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Background Model-based CT reconstruction

What is computed tomography?

Projection radiography

An imaging technique that uses X-rays to view the internal structure of a
non-uniformly composed and opaque object such as the human body.

Computed tomography

An imaging technique that combines a series of X-ray projections taken
from many different angles and computer processing (i.e., reconstruction
methods) to create cross-sectional images of the bones and soft tissues
inside to the human body.
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Background Model-based CT reconstruction

What is computed tomography?

Figure: Chest X-ray image (left) and cross-sectional image of abdomen (right).
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Background Model-based CT reconstruction

Basics of X-ray computed tomography
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Background Model-based CT reconstruction

Image reconstruction methods

Non-iterative methods

Direct Fourier reconstruction

Filter-backproject (FBP) method

Very fast (seconds) but prone to noise (medium/high dose)

Iterative methods

Maximum a posteriori (MAP) formulation

Penalized weighted least-squares (PWLS) formulation [TS+07]

x̂ ∈ arg min
x∈Ω

{
Ψ(x) , 1

2 ‖y − Ax‖2
W + R(x)

}

Very slow (hours) but noise robust (low dose)
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Background Model-based CT reconstruction

Image reconstruction methods

Figure: Dose reduction: FBP (left), ASiR (middle), and MBIR (right).
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Background Model-based CT reconstruction

Image reconstruction methods

Large problem size

x: 512× 512× 100 ≈ 3 · 107 unknown image volume

y: 888× 32× 7000 ≈ 2 · 108 measured noisy sinogram

A:
(
3 · 107

)
×
(
2 · 108

)
system matrix

A is sparse but still too large to store

Projection Ax and back-projection A′r operations computed on the fly

Computing gradient ∇Ψ(x) = A′W (Ax− y) +∇R(x) requires
projection and back-projection operations that dominate computation

Enormous dynamic range of transmission data

The dynamic range of weighting W is huge

A′WA is highly shift-variant, and the problem is very ill-conditioned
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Background Model-based CT reconstruction

Image reconstruction methods

Non-iterative methods

Direct Fourier reconstruction

Filter-backproject (FBP) method

Very fast (seconds) but prone to noise (medium/high dose)

Fast iterative methods

Maximum a posteriori (MAP) formulation

Penalized weighted least-squares (PWLS) formulation [TS+07]

x̂ ∈ arg min
x∈Ω

{
Ψ(x) , 1

2 ‖y − Ax‖2
W + R(x)

}
Fast (minutes) and noise robust (low dose)

Hung Nien (U of M) Model-based X-ray CT image recon using VS methods with OS 05/19/2014 15 / 58



Background Fast (2D) CT reconstruction using ADMM

Outline

1 Background
Model-based CT reconstruction
Fast (2D) CT reconstruction using ADMM

2 OS-LALM: a splitting-based OS algorithm for PWLS problems
Linearized AL method with OS acceleration
Deterministic downward continuation approach
Low-memory OS-LALM with additional variable splits

3 Experimental results
Low-dose CT with edge-preserving regularizers
Sparse-view CT with TV-like regularizers

4 Conclusion and future work
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Background Fast (2D) CT reconstruction using ADMM

CT reconstruction using split Bregman method

Equivalent formulation and split Bregman method

PWLS CT reconstruction: x̂ ∈ arg min
x

{
1
2 ‖y − Ax‖2

W + Φ(Cx)
}

Equivalent formulation [GO09]:

(x̂, v̂) ∈ arg min
x,v

{
1
2 ‖y − Ax‖2

W + Φ(v)
}

s.t. v = Cx

Corresponding (scaled) augmented Lagrangian:

LA(x, v, e; η) , 1
2 ‖y − Ax‖2

W + Φ(v) + η
2 ‖Cx− v − e‖2

2
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Background Fast (2D) CT reconstruction using ADMM

CT reconstruction using split Bregman method

Equivalent formulation and split Bregman method (cont’d)

Split Bregman iterates [GO09]:
x(k+1) ∈ arg min

x

{
1
2 ‖y − Ax‖2

W + η
2

∥∥Cx− v(k) − e(k)
∥∥2

2

}
v(k+1) ∈ arg min

v

{
Φ(v) + η

2

∥∥Cx(k+1) − v − e(k)
∥∥2

2

}
e(k+1) = e(k) − Cx(k+1) + v(k+1)

Convergent with inexact updates [NF14a]

Slow x-update due to the highly shift-variant Hessian A′WA + ηC′C
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Background Fast (2D) CT reconstruction using ADMM

CT reconstruction using split Bregman method

Equivalent formulation and split Bregman method (cont’d)

Split Bregman iterates [GO09]:
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Background Fast (2D) CT reconstruction using ADMM

Better conditioning with additional VS

The idea is ...

