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Background

X-ray CT image reconstruction

Computed tomography

An imaging technique that combines a series of X-ray projections taken
from many different angles and computer processing (i.e., reconstruction
methods) to create cross-sectional images of the bones and soft tissues
inside to the human body.

x

A y x̂

recon. method

y ≈ Ax
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Radiation dose reduction for X-ray CT
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Background

Statistical image reconstruction of X-ray CT

We focus on SIR methods minimizing a PWLS cost function:

x̂ ∈ arg min
x∈Ω

{
1
2 ‖y − Ax‖2

W + R(x)
}
,

where W denotes the diagonal statistical weighting matrix, R(x) , Φ(Cx)
is an edge-preserving regularizer, and Ω denotes some box constraint (e.g.,
the non-negativity constraint) on x.
[J-B Thibault et al., Med. Phys., Nov. 2007]

Our goal

Find fast splitting-based algorithms solving statistical image reconstruction
problems (with high-curvature or non-smooth regularizers) in reasonable
reconstruction time

HN and J A Fessler Fast splitting-based order-subsets X-ray CT image reconstruction 06/24/2014 7 / 24



Background

Statistical image reconstruction of X-ray CT

We focus on SIR methods minimizing a PWLS cost function:

x̂ ∈ arg min
x∈Ω

{
1
2 ‖y − Ax‖2

W + R(x)
}
,

where W denotes the diagonal statistical weighting matrix, R(x) , Φ(Cx)
is an edge-preserving regularizer, and Ω denotes some box constraint (e.g.,
the non-negativity constraint) on x.
[J-B Thibault et al., Med. Phys., Nov. 2007]

Our goal

Find fast splitting-based algorithms solving statistical image reconstruction
problems (with high-curvature or non-smooth regularizers) in reasonable
reconstruction time

HN and J A Fessler Fast splitting-based order-subsets X-ray CT image reconstruction 06/24/2014 7 / 24



Related works

Outline

1 Background

2 Related works

3 Proposed algorithm

4 Experimental results

5 Conclusions and future work

HN and J A Fessler Fast splitting-based order-subsets X-ray CT image reconstruction 06/24/2014 8 / 24



Related works

Alternating direction method of multipliers (ADMM)

One way to accelerate SIR is to use splitting-based methods such as
ADMM. Consider an equivalent (unconstrained) SIR formulation:

(x̂, û, v̂) ∈ arg min
x,u,v

{
1
2 ‖y − u‖2

W + Φ(v)
}

s.t. u = Ax, v = Cx

with the corresponding augmented Lagrangian:

LA(x,u, v,d, e; ρ, η) ,
1
2 ‖y − u‖2

W + Φ(v) + ρ
2 ‖Ax− u− d‖2

2 + η
2 ‖Cx− v − e‖2

2 .

[M V Afonso et al., IEEE T-IP, Mar. 2011]
[S Ramani & J A Fessler, IEEE T-MI, Mar. 2012]
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Related works

Alternating direction method of multipliers (ADMM)

The ADMM iteration is:

1 x+ = arg min
x

{
ρ
2 ‖Ax− u− d‖2

2 + η
2 ‖Cx− v − e‖2

2

}
2 u+ = arg min

u

{
1
2 ‖y − u‖2

W + ρ
2 ‖Ax

+ − u− d‖2
2

}
3 v+ = arg min

v

{
Φ(v) + η

2 ‖Cx
+ − v − e‖2

2

}
4 d+ = d− Ax+ + u+

5 e+ = e− Cx+ + v+

[S Ramani & J A Fessler, IEEE T-MI, Mar. 2012]

By introducing the auxiliary variable u, the image update is uncorrelated
with the statistical weighting W, so it can be solved efficiently using PCG
with an appropriate circulant preconditioner in 2D (but not 3D) CT.
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Related works

Linearized AL method (LALM)

To solve the problem of iterative inner updates (with A and A′), we use
a technique called linearization, thus leading to a linearized AL method.
Consider an alternative equivalent SIR formulation:

(x̂, û) ∈ arg min
x∈Ω,u

{
1
2 ‖y − u‖2

W + R(x)
}

s.t. u = Ax

with the corresponding augmented Lagrangian:

LA(x,u,d; ρ) , 1
2 ‖y − u‖2

W + R(x) + ιΩ(x) + ρ
2 ‖Ax− u− d‖2

W .

[HN & J A Fessler, Fully 3D, 2013]
[HN & J A Fessler, SPIE MI, 2014]

HN and J A Fessler Fast splitting-based order-subsets X-ray CT image reconstruction 06/24/2014 11 / 24



Related works

Linearized AL method (LALM)

To solve the problem of iterative inner updates (with A and A′), we use
a technique called linearization, thus leading to a linearized AL method.
Consider an alternative equivalent SIR formulation:
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Related works

Linearized AL method (LALM)

The LALM iteration is:

1 s+ = ρ∇`(x) + (1− ρ) g

2 x+ = arg min
z∈Ω

{
1
2

∥∥z− (x− (ρDL

)−1
s+
)∥∥2

ρDL
+ R(z)

}
3 g+ = ρ

ρ+1∇`(x
+) + 1

ρ+1g

[HN & J A Fessler, SPIE MI, 2014]

