\star}$$
: critically damped

Hung Nien (U of M) Model-based X-ray CT image recon using VS methods with OS 05/19/2014 58 / 58

▲ □ ► ▲ □ ► ▲

System behaviors based on the value of ρ Let

$$\rho_i^{\star} \triangleq 2\sqrt{\frac{\lambda_i}{L}\left(1-\frac{\lambda_i}{L}\right)}$$

- $\rho = \rho_i^{\star}$: critically damped
- $\rho > \rho_i^{\star}$: over-damped

▲ 同 ▶ → 三 ▶

System behaviors based on the value of ρ Let

$$ho_i^{\star} \triangleq 2\sqrt{rac{\lambda_i}{L}\left(1-rac{\lambda_i}{L}
ight)}$$

- $\rho = \rho_i^{\star}$: critically damped
- $\rho > \rho_i^{\star}$: over-damped
- $\rho < \rho_i^*$: under-damped, oscillates with frequency $\psi_i \approx \sqrt{\lambda_i/L}$

Hung Nien (U of M) Model-based X-ray CT image recon using VS methods with OS 05/19/2014 58 / 58

◆ 同 ▶ → 三 ▶

System behaviors based on the value of ρ Let

$$\rho_i^{\star} \triangleq 2\sqrt{rac{\lambda_i}{L}\left(1-rac{\lambda_i}{L}
ight)}$$

- $\rho = \rho_i^\star$: critically damped
- $\rho > \rho_i^{\star}$: over-damped

• $\rho < \rho_i^*$: under-damped, oscillates with frequency $\psi_i \approx \sqrt{\lambda_i/L}$ We also observed that

• In practice, the asymp. convergence rate of the system is determined by the eigencomponent with the smallest eigenvalue $\lambda_1 = \mu$

System behaviors based on the value of ρ Let

$$ho_i^{\star} \triangleq 2\sqrt{rac{\lambda_i}{L}\left(1-rac{\lambda_i}{L}
ight)}$$

- $\rho = \rho_i^\star$: critically damped
- $\rho > \rho_i^{\star}$: over-damped

• $\rho < \rho_i^*$: under-damped, oscillates with frequency $\psi_i \approx \sqrt{\lambda_i/L}$ We also observed that

- In practice, the asymp. convergence rate of the system is determined by the eigencomponent with the smallest eigenvalue $\lambda_1=\mu$
- For $\lambda_i < L/2$, the critically damped system converges fastest

05/19/2014 58 / 58

System behaviors based on the value of ρ (cont'd)

To attain the fastest asymp. convergence rate, we would like to choose

$$\rho^{\star} = \rho_1^{\star} = 2\sqrt{\frac{\mu}{L}\left(1 - \frac{\mu}{L}\right)}$$

System behaviors based on the value of ρ (cont'd)

To attain the fastest asymp. convergence rate, we would like to choose

$$\rho^{\star} = \rho_1^{\star} = 2\sqrt{\frac{\mu}{L}\left(1 - \frac{\mu}{L}\right)}$$

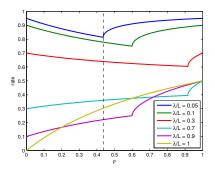


Figure: Asymptotic convergence rate of a system with 6 distinct eigenvalues.

05/19/2014 58 / 58

Design a decreasing sequence $\rho_k \rightarrow \rho^{\star}$

 Hung Nien (U of M)
 Model-based X-ray CT image recon using VS methods with OS
 05/19/2014

58 / 58

Design a decreasing sequence $\rho_k \rightarrow \rho^{\star}$

We know that

• As the algorithm proceeds, only the component oscillating at the freqency $\psi_1\approx \sqrt{\mu/L}$ persists

Design a decreasing sequence $\rho_k \rightarrow \rho^{\star}$

We know that

- As the algorithm proceeds, only the component oscillating at the freqency $\psi_1\approx \sqrt{\mu/L}$ persists
- In this case, $\xi(k) \triangleq (\mathbf{g}^{(k)} \nabla \ell(\mathbf{x}^{(k+1)}))' (\nabla \ell(\mathbf{x}^{(k+1)}) \nabla \ell(\mathbf{x}^{(k)}))$ oscillates at the frequency $2\sqrt{\mu/L}$

Design a decreasing sequence $\rho_k \rightarrow \rho^{\star}$

We know that

- As the algorithm proceeds, only the component oscillating at the freqency $\psi_1\approx \sqrt{\mu/L}$ persists
- In this case, $\xi(k) \triangleq (\mathbf{g}^{(k)} \nabla \ell(\mathbf{x}^{(k+1)}))' (\nabla \ell(\mathbf{x}^{(k+1)}) \nabla \ell(\mathbf{x}^{(k)}))$ oscillates at the frequency $2\sqrt{\mu/L}$
- If the algorithm is restarted when $\xi(k) > 0$, we shall observe the next restart signal after a further $(\pi/2)\sqrt{L/\mu}$ iterations

Design a decreasing sequence $\rho_k \rightarrow \rho^{\star}$

We know that

- As the algorithm proceeds, only the component oscillating at the freqency $\psi_1\approx \sqrt{\mu/L}$ persists
- In this case, $\xi(k) \triangleq (\mathbf{g}^{(k)} \nabla \ell(\mathbf{x}^{(k+1)}))' (\nabla \ell(\mathbf{x}^{(k+1)}) \nabla \ell(\mathbf{x}^{(k)}))$ oscillates at the frequency $2\sqrt{\mu/L}$
- If the algorithm is restarted when $\xi(k) > 0$, we shall observe the next restart signal after a further $(\pi/2)\sqrt{L/\mu}$ iterations
- We can easily design a decreasing sequence ρ_k that reaches ρ^* every time we restart the algorithm! Back

< 回 ト < 三 ト < 三 ト