In 2D CT, A′WA is highly shift-variant, but A′A is not

Replacing the weighted quadratic function in the x-update with an
unweighted one removes most shift-variances of the Hessian

Alternative formulation and ADMM

Alternative formulation [RF12]:

(x̂, û, v̂) ∈ arg min
x,u,v

{
1
2 ‖y − u‖2

W + Φ(v)
}

s.t. u = Ax, v = Cx
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Background Fast (2D) CT reconstruction using ADMM

Better conditioning with additional VS

Alternative formulation and ADMM (cont’d)

ADMM iterates [RF12]:

x(k+1) ∈ arg min
x

{
ρ
2

∥∥Ax− u(k) − d(k)
∥∥2

2
+ η

2

∥∥Cx− v(k) − e(k)
∥∥2

2

}
u(k+1) ∈ arg min

u

{
1
2 ‖y − u‖2

W + ρ
2

∥∥Ax(k+1) − u− d(k)
∥∥2

2

}
v(k+1) ∈ arg min

v

{
Φ(v) + η

2

∥∥Cx(k+1) − v − e(k)
∥∥2

2

}
d(k+1) = d(k) − Ax(k+1) + u(k+1)

e(k+1) = e(k) − Cx(k+1) + v(k+1)

Convergent with inexact updates [AB+11]

ρA′A + ηC′C can be well preconditioned by an appropriate circulant
preconditioner in 2D CT
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Background Fast (2D) CT reconstruction using ADMM

Better conditioning with additional VS

Alternative formulation and ADMM (cont’d)
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Background Fast (2D) CT reconstruction using ADMM

Better conditioning with additional VS

Figure: 2D NCAT: RMS errors as a function of iteration (left) and time (right).

The fact is ...

A′A is still highly shift-variant in 3D CT due to the different geometries
and scan trajectories, so this method is still slow in 3D CT
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OS-LALM: a splitting-based OS algorithm for PWLS problems

Outline

1 Background
Model-based CT reconstruction
Fast (2D) CT reconstruction using ADMM

2 OS-LALM: a splitting-based OS algorithm for PWLS problems
Linearized AL method with OS acceleration
Deterministic downward continuation approach
Low-memory OS-LALM with additional variable splits

3 Experimental results
Low-dose CT with edge-preserving regularizers
Sparse-view CT with TV-like regularizers

4 Conclusion and future work
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OS-LALM: a splitting-based OS algorithm for PWLS problems Linearized AL method with OS acceleration

Motivation

What’s wrong with ADMM in CT recon?

Image update is non-trivial

Memory burden of difference images is high

Ordered-subsets (OS) acceleration is not applicable

Possible solution?

Proposed formulation [NF13]:

(x̂, û) ∈ arg min
x,u

{
1
2 ‖ỹ − u‖2

2 + h(x)
}

s.t. u = Ãx

Image update:

x(k+1) ∈ arg min
x

{
h(x) + ρ

2

∥∥Ãx− u(k) − d(k)
∥∥2

2

}
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∥∥Ãx− u(k) − d(k)
∥∥2

2

}

Hung Nien (U of M) Model-based X-ray CT image recon using VS methods with OS 05/19/2014 24 / 58



OS-LALM: a splitting-based OS algorithm for PWLS problems Linearized AL method with OS acceleration

Motivation

What’s wrong with ADMM in CT recon?

Image update is non-trivial

Memory burden of difference images is high

Ordered-subsets (OS) acceleration is not applicable

Possible solution?

Proposed formulation [NF13]:
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OS-LALM: a splitting-based OS algorithm for PWLS problems Linearized AL method with OS acceleration

Inexact linearized AL method

The idea is ...