This method works well in typical CT scans in which the regularizer is
smooth, and the loss function dominates the cost function. However,
when the regularizer is non-smooth, we inevitably have to solve image
updates iteratively (without A and A′)!
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Related works

Linearized AL method with OS acceleration (OS-LALM)

The OS-LALM iteration is:
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Proposed algorithm

OS-LALM with additional variable splits

We propose to solve the equivalent SIR formulation:

(x̂, û, v̂) ∈ arg min
x∈Ω,u,v

{
1
2 ‖y − u‖2

W + Φ(v)
}

s.t. u = Ax, v = Cx

using OS-LALM with the corresponding augmented Lagrangian:

LA(x,u, v,d, e; ρ, η) ,
1
2 ‖y − u‖2

W + Φ(v) + ιΩ(x) + ρ
2 ‖Ax− u− d‖2

W + η
2 ‖Cx− v − e‖2

2 .
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Proposed algorithm

OS-LALM with additional variable splits

The proposed split OS-LALM iteration is:

1 s+ = ρM∇`m(x) + (1− ρ) g

[ search direction due to ` ]

2 σ+ = ηC′ (Cx− v − e)

[ search direction due to R ]

3 x+ =
[
x− (ρDL + ηDP)−1 (s+ + σ+)

]
Ω

[ ρ, η-adjustable step sizes ]

4 g+ = ρ
ρ+1M∇`m+=m+1(x+) + 1

ρ+1g

[ split gradient update ]

5 v+ = shrinkη−1Φ(Cx+ − e)

[ split variable shrinkage ]

6 e+ = e− Cx+ + v+

[ dual variable update ]

where DP , diag
{
|C|′ |C| 1

}

, ρ is either constant or decreasing, and η is
constant.

⇒ increasing and bounded-above step sizes!

All updates can be solved exactly and non-iteratively. The most expensive
operations are the forward/back-projection and (perhaps) shrinkage.
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ρ+1M∇`m+=m+1(x+) + 1

ρ+1g [ split gradient update ]

5 v+ = shrinkη−1Φ(Cx+ − e) [ split variable shrinkage ]

6 e+ = e− Cx+ + v+ [ dual variable update ]

where DP , diag
{
|C|′ |C| 1

}
, ρ is either constant or decreasing, and η is

constant.

⇒ increasing and bounded-above step sizes!

All updates can be solved exactly and non-iteratively. The most expensive
operations are the forward/back-projection and (perhaps) shrinkage.
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Experimental results

Chest region axial scan (sparse-view)

Specification

Image size: 512× 512× 122

Sinogram size: 888× 64× 81 (about 12.6% views are used)

Non-smooth anisotropic TV regularization with 3 and 13 directions
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Figure: Chest [3 nbrs]: the initial FBP image (left), the reference reconstruction
(middle), and the reconstructed image using split OS-LALM (right).
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Figure: Chest [13 nbrs]: the initial FBP image (left), the reference reconstruction
(middle), and the reconstructed image using split OS-LALM (right).
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Experimental results

Effect of continuation and OS acceleration
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Figure: Chest [3 nbrs]: RMS differences as a function of iteration (left) and time
(right) using split OS-LALM with different continuation scheme and number of
subsets (η = 433.33).
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Experimental results

Effect of large split variables
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Figure: Chest [13 nbrs]: RMS differences as a function of iteration (left) and time
(right) using split OS-LALM with different continuation scheme and number of
subsets (η = 100).
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Experimental results

Why constrained?
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Figure: Chest [3 nbrs]: the initial FBP image (left), the reference reconstruction
w/ constraint (middle), and the reference reconstruction w/o constraint (right).
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Experimental results

Constrained vs. unconstrained
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Figure: Chest [3 nbrs]: RMS differences as a function of time when solving the
constrained (left) and unconstrained (right) formulations using split OS-LALM
(ηcon = 433.33 and ηuncon = 1000).
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Figure: Chest [3 nbrs]: RMS differences as a function of time when solving the
constrained (left) and unconstrained (right) formulations using split OS-LALM
(ηcon = 433.33 and ηuncon = 1000).
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Conclusions and future work

Outline

1 Background

2 Related works

3 Proposed algorithm

4 Experimental results

5 Conclusions and future work

HN and J A Fessler Fast splitting-based order-subsets X-ray CT image reconstruction 06/24/2014 22 / 24



Conclusions and future work

Last but not least

Summary of results:

Split OS-LALM is a splitting-based OS algorithm for solving PWLS
problems with general composite convex regularizers

Additional variable splits introduce η-adjustable step sizes in the
image update, somewhat compensating the small step sizes due to
high- or infinite-curvature regularizers

Memory and computational overhead become very high when we
consider lots of splits (for more flexible equivalent formulations)

List of future work:

Penalty parameter selection of η

OS-LALM + GPU-based GCD denoising

[M G McGaffin & J A Fessler, SPIE EI, 2014]

Low-memory variant for the “lots-of-split” scenario
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THANK YOU!

any question?
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Backup slides

Deterministic downward continuation

Based on a second-order recursive system analysis, we proposed to
decrease ρ as:

ρk =

{
1 , if k = 0

π
k+1

√
1−

(
π

2k+2

)2
, otherwise .

This sequence decreases a little bit faster than 1/k and exhibits
remarkable acceleration in low-dose X-ray CT image reconstruction.
[HN & J A Fessler, SPIE MI, 2014]
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