Majorizing θk(x) , ρ
2

∥∥Ãx− u(k) − d(k)
∥∥2

2
simplifies image updates

Quadratic data-fitting term makes the u-updates linear

Linearized AL method and proposed variants

Linearized AL method
x(k+1) ∈ arg min

x

{
h(x) + ρL

2

∥∥x−
(
x(k) −

(
ρ−1t

)
∇θk

(
x(k)

))∥∥2

2

}
u(k+1) = ρ

ρ+1

(
Ãx(k+1) − d(k)

)
+ 1

ρ+1 ỹarg min
u

{∥∥Ã
∥∥2

2

}
d(k+1) = d(k) − Ãx(k+1) + u(k+1)

θ̆k
(
x; x(k)

)
, θk

(
x(k)

)
+ 〈∇θk

(
x(k)

)
, x− x(k)〉+ ρL

2

∥∥x− x(k)
∥∥2

2
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∥∥Ãx− u(k) − d(k)
∥∥2

2
simplifies image updates

Quadratic data-fitting term makes the u-updates linear

Linearized AL method and proposed variants

Linearized AL method
x(k+1) ∈ arg min

x

{
h(x) + ρL

2

∥∥x−
(
x(k) −

(
ρ−1t

)
∇θk

(
x(k)

))∥∥2

2

}
u(k+1) ∈ arg min

u

{
1
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∥∥Ãx− u(k) − d(k)
∥∥2

2
simplifies image updates

Quadratic data-fitting term makes the u-updates linear
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OS-LALM: a splitting-based OS algorithm for PWLS problems Linearized AL method with OS acceleration

Inexact linearized AL method

Linearized AL method and proposed variants (cont’d)

Gradient-based linearized AL method [NF14b]:
s(k+1) = ρ∇`

(
x(k)

)
+ (1− ρ) g(k)

x(k+1) ∈ prox(ρ−1t)h

(
x(k) −

(
ρ−1t

)
s(k+1)

)
g(k+1) = ρ

ρ+1∇`
(
x(k+1)

)
+ 1

ρ+1g(k)

Linearized AL method with OS acceleration (M subsets) [NF14b]:
s(k,m+1) = ρM∇`m

(
x(k,m)

)
+ (1− ρ) g(k,m)

x(k,m+1) ∈ prox(ρ−1t)h

(
x(k,m) −

(
ρ−1t

)
s(k,m+1)

)
g(k,m+1) = ρ

ρ+1M∇`m+1

(
x(k,m+1)

)
+ 1

ρ+1g(k,m)

Inexact updates? Convergence rate? Many subsets? [NF14d]
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OS-LALM: a splitting-based OS algorithm for PWLS problems Deterministic downward continuation approach

Outline

1 Background
Model-based CT reconstruction
Fast (2D) CT reconstruction using ADMM

2 OS-LALM: a splitting-based OS algorithm for PWLS problems
Linearized AL method with OS acceleration
Deterministic downward continuation approach
Low-memory OS-LALM with additional variable splits

3 Experimental results
Low-dose CT with edge-preserving regularizers
Sparse-view CT with TV-like regularizers

4 Conclusion and future work
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OS-LALM: a splitting-based OS algorithm for PWLS problems Deterministic downward continuation approach

Faster convergence using continuation

An inconvenient truth ... of ADMM

ADMM is convergent for any fixed penalty parameter

But, it is fast only if the penalty parameter is chosen appropriately

Choosing the optimal parameter is still an open problem

Any alternative?

Yes, continuation!

Recall the proximal-gradient image update:

x(k+1) ∈ prox(ρ−1t)h

(
x(k) −

(
ρ−1t

)
s(k+1)

)
We can adjust the step size by varying the penalty parameter

(How?)
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OS-LALM: a splitting-based OS algorithm for PWLS problems Deterministic downward continuation approach

Faster convergence using continuation

Deterministic downward continuation

Decreasing ρk compensates the shrinkage of step length

Decreasing ρk too fast could make the algorithm unstable or diverge

The designed sequence [NF14d]:

ρk =

{
1 , if k = 0

π
k+1

√
1−

(
π

2k+2

)2
, otherwise

Inspired by a second-order recursive system analysis Derivation

An adaptive restart condition takes care of the dependence on Ã
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Hung Nien (U of M) Model-based X-ray CT image recon using VS methods with OS 05/19/2014 29 / 58



OS-LALM: a splitting-based OS algorithm for PWLS problems Deterministic downward continuation approach

Faster convergence using continuation

Deterministic downward continuation

Decreasing ρk compensates the shrinkage of step length

Decreasing ρk too fast could make the algorithm unstable or diverge

The designed sequence [NF14d]:

ρk =

{
1 , if k = 0

π
k+1

√
1−

(
π

2k+2

)2
, otherwise

Inspired by a second-order recursive system analysis Derivation

An adaptive restart condition takes care of the dependence on Ã
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OS-LALM: a splitting-based OS algorithm for PWLS problems Low-memory OS-LALM with additional variable splits

Outline

1 Background
Model-based CT reconstruction
Fast (2D) CT reconstruction using ADMM

2 OS-LALM: a splitting-based OS algorithm for PWLS problems
Linearized AL method with OS acceleration
Deterministic downward continuation approach
Low-memory OS-LALM with additional variable splits

3 Experimental results
Low-dose CT with edge-preserving regularizers
Sparse-view CT with TV-like regularizers

4 Conclusion and future work
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OS-LALM: a splitting-based OS algorithm for PWLS problems Low-memory OS-LALM with additional variable splits

OS-LALM with an additional VS

Is additional VS really beneficial?

`1-regularization (compressed sensing)

TV-regularization (sparse-view CT)

Smooth regularizer with very high curvature (corner-rounding)

CT reconstruction with “high-memory” VS

PWLS formulation:

x̂ ∈ arg min
x∈Ω

{
1
2

∥∥ỹ − Ãx
∥∥2

2
+ Φ(Cx)

}
Equivalent formulation [NF14c]:

(x̂, û, v̂) ∈ arg min
x∈Ω,u,v

{
1
2 ‖ỹ − u‖2

2 + Φ(v)
}

s.t. u = Ãx, v = Cx
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(x̂, û, v̂) ∈ arg min
x∈Ω,u,v

{
1
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OS-LALM: a splitting-based OS algorithm for PWLS problems Low-memory OS-LALM with additional variable splits

OS-LALM with an additional VS

“High-memory”OS-LALM

s(k+1) = ρ∇`
(
x(k)

)
+ (1− ρ) g(k)

σ(k+1) = η̄C′
(
Cx(k) − v(k) − e(k)

)
x(k+1) =

[
x(k) − 1

ρL1+η̄L2

(
s(k+1) + σ(k+1)

) ]
Ω

g(k+1) = ρ
ρ+1∇`

(
x(k+1)

)
+ 1

ρ+1g(k)

v(k+1) ∈ proxη̄−1Φ

(
Cx(k+1) − e(k)

)
e(k+1) = e(k) − Cx(k+1) + v(k+1)

Gradient descent-like algorithm with adjustable step sizes

Φ can be either smooth or non-smooth (with efficient proxΦ)

Requires two extra image volumes for each direction

Remarkable memory and computational overhead
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OS-LALM: a splitting-based OS algorithm for PWLS problems Low-memory OS-LALM with additional variable splits

Low-memory OS-LALM with “compressed” VS

The idea is ...

The auxiliary variables v and e can be large, but C′v and C′e are not

Majoirzing Φ makes all v- and e-related updates linear!

“Low-memory” OS-LALM

At the kth iteration, replace Φ by

Φ̆
(
v; Cx(k+1)

)
∝ v′∇Φ

(
Cx(k+1)

)
+ LΦ

2

∥∥v − Cx(k+1)
∥∥2

2

The v-update has a linear approximate solution:

v(k+1) ≈ Cx(k+1) −
(

η̄
η̄+LΦ

e(k) + LΦ
η̄+LΦ

L−1
Φ ∇Φ

(
Cx (k+1)

))
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OS-LALM: a splitting-based OS algorithm for PWLS problems Low-memory OS-LALM with additional variable splits

Low-memory OS-LALM with “compressed” VS

“Low-memory”OS-LALM (cont’d)

s(k+1) = ρ∇`
(
x(k)

)
+ (1− ρ) g(k)

σ(k+1) = η
(
v̄(k) − ẽ(k)

)
x(k+1) =

[
x(k) − 1

ρL1+ηLΦL2

(
s(k+1) + σ(k+1)

) ]
Ω

g(k+1) = ρ
ρ+1∇`

(
x(k+1)

)
+ 1

ρ+1g(k)

v̄(k+1) = η
η+1 ẽ(k) + 1

η+1∇R
(
x(k+1)

)
ẽ(k+1) = ẽ(k) − v̄(k+1)

Suppose Φ is smooth, and ∇Φ is LΦ-Lipschitz

No explicit proximal mapping is in the updates

Requires only two extra image volumes for all directions
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η+1 ẽ(k) + 1

η+1∇R
(
x(k+1)

)
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Experimental results

Outline

1 Background
Model-based CT reconstruction
Fast (2D) CT reconstruction using ADMM

2 OS-LALM: a splitting-based OS algorithm for PWLS problems
Linearized AL method with OS acceleration
Deterministic downward continuation approach
Low-memory OS-LALM with additional variable splits

3 Experimental results
Low-dose CT with edge-preserving regularizers
Sparse-view CT with TV-like regularizers

4 Conclusion and future work
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Experimental results

Setup and notation

OS configuration

OS with the bit-reversal order

Separable quadratic surrogate with Hessian DL , diag{A′WA1}

Naming conventions

OS-SQS-M: the standard OS algorithm [EF99]

OS-Nes05-M: the state-of-the-art OS+momentum algorithm [KR+13]

OS-LALM-M-ρ-n: the proposed one-split algorithm [NF14b; NF14d]

OS-LALM-M-c-η (low-mem): the proposed two-split algorithm
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Experimental results Low-dose CT with edge-preserving regularizers

Shoulder region helical scan

Specification

Image size: 512× 512× 109

Sinogram size: 888× 32× 7146 (about 7 turns, pitch = 0.5)

 

 
FBP Converged Proposed
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Figure: Shoulder: the initial FBP image (left), the reference reconstruction
(middle), and the reconstructed image using OS-LALM after 30 iterations (right).
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Experimental results Low-dose CT with edge-preserving regularizers

Shoulder region helical scan
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Figure: Shoulder: RMS differences as a function of iteration using different
OS-based algorithms with 20 subsets (left) and 40 subsets (right).
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Experimental results Low-dose CT with edge-preserving regularizers

Shoulder region helical scan
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Figure: Shoulder: reconstructed images using different OS-based algorithms after
30 iterations.
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Figure: Shoulder: difference images of the reconstructed images using different
OS-based algorithms after 30 iterations.
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Experimental results Low-dose CT with edge-preserving regularizers

GE performance phantom axial scan

Specification

Image size: 1024× 1024× 90

Sinogram size: 888× 64× 984 (less view redundancy, cf. helical scan)
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Figure: GEPP: the initial FBP image (left), the reference reconstruction (middle),
and the reconstructed image using OS-LALM after 30 iterations (right).
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Figure: GEPP: RMS differences as a function of iteration using different
OS-based algorithms with 12 subsets (left) and 24 subsets (right).
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GE performance phantom axial scan
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Figure: GEPP: difference images of the reconstructed images using different
OS-based algorithms with 12 subsets after 30 iterations.
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Figure: GEPP: difference images of the reconstructed images using different
OS-based algorithms with 24 subsets after 30 iterations.
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Experimental results Sparse-view CT with TV-like regularizers

Outline

1 Background
Model-based CT reconstruction
Fast (2D) CT reconstruction using ADMM

2 OS-LALM: a splitting-based OS algorithm for PWLS problems
Linearized AL method with OS acceleration
Deterministic downward continuation approach
Low-memory OS-LALM with additional variable splits

3 Experimental results
Low-dose CT with edge-preserving regularizers
Sparse-view CT with TV-like regularizers

4 Conclusion and future work
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Experimental results Sparse-view CT with TV-like regularizers

Chest region half scan

Specification

Image size: 718× 718× 122

Sinogram size: 888× 64× 81 (about 12.6% views are used)
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Figure: Chest: the initial FBP image (left), the reference reconstruction (middle),
and the reconstructed image using OS-LALM after 100 iterations (right).
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Experimental results Sparse-view CT with TV-like regularizers

Chest region half scan
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Figure: Chest: RMS differences as a function of iteration (left) and time (right)
using OS-LALM with M = 5 and different values of η.
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Figure: Chest: RMS differences as a function of iteration (left) and time (right)
using OS-LALM with different values of M and η = 0.05.
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Figure: Chest: RMS differences as a function of iteration (left) and time (right)
using different OS-based algorithms with M = 5.
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Experimental results Sparse-view CT with TV-like regularizers

Chest region half scan
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Figure: Chest: reconstructed images using different OS-based algorithms with
M = 5 after 100 iterations.
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Conclusion and future work
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1 Background
Model-based CT reconstruction
Fast (2D) CT reconstruction using ADMM

2 OS-LALM: a splitting-based OS algorithm for PWLS problems
Linearized AL method with OS acceleration
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Conclusion and future work

Conclusion

We proposed ...

A splitting-based OS algorithm, OS-LALM, for solving PWLS X-ray
CT image reconstruction problems

A deterministic downward continuation approach for accelerating the
proposed algorithm

A low-memory variant of the proposed algorithm when considering
additional variable splits

Experimental results showed that ...

The proposed algorithm significantly accelerates the convergence of
X-ray CT image reconstruction with negligible overhead

The proposed algorithm is stable when using many subsets for OS
acceleration
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Conclusion and future work

Future work

Theory

Convergence analysis of OS-LALM when M > 1

Convergence analysis of OS-LALM with downward continuation

Optimal downward continuation and restart condition

Convergence analysis of low-mem OS-LALM

Parameter selection for low-mem OS-LALM

Extension

Non-quadratic data-fitting term

Low-mem OS-LALM with non-smooth potential functions
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THANK YOU!

any question?
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Backup slides

Second-order recursive system analysis

Minimize a quadratic function

Simple quadratic programming:

x̂ ∈ arg min
x

1
2 ‖Ax‖2

2

Let VΛV′ be the EVD of A′A, where 0 < µ = λ1 ≤ . . . ≤ λn = L

LALM iterates (with a fixed ρ):{
x(k+1) = x(k) − (1/L)

(
VΛV′x(k) +

(
ρ−1 − 1

)
g(k)

)
g(k+1) = ρ

ρ+1 VΛV′x(k+1) + 1
ρ+1 g(k)

The diagonalized system x̄ , V′x and ḡ , V′g satisfies a 2nd-order
recursive system determined by the characteristic polynomial:

(1 + ρ) r2 − 2 (1− λi/L + ρ/2) r + (1− λi/L)
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(1 + ρ) r2 − 2 (1− λi/L + ρ/2) r + (1− λi/L)
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Second-order recursive system analysis

System behaviors based on the value of ρ

Let

ρ?i , 2

√
λi
L

(
1− λi

L

)
ρ = ρ?i : critically damped

ρ > ρ?i : over-damped

ρ < ρ?i : under-damped, oscillates with frequency ψi ≈
√
λi/L

We also observed that

In practice, the asymp. convergence rate of the system is determined
by the eigencomponent with the smallest eigenvalue λ1 = µ

For λi < L/2, the critically damped system converges fastest
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Second-order recursive system analysis

System behaviors based on the value of ρ (cont’d)

To attain the fastest asymp. convergence rate, we would like to choose

ρ? = ρ?1 = 2
√

µ
L

(
1− µ

L

)
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Figure: Asymptotic convergence
rate of a system with 6 distinct
eigenvalues.

Hung Nien (U of M) Model-based X-ray CT image recon using VS methods with OS 05/19/2014 58 / 58



Backup slides

Second-order recursive system analysis

System behaviors based on the value of ρ (cont’d)

To attain the fastest asymp. convergence rate, we would like to choose

ρ? = ρ?1 = 2
√

µ
L

(
1− µ

L

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

ra
te

 

 

λ/L = 0.05

λ/L = 0.1

λ/L = 0.3

λ/L = 0.7

λ/L = 0.9

λ/L = 1

Figure: Asymptotic convergence
rate of a system with 6 distinct
eigenvalues.

Hung Nien (U of M) Model-based X-ray CT image recon using VS methods with OS 05/19/2014 58 / 58



Backup slides

Second-order recursive system analysis

Design a decreasing sequence ρk → ρ?

We know that

As the algorithm proceeds, only the component oscillating at the
freqency ψ1 ≈

√
µ/L persists

In this case, ξ(k) ,
(
g(k) −∇`

(
x(k+1)

))′ (∇`(x(k+1)
)
−∇`

(
x(k)

))
oscillates at the frequency 2

√
µ/L

If the algorithm is restarted when ξ(k) > 0, we shall observe the next
restart signal after a further (π/2)

√
L/µ iterations

We can easily design a decreasing sequence ρk that reaches ρ? every
time we restart the algorithm! Back
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